Agents Identification

Process Fragment

Author(s): M. Cossentino, V. Seidita
Last saved on: 04/11/10 16:24

Fragment DeSCriptionmmmmmmsmsss 3
Fragment GOal.....iiiinnissssssssssssssssssssssssssss s s ssss s ssssssssssssssss s s s sassssnses 3
Fragment OFigiN ... s s s sms s ssmsass 3

The PASSI Process IfECYCle. s sssssssssssssssssssssssssees 5
Fragment OVerVIEW.....immmsmsssssssssssssssss s sssasssssssssssssssssss s s anes 5

Fragment System metamodel.........ccoonimmnmnmnnnmmnssssssss s 6
Definition of System metamodel elements..........ccvimnnismsnsssssssssssssssss s 7
Definition of System metamodel relationships.......cccounnn——— 7
System metamodel INPUt/OULPULccviiirrmsissmsmss s 7

Definition of input system metamodel elements and relationshipscccceeeneereceneenne. 8

StaKehOlder ... ———————_——_—————— 8

SYSEEIM ANALYSE ..eereereerreesreersreessessseessesessesssseessessssessssesssess s ssses s es e es s ss e sssssessenes 8

Fragment WOTrKfIOW ... sssssssssssssssssssssns 8
WOTrKfloW deSCripPtion ...c..ccciimsnsnsssnsnsmssissssssssssssssssssssassssssssssssssssssssssssssssassssssnsassssssssasassssess 8
Activity deSCriPiON ..o ——————————— 9
System metamodel elements and relationships input/output.......ccoonisrinsrsessanans 9
WP INPUE/OULPUL ...ceciismsamnsmsnsssssmsssssssssssssssssssssssssssssssssss s ssssssssssssasssssssssssssssssssssssssssssenes 10

Deliverable ... ——————————————— 10
Agents Identification dOCUMENLccvivcimnmnrrsnnmni s ————— 10

125 €108 0] (30 i o T] = Ui 1o) s OP TSSOSO 10
Deliverable relationships with the MMM ... 11

GUIEliNeS ... ———————————————— 12
Enactment Guidelines ... 12
Reuse Guidelines.......sssssssssssssss 13

(0100 00 o X0 1) L 1) o 00T 13
Dependency Relationship with other fragments......oncneennseensesseeeesseseeeseeses 13

L3Sy ()) 1 (e 13

Fragment Description

Fragment Goal

Assigning system functionalities to the responsibility of newly defined agents

Fragment Origin

The presented fragment has been extracted from PASS/ (Process for Agent Societies
Specification and Implementation) design process.

PASSI (Process for Agent Societies Specification and Implementation) is a step-by-step
requirement-to-code methodology for designing and developing multi-agent societies. The
methodology integrates design models and concepts from both Object-Oriented software
engineering and artificial intelligence approaches.

PASSI has been conceived in order to design FIPA-compliant agent-based systems, initially
for robotics and information systems applications.

Systems designed by using the PASSI process are usually composed of peer-agents (although
social structures can be defined). According to FIPA specifications agents are supposed to be
mobile, and they can interact by using semantic communications referring to an ontology
and an interaction protocol.

PASSI is suitable for the production of medium-large MAS (up to a hundred agent-kinds each
one instantiated in an unlimited number of agents in the running platform).

The adoption of patterns and the support of specific CASE tools (PTK) allows a quick and
affordable production of code for the JADE platform. This encourages the use of this process
even in time/cost-constrained projects or where high quality standards have to be met.

Initial .
Requirements Next Iteration

Agent Implementation Model

|
|
Multi-Agent Single-Agent |
|
|

|
|
|
|
| (Structure) Structure
| Definition — Definition
|
|
|
|
|

|
|
|
|
|
: Agents [= Code
| Identification | Production
Y Y |
I Behavior Behavior |
: Description Description |
|

Roles Tasks
Identification Specification A
| S S LT | e
—_— "

—— e e — — — — ——" — — —————— —_ ———— — — ——o— — ————

: cl))nc;::zi;y o(")‘:::::z;:grn Roles) > (Protocols) : : Deployment :
e Description Description i
| \ Description Description P p | | Configuration I o=
| | |
-

Figure 1. The PASSI design process

The design process is composed of five models (see Figure 1): the System Requirements
Model is a model of the system requirements; the Agent Society Model is a model of the
agents involved in the solution in terms of their roles, social interactions, dependencies, and
ontology; the Agent Implementation Model is a model of the solution architecture in terms
of classes and methods (at two different levels of abstraction: multi and single-agent); the

Code Model is a model of the solution at the code level and the Deployment Model is a
model of the distribution of the parts of the system (i.e. agents) across hardware processing
units, and their movements across the different available platforms.

Useful references about the PASSI process are the following:

M. Cossentino. From Requirements to Code with the PASSI Methodology. In Agent-
Oriented Methodologies, B. Henderson-Sellers and P. Giorgini (Editors). Idea Group
Inc., Hershey, PA, USA. 2005.

M. Cossentino, S. Gaglio, L. Sabatucci, and V. Seidita. The PASSI and Agile PASSI MAS
Meta-models Compared with a Unifying Proposal. Lecture Notes in Computer
Science, vol. 3690. Springer-Verlag GmbH. 2005. pp. 183-192.

M. Cossentino and L. Sabatucci. Agent System Implementation in Agent-Based
Manufacturing and Control Systems: New Agile Manufacturing Solutions for
Achieving Peak Performance. CRC Press, April 2004.

M. Cossentino, L. Sabatucci, and A. Chella. Patterns reuse in the PASSI methodology.
In Engineering Societies in the Agents World IV, 4th International Workshop, ESAW
2003, Revised Selected and Invited Papers, volume 3071 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2004. pp. 294-310

M. Cossentino, L. Sabatucci, A. Chella - A Possible Approach to the Development of
Robotic Multi-Agent Systems - IEEE/WIC Conf. on Intelligent Agent Technology
(IAT'03). October, 13-17, 2003. Halifax (Canada)

Chella, M. Cossentino, and L. Sabatucci. Designing JADE systems with the support of
case tools and patterns. Exp Journal, 3(3):86-95, Sept 2003.

The PASSI Process lifecycle

4 f) ’ ~ f | ’] / (@
System Ag?“‘ Agenl_ N Code Deployment
Requirements Society Implementation

Figure 2. The PASSI process phases

PASSI includes five phases (see Figure 2) arranged in an iterative/incremental process model:

. System Requirements: It covers all the phases related to Req. Elicitation,
analysis and agents/roles identification

. Agent Society: All the aspects of the agent society are faced: ontology,
communications, roles description, Interaction protocols

. Agent Implementation: A view on the system’s architecture in terms of
classes and methods to describe the structure and the behavior of single agent.

. Code: A library of class and activity diagrams with associated reusable code
and source code for the target system.

. Deployment: How the agents are deployed and which constraints are

defined/identified for their migration and mobility.

Each phase produces a document that is usually composed aggregating UML models and
work products produced during the related activities. Each phase is composed of one or
more sub-phases each one responsible for designing or refining one or more artefacts that
are part of the corresponding model. For instance, the System Requirements model includes
an agent identification diagram that is a kind of UML use case diagrams but also some text
documents like a glossary and the system use scenarios.

Fragment Overview

The fragment here described is one of the peculiarities distinguishing the PASSI process from
other approaches. The designer skill in capturing system requirements has been capitalized
in order to produce an initial representation of the system functionalities (PASSI Domain
Description Fragment) and now this model is used to identify agents and designate their
responsibilities in terms of requirements to be satisfied.

Let us consider the “Agent ldentification” sub-phase (red box in Figure 3). This fragment
aims to identify all the agents involved in the system to be developed.

c
0>
Agents

Identification

<<output>>

<

Name Agents

<<performs, primary>>

Task
Specificati
‘ecwa Kz

<<input>>
<>
Identify Tasks

<<performs, primary>> g7

System Analyst

753} Eee— -

a . Agents

Domain Requiremen)

L{_“\, Description 3 . Id’entlﬁcahon
Problem ~ e Ao (X}
Statement 0~‘\ NE —

N Domain g
input \ N P Requirement = X
<cinput>> \ = A
o o) Description | 0% H hd
Identify Use N H Cluster Use
Describe Use Glossary H Cones
a Cases Cases 7 4
<<output>> v <<performs,
Scenarios <<performs, primary>> <
> Oy et System Analyst
System -
Domain
Arf‘ys‘ Expert
nputos
<cperforms, prmary>>
|
2 <cpredecessor>
Roles Identification predecesso
1=
< Roles
Identify Roles Identification
B <cou>
Design
<<pertorms, primary>> Scenarios
T D v,
por -
System Analyst poman ™
Expert
<<performs, primary>>
= B a 3
< j O > > >
Role Use Activity Behavioral Structured Free Composite
WPKind WPKind ~ WPKind WPKind

Keys

Figure 3. The System Requirements Phase (structural view)

Fragment System metamodel
The portion of metamodel of this fragment is:

<<MMMR> > <<MMMR> > <<MMMR>>
Generalize Include Extend
<<MMMR>> <<MMMR> >
UC_Relationship k7 C icate
: <<MMMR>> H
' Association !
<<MMMR>> . <<MMMR> >
UC_Ra4latipnship p ' Commurjicate p
'
Functional Requirement <<MMMR>> | Actor Agent

Association p»

«Is RespopsibleFor
1

Is ResponsibleFor

Figure 4. The fragment system metamodel

<
Describe
Control Flow

<<performs, primary>>

¢
O
Task
Specification

<<output>>

This fragment refers to the MAS metamodel adopted in PASSI and contributes to define and

describe the elements reported in Figure 3.

Definition of System metamodel elements

This fragment underpins the following model elements:

Agent — the system requirements domain agent is a responsibility center; this means that
each agent will rationally act to achieve its objectives (usually defined in terms of
functionalities it should ensure).

Generally speaking, an Agent is an entity which:

- is capable of actions in an environment;

- can communicate directly with other agents;

- is driven by a set of functionalities it has to accomplish;

- possesses resources of its own;

- is capable of perceiving its environment;

- has only a partial representation of this environment;

- can play several, different (and sometimes concurrent or mutually exclusive) roles.

Functional requirement - Functional requirements describe the functions that the software
is to execute. (from IEEE SEBOK 2004)

Actor - An external entity (human or system) interacting with the multi-agent system.

Definition of System metamodel relationships

Generalize — (standard UML meaning)
Include — (standard UML meaning)
Extend — (standard UML meaning)
Association — (standard UML meaning)
Communicate

System metamodel Input/Output

Input, output system metamodel elements to be designed in the fragment are detailed in
the following tables.

As regards system metamodel elements:

Input To Be Designed To Be Refined To Be Quoted
MMME MMMR | MMME MMMR MMME MMMR MMME MMMR
Non iAgent [Agent E Functional Functional |Actor-
Functional Functional Requirement 4Requirement|Functional
Requirement Requirement Functional Requirement

(Is Responsible]
for)

Requirement
(Generalize or
Extend or|
Include)*

Functional
Requirement

Actor

Functional

Requirement
— Functional
Requirement
(UC_Relation

ship)

Actor

* Relationships connecting requirements now belonging to different agents are changed to
Communicate type.

Definition of input system metamodel elements and relationships

Non-Functional requirement - Non functional requirements constrain the solution and are
sometimes known as constraints or quality requirements. (from IEEE SEBOK 2004)

Stakeholder

Roles involved in this fragment are:
¢ System Analyst

Their responsibilities are described in the following subsections.

System Analyst

He is responsible for:
1. Use Cases Clustering. The System Analyst analyzes the input use case diagrams and
define their clustering in a set of packages.
2. Agents Naming. After grouping the use cases in a convenient set of packages, the
last activity of this phase consists in designing these packages with the names that
will distinguish the different agents throughout the project.

Fragment workflow

Workflow description

The process that is to be performed in order to obtain the result is represented in the
following as a SPEM diagram.

o O
Domain
: Agents
Requirements icati
thh Idenfication
Description
O <<mandatory, input>> l ?«mandatory, output>>
System Analyst
® ~La +~La @
Cluster Use Name Agents
Cases
(4
B
& ~ Compont
omposite
Role Use Task Use WPKind
KEYS

Figure 5. The flow of activity of this fragment

Activity description

The fragment encompasses the following work breakdown elements:

Name Kind Description Roles
involved
Use Cases | Task The System Analyst analyzes the use | System
Clustering case diagrams resulting from the | Analyst

previous phase and attempts their | (perform)
clustering in a set of packages
Agents Naming Task After grouping the use cases in a | System
convenient set of packages, the last | Analyst
activity of this phase consists in | (perform)
identifying these packages with the
names that will distinguish the
different agents throughout all the
project

System metamodel elements and relationships input/output

The above described work breakdown elements have the following input/output in terms of
system metamodel components:

Input Output

Activity/Task MMME MMMR MMME MMMR
Name

Use Cases | Actor, Functional
Clustering Functional Requirement
Requireme | -Functional
nt, Non | Requirement
Functional (Generalize,
Requireme | Include,

nt. Extend)

Functional
Requirement
-Actor

(Association)
Functional
Requirement
- Non
Functional
Requirement
(Constrained

By)

Agents Naming Agent Communicate

WP Input/Output

Input, output work products to be designed in the fragment are detailed in the following
tables.

Input Output
Domain Requirements|Agents Identification
Description document Document

Deliverable

Agents Identification document

The resulting artefact of this phase is a composite document composed by:
* an use case diagram (Agent ldentification diagram) reporting use cases now
clustered inside a set of packages, each one representing one agent.

* atable describing agents’ main features (requirements, constraints, ...)

As it is common, we represent external entities interacting with our system (people,
devices, conventional software systems) as actors.

Relationships between use cases of the same agent follow the usual UML syntax and
stereotypes, whereas relationships between use cases of different agents are
stereotyped as communication as described below.

Example of notation

Starting from a use case diagram, packages are used to group functionalities that
will be assigned to an agent (whose name is the name of the package).

Other details about the adopted notation descend from the discussion reported in
other subsections (for instance introduction of communicate relationships among
agents).

<<Agent>>
SensorReader

©< <<include>> O
7 <<M .
% sonarReader Q sensorFusion

laserReader

Environment

<<commuhicate>>

<<Agent>> <<Agent>>
engController TLPlanner
©< <<communicate>> O
engControl pathPlanningTL

Figure 6. An example of Agent Identification Diagram

The following table is used to describe agents’ main features. The table may be composed by
reusing information from Domain Requirements Description document in the PASSI process.

Agent Description (Functional Special (non
Requirement) Functional)
Requirements

(security, other non
funct. Req., pseudo-req,
mobility, ...)

Deliverable relationships with the MMM

The following figure describes the structure of this fragment work products in relationship
with the MAS model elements:

LI

Actor

'

— ¢
Requi t
equiremen o
Agents
g Identification
Agent
Keys =) = =] @
o> D B [

MMM Element Structural Behavioral Structured Free
WPKind ~ WPKind WPKind WPKind

Figure 7. Structure of the fragment work-product in terms of MAS meta-model elements

Guidelines

Enactment Guidelines

Some assumptions about agent interaction and knowledge play an important role in the

understanding of this activity and they are as follows:

Functional requirements (represented by use cases) can be clustered according to different

* An agent acts to achieve its objectives on the basis of its local knowledge and

capabilities;

* Each agent can request help from other agents that are collaborative if this is

not in contrast with their own objectives;

* Interactions between agents and external actors consist of communication acts;
this implies that if some kind of include/extend relationship exists between two
use cases belonging to different agents, this stereotype is to be changed to
communication since a conversation is the unique interaction way for agents.
This is a necessary extension of the UML specifications that allow
communication relationships only among use case and actors. The direction of
the relationships goes from the initiator of the conversation to the participant.
This stereotype change is, however, not in contrast with the spirit of the
definition of the communication relationship since an agent is a proactive entity
that could initiate an interaction just like an actor. An exception exists to this
change in the relationship stereotype: it is possible that an agent in requiring
some collaboration from another will not use a communication but instead will
instantiate the other one; in this case, that is however not frequent, we use an

instantiate stereotype to distinguish this situation from the others.

* An agent’s knowledge can increase through communication with other agents or

exploration of the real world.

criteria that can be adopted by the designer in different situations:

Use cases can be clustered according to functional similarity or dependency. This

brings to agents with a high functional coherence.

Use cases can be clustered according to similarities in information they manage or
exchange. This has a positive effect on information management also in terms of

security (if needed).

¢ Use cases can be clustered according to involved actors. This allows the optimisation
of graphical interfaces since all the interactions involving the same actor are
managed by the same agent (or a small set of agents).

* This activity produces a sort of architectural decomposition of the future system (at
least at the functionality level but being each agent a consistent element of the
implementation this partition also guides some kind of structural decomposition for
the following solution). This suggests the observance of some common sense rules
for agents identification:

a. When possible (and if evident at this stage), agents that could be deployed
in special devices (like PDA or cellular phones) should be fine grained in
order to optimize their performance.

b. Human interaction functionalities could be assigned to specific agents in
order to prepare the option for a multi-device implementation (web-based,
cell phone interfaces, and so on) via different categories of agents
implementing these functionalities.

c. In order to facilitate agents mobility, functionalities that strictly depend on
hardware devices or databases should that could not be accessed by
everywhere should be divided by the remaining part of the system
eventually using a wrapping solution.

Reuse Guidelines

Composition

The only input for this fragment is a system requirement description; as a consequence, this
fragment can be used after a functional-oriented requirements elicitation (performed with
use case diagrams) in order to identify the system decomposition into agents. It is not
suggested for goal-oriented approaches.

Dependency Relationship with other fragments

This fragment is conceived to receive a system requirements document like the work
product produced by the PASSI Domain Requirements Description fragment.

References

1. M. Cossentino. From Requirements to Code with the PASSI Methodology. In Agent-
Oriented Methodologies, B. Henderson-Sellers and P. Giorgini (Editors). Idea Group Inc.,
Hershey, PA, USA. 2005

2. http://pa.icar.cnr.it/passi/

