
ALMA MATER STUDIORUM

UNIVERSITÀ DEGLI STUDI DI BOLOGNA

SODA

Societies in Open Distributed Agent spaces

ALMA MATER STUDIORUM

UNIVERSITÀ DEGLI STUDI DI BOLOGNA

SODA

Societies in Open Distributed Agent spaces

Date: 25th June 2010
Version: First Draft
Pages:
Responsible: Ambra Molesini
Authors: Ambra Molesini

Andrea Omicini
Contact: ambra.molesini@unibo.it

Contents

1 Introduction 2
1.1 The SODA Process Lifecycle 3
1.2 The Meta-model . 4
1.3 The Layering . 10

1.3.1 Process roles . 12
1.3.2 Activity Details . 12
1.3.3 Work products . 13

2 Phases of the SODA process 17
2.1 The Requirements Analysis 17

2.1.1 Process roles . 17
2.1.2 Activity Details . 17
2.1.3 Work products . 20

2.2 The Analysis . 23
2.2.1 Process roles . 23
2.2.2 Activity Details . 26
2.2.3 Work products . 28

2.3 The Architectural Design . 32
2.3.1 Process roles . 35
2.3.2 Activity Details . 35
2.3.3 Work products . 39

2.4 The Detailed Design . 42
2.4.1 Process roles . 43
2.4.2 Activity Details . 43
2.4.3 Work products . 50

3 Work products dependencies 56

Bibliography 58

1

1
Introduction

SODA (Societies in Open and Distributed Agent spaces) [1, 2, 3, 5] is an
agent-oriented methodology for the analysis and design of agent-based sys-
tems, which adopts the Agents & Artifacts (A&A) meta-model [6], and in-
troduces a layering principle as an effective tool for scaling with the system
complexity, applied throughout the analysis and design process. Since its
first version [5], SODA is not concerned with intra-agent issues: designing a
multi-agent system with SODA leads to defining agents in terms of their re-
quired observable behaviour and their role in the multi-agent system. Then,
whichever methodology one may choose to define the agent structure and in-
ner functionality, it could be easily used in conjunction with SODA. SODA
concentrated on inter-agent issues, like the engineering of societies and en-
vironment for multi-agent systems.

SODA abstractions are logically divided into three categories: i) the abs-
tractions for modelling/designing the system’s active part (task, role, agent,
etc.); ii) those for the reactive part (function, resource, artifact, etc.); and iii)
those for interaction and organisational rules (relation, dependency, interac-
tion, rule, etc.). In its turn, the SODA process is organised in two phases,
each structured in two sub-phases: the Analysis phase, which includes the
Requirements Analysis and the Analysis steps, and the Design phase, inclu-
ding the Architectural Design and the Detailed Design steps. Each sub-phase
models (designs) the system exploiting a subset of the SODA abstractions:
in particular, each subset always includes at least one abstraction for each of
the above categories—that is, at least one abstraction for the system’s active
part, one for the reactive part, and another for interaction and organisational
rules.

An overview of the methodology structure is shown in Figure 1.1: each
step is practically described in terms of a set of relational tables, listed in
the figure. SODA provides only a tabular representation of the system.
Each table in the methodology has both a full name and a unique acronym,
which specifies the layer (see Section 1.3) where the table belongs (in round

2

brackets) and the involved entities. For instance, (L)ARt refers to the Actor
(specified by the “A”)-Requirement (specified by the “R”) table (specified
by the “t”) at layer L.

Requirements
Analysis Analysis

Architectural
Design

Detailed
Design

References
Tables

Transitions
Tables

Mapping
Tables

Requirements Tables

Domain Tables

Relations Tables

Responsibilities Tables

Dependencies Tables

Topologies Tables

Entities Tables

Interaction Tables

Topological Tables

Agent/Society Design Tables

Environment Design Tables

Analysis

Design

Constraints Tables Interaction Design Tables

Topological Design Tables

Figure 1.1: An overview of the SODA process

1.1 The SODA Process Lifecycle

SODA includes two phases each of them structure in two sub-phases: the
Analysis phase, which includes the Requirements Analysis and the Analysis
steps, and the Design phase, including the Architectural Design and the
Detailed Design steps.

These phases are arranged in iterative process model (see Figure 1.2):

∙ Requirements Analysis covers all the phases related to the Actor iden-
tification, the Requirements Elicitation and Analysis and the Analysis
of the existing environment.

Requirements
Analysis

Analysis Architectural
Design

Detailed Design

Layering

Layering

Figure 1.2: The SODA process phases

∙ Analysis investigates all the aspects related to the problem domain
trying to understand the tasks satisfying the requirements, their connec-
ted functions, the environment topology and all the dependencies among
these entities.

∙ Architectural Design defines a family of possible architectures for the
final system.

∙ Detailed Design establish the best system architecture and design the
environment and the system’s interactions.

Each step produces several sets of relational tables each of them describes
a specific MAS Meta-model Element (MMMElement) and its relationships
with the other MMMElements.

The details of each step will be discussed in the following section.

1.2 The Meta-model

The meta-model that represents the abstract entities adopted by SODA is
depicted in Figure 1.3.

Requirements Analysis. Several abstract entities are introduced for
requirement modelling (see Figure 1.3 “requirements analysis” part): in par-
ticular, Requirement and Actor are used for modelling the customers’ requi-
rements and the requirement sources, respectively, while the ExternalEnvi-
ronment notion is used as a container of the LegacySystems that represent
the legacy resources of the environment. The relationships between requi-
rements and legacy systems are then modelled in terms of suitable Relation
entities.

Analysis. The Analysis step expresses the abstract requirement repre-
sentation in terms of more concrete entities such as Tasks and Functions (see

SODA 2010/06/25 JUDE(Free Version)

 pkg

Actor Requirement

*1

Relation LegacySystem ExternalEnvironment

* 1

Task

1..*

1

Dependency

**

participates

**

participates

* *

participates

Function

* *
participates

Topology

*

*

participates

*

*

participates

1..*

1

1..*

1

0..*

1

0..*

1

0..*

1

Role

Action

1..*

1

performs

Interaction

Resource

Operation

1..*

1
provides

1..*

1

1

1..*

1..*

1

1

1..*

Space *

*

participates

1..*

1..*

participates
*

1

0..*

connection

1..*

1

1..*

1

Workspace

1..*

1..*

Agent

1

1..*

Artifact

1..*

1

perceives 1..*

1

is allocated

Composition

Society Aggregate

Individual Artifact

Social Artifact

Environmental Artifact

1..*

1

participates

Rule

0..*

1..*

constrains

connection

** participates
* *

participates

1..* 1..*
constrains

1..*1..*

constrains

1..*

1..*
constrains

1

1..*

1

1..*

1

1..*

Use1..*1..* 1..*1..*

Manifest
1..*

1..*1..*

1..*

SpeakTo 1..* 1..*

participates

1..*

1..*

LinkedTo

1..*

1..*

1..*

1..*

participates

Requirements
Analysis

Analysis

Architectural
Design

Detailed
Design

Figure 1.3: The SODA Meta-model

Figure 1.3, “analysis” part). Tasks are activities requiring one or more com-
petences, while functions are reactive activities aimed at supporting tasks.
The relations highlighted in the previous step are now the starting point for
the definition of Dependencies (interactions, constraints, etc.) among the
abstract entities. The structure of the environment is also modelled in terms
of Topologies, i.e. topological constraints over the environment.

Topologies are often derived from functions, but can also constrain / affect
task achievement.

Architectural Design. The main goal of this stage is to assign res-
ponsibilities of achieving tasks to Roles, and responsibilities of providing
functions to Resources (see Figure 1.3, “architectural design” part). To this
end, roles should be able to perform Actions, and resources should be able
to execute Operations providing one or more functions. The dependencies
identified in the previous phase become here Interactions and Tules. Interac-
tions represent the acts of the interaction among roles, among resources and
between roles and resources; rules, instead, enable and bound the entities’
behaviour. Finally, the topology constraints lead to the definition of Spaces,
i.e. conceptual places structuring the environment.

Detailed Design. The active and passive parts are expressed in the
Detailed Design in terms of Agents, agent Societies, Artifacts and Aggregate,
(see Figure 1.3 “detailed design” part). Agents are intended here as autono-
mous entities able to play several roles, and the resources identified in the
previous step are now mapped onto suitable artifacts. In the meta-model the
artifact is reported specifying its “type” derived from the following taxonomy
[7]:

∙ Individual artifact handles the interaction of a single agent within a
MAS, and essentially works as a mediator between the agent and the
MAS itself. Since they can be used to shape of admissible interactions
of individual agents in MAS, individual artifacts play an essential role
in engineering both organisational and security concerns in MAS.

∙ Environmental artifact brings an external resource within a MAS, by
mediating agent actions and perceptions over resources. As such, envi-
ronmental artifacts play an essential role in enabling, disciplining and
governing the interaction between agents and MAS environment.

∙ Social artifact rules social interactions within a MAS—even though
indirectly, since it technically mediates interactions between individual,
environmental, and possibly other social artifacts. Social artifacts in
SODA play the role of the coordination artifacts that embody the rules
around which societies of agents can be built.

In SODA a society can be seen as a group of interacting agents and
artifacts when its overall behaviour is essentially an autonomous, proactive
one; it can be seen an aggregate when its overall behaviour is essentially a
functional, reactive one.

The workspaces take the form of an open set of artifacts and agents:
artifacts can be dynamically added to or removed from workspaces, and
agents can dynamically enter (join) or exit workspaces.

Finally, the Use, Manifest, SpeakTo and LinkedTo concepts represent the
different forms of interaction supported by SODA.

Table 1.1: The SODA entities definitions

Concepts Definition Step
Actor System’s stakeholder Requirements

Analysis
Requirement Service that the stakeholder

requires from a system and
the constraints under which
it operates and is developed

Requirements
Analysis

LegacySystem Represent the legacy re-
sources of the environment

Requirements
Analysis

External Envi-
ronment

Represent the legacy world
in which the new system
will execute

Requirements
Analysis

Relation Represent all the possible
ties among the entities of
the Requirements Analysis

Requirements
Analysis

Task Represent a computation
that contributes to the sa-
tisfaction of a specific requi-
rements.

Analysis

Function Reactive activity aimed at
supporting task (or goal)

Analysis

Topology Topological constraints over
the environment. Topolo-
gies are often derived from
legacy-systems and require-
ments, but also functions
and tasks could induct some
topological constraints

Analysis

Dependency Represents interactions,
constraints, and kind of
relationships among the
abstract entities

Analysis

Role Represent an entity respon-
sible to accomplish some
tasks

Architectural
Design

Action Represent a computation
that changes the environ-
ment in order to meet roles
design objectives

Architectural
Design

Resource Entity that provides func-
tions

Architectural
Design

Operation Finer-grained functionality
provided by resource in or-
der to achieve a function

Architectural
Design

Space Conceptual places structu-
ring the environment

Architectural
Design

Rule Enables and bound the en-
tities’ behaviour. Such enti-
ties are roles, resources, in-
teractions, and spaces

Architectural
Design

Interaction Represent the acts of
the interaction among
roles, among resources and
between roles and resources

Architectural
Design

Composition Represent a generic compo-
sition of agents and artifact
without specifying the ove-
rall “nature”

Detailed Design

Agent Represent pro-active com-
ponents of the systems, en-
capsulating the autonomous
execution of some kind of
activities inside some sort of
environment

Detailed Design

Society A group of interacting
agents and artifacts when
its overall behaviour is
essentially an autonomous,
proactive one

Detailed Design

Artifact Represent passive compo-
nents of the systems such
as resources and media that
are intentionally construc-
ted, shared, manipulated
and used by agents to sup-
port their activities, either
cooperatively or competiti-
vely

Detailed Design

Individual Arti-
fact

Mediator between the agent
and the MAS

Detailed Design

Social Artifact Ruling social interactions
within a MAS

Detailed Design

Environmental
Artifact

disciplining and governing
the interaction between
agents and MAS environ-
ment

Detailed Design

Aggregate A group of interacting
agents and artifacts when
its overall behaviour is
essentially a functional,
reactive one

Detailed Design

Workspace Represent conceptual
containers of agents and
artifacts, useful for defining
the topology for the envi-
ronment and providing a
way to define a notion of
locality

Detailed Design

Use The act of interaction bet-
ween agent and artifact:
agent uses artifact

Detailed Design

Manifest The act of interaction bet-
ween artifact and agent:
artifact manifests itself to
agent

Detailed Design

SpeakTo The act of interaction
among agents: agent speaks
with another agent

Detailed Design

LinkedTo The act of “interaction”
among artifact: artifact is
linked to another artifact

Detailed Design

1.3 The Layering

Complexity is inherent in real-life systems. While modelling complex sys-
tems and understanding their behaviour and dynamics is the most relevant
concern in many areas, such as economics, biology, or social sciences, in the
software systems also the complexity of construction becomes an interesting
challenge. An integral part of a system development methodology must the-
refore be a set of tools for controlling and managing this complexity. So,
soda has introduced a tool in order to deal with the complexity of the sys-
tem representation: the system is represented as composed by different layers
of abstraction and it is possible to move from one layer to another layer by
means of a layering operation.

This tool in SODA is called “Layering” and it is represented as a capability
pattern [4], i.e., a reusable portion of the process, as shown in Figure 1.4
where the layering process is detailed. In particular, the layering presents
two different functionalities: (i) the selection of a specific layer for refining /
completing the abstractions models in the methodology process (Select Layer
activity), and (ii) the creation of a new layer in the system by in-zooming –
i.e., increasing the system detail – or out-zooming – i.e., increasing the system
abstraction – activities. In latter case, the layering process terminates with
the projection activity needed to project the abstractions from one layer to
another “as they are”, so as to maintain the consistency in each layer.

In general, when working with SODA, the starting layer, called core layer,
is labelled with “C” and is always complete—that is, it contains all the
entities required to fully describe a given abstract layer. Any other layer
contains just i) the entities that have been possibly (in/out-) zoomed from
another layer, as well as ii) the entities possibly projected “as they are” from
other layers: so, in general, these layers are not necessarily complete—though
of course they might be so.

In-zoom Out-zoom

Projection

Select Layer

increases detail increases abstraction

new layer?

no

yes

Figure 1.4: The Layering process

Zooming table

Layering Expert

In-zoom

<<performs,
primary>>

<<input>>

<<input>>

<<input>>

In-zoom

<<output>
>

Select Layer

<<predecessor>>

<<input>>

Select Layer

c

SODA Tables

<<output>>

c

(L) SODA Tables

c

SODA Tables
Zooming table

Layering Expert

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

c

(L+1) SODA Tables

Layering Expert

Out-Zoom

<<performs,
primary>>

<<input>>

<<input>>

Out-zoom

<<output>>

<<
pre

de
ce

ss
or>

>

c

SODA Tables
Zooming table

c

(L-1) SODA Tables

Projection

Layering Expert

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

Projection

<<input>>

c

SODA Tables

<<input>>

<<input>>

<<output>>

c

SODA Tables

Zooming table

<<output>>

Zooming table

<<output>>

Zooming table

<<input>>

Figure 1.5: The Layering flow of activities, roles and work products

Zooming table

Select Layer

c

SODA Tables

c

(L) SODA Tables

Layering Expert

Figure 1.6: The flow of task in the Select Layer activity

1.3.1 Process roles

One role is involved in the Layering pattern: the Layering Expert. Layering
Expert is responsible for:

∙ selecting the specific abstraction layer

∙ in-zooming or out-zooming the system by creating or modifying the
Zooming table

∙ projecting the necessary entities in the new created layer by partially
filling all the tables

1.3.2 Activity Details

Select Layer activity

The flow of tasks inside this activity is reported in Figure 1.6 and the tasks
are detailed in the following table.

Zooming table

c

SODA Tables

Layering Expert

In-zoom

c

(L+1) SODA TablesZooming table

Figure 1.7: The flow of task in the In-zoom activity

In-zoom activity

The flow of tasks inside this activity is reported in Figure 1.7 and the tasks
are detailed in the following table.

Out-zoom activity

The flow of tasks inside this activity is reported in Figure 1.8 and the tasks
are detailed in the following table.

Projection activity

The flow of tasks inside this activity is reported in Figure 1.9 and the tasks
are detailed in the following table.

1.3.3 Work products

The Layering generates one work product (the Zooming table). Its relation-
ships with the MMMElements are described in Figure 1.10.

This diagram represents the Layering in terms of the Work Product and
its relationships with the SODA meta-model (Section 1.2) elements. Each
MMMElement is represented using an UML class icon (yellow filled) and, in

Zooming table

c

SODA Tables

Layering Expert

Zooming table

Out-zoom

c

(L-1) SODA Tables

Figure 1.8: The flow of task in the Out-zoom activity

c

SODA Tables

Layering Expert

Zooming table

c

(L-1) SODA Tables

c

(L+1) SODA Tables

Projection

c

SODA Tables

Figure 1.9: The flow of task in the Projection activity

Zooming table

Actor LegacySystemRequirement Relation

F F F FR R R RD D D D

Task TopologyFunction Depenency

FD FDFD FD

R
R R R

Resource

Interaction

R

R

R

Action

R
FD

Operation

R

Rule

R

Role

Space

FD

FD

R

FD

FD

FD

FD

Figure 1.10: The Layering work products

the documents, such elements can be Defined, reFined, Quoted, Related or
Relationship Quoted as described below:

∙ defined (D label): this means that the element is introduced for the first
time in the design in this artefact (the MMMElement is instantiated
in this artefact);

∙ reFined (F label): this means that the MMMElement is refined in the
work product (for instance by means of attribute definition);

∙ related (R label): this means that an already defined element is related
to another or from a different point of view that one of the MAS meta-
model relationships is instantiated in the document;

∙ quoted (Q label): this means that the element has been already defined
and it is reported in this artefact only to complete its structure but no
work has to be done on it;

∙ relationship quoted (RQ label): this means that the relationship is re-
ported in the work product but it has been defined in another part of
the process

The Layering is represented by means of a Zooming Table ((C)Zt)(Figure
1.11) The Zooming table formalises the in-zoom of a layer into the more
detailed layer; of course, the same table can be used to represent the dual
out-zoom process.

Layer L Layer L+1
out-zoomed entity in-zoomed entities

Figure 1.11: (L)Zt

2
Phases of the SODA process

2.1 The Requirements Analysis

The goal of Requirements Analysis is the characterisation of both the cus-
tomers’ requirements and the legacy systems with which the system should
interact, as well as to highlight the relationships among requirements and le-
gacy systems. Figure 2.1 presents the Requirements Analysis process, while
Figure 2.2 presents the flow of activities, the involved roles and the work
products

2.1.1 Process roles

Three roles are involved in the Requirements Analysis: the Requirement
Analyst, the Environment Analyst and the Domain Analyst.

Requirement Analyst

Requirement Analyst is responsible for:

Environment Analyst

Environment Analyst is responsible for:

Domain Expert

He supports the Requirement Analyst and the Environment Analyst during
the description of the application domain.

2.1.2 Activity Details

For the details about the different Layering activities please refer Section 1.3.

17

Requirements modelling Environment modelling

Relations modelling

Requirements layering Environment layering

Relations layering

Layering

another layer? another laye?

another layer?

yes

start

no

yes

no

yes

Are the models well specified?

yes
no

new iteration

Figure 2.1: The Requirements Analysis process

Requirements
Modelling

Relations Modelling

Environment Modelling

Relation
Descriptions

Actors
Description Requirements

Description

<<input>>

<<performs,

primary>>

Requirement
Analyst

LegacySystem
Description

Requirements
specification

<<
pr

ed
ec

es
so

r>
>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<output>>

<<output>>

<<performs, primary>>

<<output>>

<<output>>

Environment
Analyst

Requirement
Analyst

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

Domain
Expert

<<perform
s, assist>>

Domain
Expert

<<perform
s, assist>>

Requirement
table

Actor-Requirement
table

<<perform
s, assist>>

<<output>>
Actor table

<<input>>

<<performs, assist>>

Domain
Expert

LegacySystem
table

<<input>>

<<
pr

ed
ec

es
so

r>
>

Environment
Analyst

<<perform
s, assist>>

Relation table
<<output>>

Requirement-
Relation table

<<output>>

LegacySystem-
Relation table

<<input>>

<<
in

pu
t>

>

Requirements
specification

Requirements
specification

<<input>>

<<input>>

Environment
Layering

<<predecessor>>

<<predecessor>> <<output>>

Zooming table

<<input>>

Requirement
Layering

<<predecessor>> <<predecessor>>

<<output>>
<<input
>>

<<input>>

Relation
Layering

<<predecessor>>

<<predecessor>>

<<output>>
<<input>>

Layering

<<predecessor>>

<<predecessor>>

<<output>>

<<output>>

ExternalEnvironment-
LegacySystem table

Zooming table

Zooming table

Figure 2.2: The Requirements Analysis flow of activities, roles and work
products

Requirements
Analyst

Actors
Descriptions

Requirements
Descriptions

Requirements
specification

a

Zooming table

Actor table Requirement
table

Actor-
Requirement table

Domain Expert

Figure 2.3: The flow of task in the Requirements Modelling activity

Requirements Modelling activity

The flow of tasks inside this activity is reported in Figure 2.3 and the tasks
are detailed in the following table.

Environment Modelling activity

The flow of tasks inside this activity is reported in Figure 2.4 and the tasks
are detailed in the following table.

Relations Modelling activity

The flow of tasks inside this activity is reported in Figure 2.5 and the tasks
are detailed in the following table.

2.1.3 Work products

The Requirements Analysis step consists of three sets of tables: Requirements
Tables, Domain Tables and Relations Tables. Their relationships with the
MMMElements are described in Figure 2.6.

This diagram represents the Layering in terms of the Work Product and
its relationships with the SODA meta-model (Section 1.2) elements.

Environment
Analyst

LegacySystem
Description

Requirements
specification

a

Zooming table

ExternalEnvironment-
LegacySystem table

LegacySystem
table

Domain Expert

Figure 2.4: The flow of task in the Environment Modelling activity

Relation
Description

Requirements
specification

a

Zooming table

Relation table

LegacySystem
table

Requirements
Analyst

Requirement
table

Requirement-
Relation table

LegacySystem-
Relation table

Domain Expert

Environment
Analyst

Figure 2.5: The flow of task in the Relations Modelling activity

R

QR

Q

D

Actor

Actor

Requirement

D

LegacySystem

R

c

Requirements
Tables

Actor table

0..1

Requirement
table

Actor-Requirement
table

D

Requirement

0..1

R

c

Domain Tables

LegacySystem
table

ExternalEnvironmen
t-LegacySystem

table

D

External
Environment

c

Relation Tables

Relation table

Requirement-
Relation table

LegacySystem-
Relation table

D

Relation

Q

Requirement

R

LegacySystem

Q R

Zooming table

Actor
LegacySystem

Requirement Relation

F F F FR R R R
R R

D D D D

Figure 2.6: The Requirement Analysis work products

Details of the tables

Requirements Tables (Figure 2.7) define the abstract entities tied to the
concept of “requirement”: in particular, the Actor table ((L)Act) describes
each single actor, the Actor-Requirement table ((L)ARt) specifies the col-
lection of the requirements associated to each actor, while the Requirement
table ((L)Ret) describes each single requirement.

Actor Description
actor name actor description

Requirement Description
requirement name requirement description

Actor Requirement
actor name requirement names

Figure 2.7: Requirements Tables, in top-down order: (L)Act, (L)Ret, (L)ARt

Domain Tables (Figure 2.8) define the abstract entities tied to the concept
of “external environment”. This group of tables is composed of the ExternalEnvironment-

LegacySystem table ((L)EELSt), which specifies the legacy systems associa-
ted to the external environment, and the LegacySystem table ((L)LSt), which
describes each single legacy system.

External-Environment Legacy-System
external-environment Legacy-System

name names

Legacy-System Description
legacy-system legacy-system

name description

Figure 2.8: Domain Tables, in top-down order: (L)EELSt, (L)LSt

Finally Relations Tables (Figure 2.9) link the abstract entities with each
other. In particular, the Relation table ((L)Relt) describes all the relation-
ships among abstract entities, while the Requirement-Relation table ((L)RRt)
specifies the relations where each requirement is involved, and the LegacySystem-
Relation table ((L)LSRt) specifies the relations where each legacy-system is
involved.

Relation Description
relation name relation description

Requirement Relation
requirement name relation names

Legacy-System Relation
legacy-system name relation names

Figure 2.9: Relations Tables, in top- down order: (L)Relt, (L)RRt, (L)LSRt.

2.2 The Analysis

Figure 2.10 presents the Analysis process, while Figure 2.11 presents the flow
of activities, the involved roles and the work products

2.2.1 Process roles

One role is involved in the Layering pattern: the System Analyst.

Moving from requirements

Task analysis Function analysis Topology analysis

Dependency analysis

Task layering
Function layering

Topology layering

Dependency layering

Layering

Layering

other layer?

another layer?
another layer?

another layer?

another layer?

new iteration

no

yes

yes

 no

yes

no

yes

yes

no

no

Are the models well specified?

yes

Figure 2.10: The Requirements Analysis process

c

Requirements
Tables

c

Domain Tables

c

Relation Tables

Zooming table

System Analyst

Moving from
requirements

<<performs,

prim
ary>>

<<input>>

<<input>>

<<input>>

<<input>>

Layering

<<output>>

<<predecessor>>

<<predecessor>>

Map
Requirements-

Analysis

Task Analysis

Function Analysis

Topology Analysis

Task Layering

<<predecessor>>

<<predecessor>>

<<
pr

ed
ec

es
so

r>
>

Task Description

<<output>>

Zooming table

<<output>> <<
inp

ut
>>

<<predecessor>>

<<predecessor>>

Function Layering

<<predecessor>> <<
pr

ed
ec

es
so

r>
>

Function
Description

<<output>>

Zooming table

<<
in

pu
t>

>

<<output>>

System Analyst

<<performs,

prim
ary>>

Topology Layering<<predecessor>>

<<predecessor>>

Topology
Description

Zooming table

<<input

>>

<<output>>

<<input>><<input>>

Dependency Analysis

Dependency Layering

<<predecess
or>>

<<
pr

ed
ec

es
so

r>
>

<<predecessor>>

Zooming table

<<output
>>

Layering
<<predecessor>>

<<predecessor>>

Dependency
Description

<<input>>

<<input>>

<<input>>

System Analyst<<performs,

primary>>

<<output>>

<<output>>

<<predecessor>>

<<predecessor>>

c

Reference Tables

<<output>>

<<
ou

tp
ut

>>

<<input>>

c

Topologies Tables

c

Dependencies
Table

c

Responsibilities
Tables

<<perf
orms,

primary>>

System Analyst

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

Figure 2.11: The Analysis flow of activities, roles and work products

Map
Requirements-

Analysis

System Analyst

c

Requirements
Tables

c

Domain Tables

c

Relation Tables Zooming table

Reference
Requirement-
Function table

Reference
Requirement-

Dependency table

Reference
Requirement-

Task table

Reference
Requirement-
Topology table

Reference
LegacySystem-
Function table

Reference
LegacySystem-
Topology table

Reference Relation-
Dependency table

Figure 2.12: The flow of task in the Moving from requirements activity

System Analyst

System Analyst is responsible for:

2.2.2 Activity Details

For the details about the different Layering activities please refer Section 1.3.

Moving from requirements activity

The flow of tasks inside this activity is reported in Figure 2.12 and the tasks
are detailed in the following table.

Task Analysis activity

The flow of tasks inside this activity is reported in Figure 2.13 and the tasks
are detailed in the following table.

Function Analysis activity

The flow of tasks inside this activity is reported in Figure 2.26 and the tasks
are detailed in the following table.

Task Description
System Analyst

Zooming table

Reference
Requirement-

Task table

Task table

Figure 2.13: The flow of task in the Task Analysis activity

Function
Description

System Analyst

Zooming table

Function table

Reference
Requirement-
Function table

Figure 2.14: The flow of task in the Function Analysis activity

Dependency
Description

System Analyst

Zooming table

Reference
Requirement-

Dependency table

Reference Relation-
Dependency table

Dependency
table

Topology-
Dependency table

Function-
Dependency table

Task-Dependency
table

Task table Function TableTopology table

Figure 2.15: The flow of task in the Dependency Analysis activity

Dependency Analysis activity

The flow of tasks inside this activity is reported in Figure 2.15 and the tasks
are detailed in the following table.

Topology Analysis activity

The flow of tasks inside this activity is reported in Figure 2.16 and the tasks
are detailed in the following table.

2.2.3 Work products

The Analysis step exploits four sets of tables: Reference Tables, Responsibi-
lities Tables, Dependencies Tables and Topologies Tables.

Their relationships with the MMMElements are described in Figure 2.17.
This diagram represents the Layering in terms of the Work Product and

its relationships with the SODA meta-model (Section 1.2) elements.

Topology
Description

System Analyst

Zooming table

Reference
Requirement-
Topology table

Reference
LegacySystem-
Topology table

Topology tableTask-Topology
table

Function-
Topology table

Figure 2.16: The flow of task in the Topology Analysis activity

Details of the tables

In order to move from Requirements Analysis to Analysis, the relations bet-
ween the different abstractions adopted in the two steps must be precisely
identified: this is done by means of the References Tables (Figure 2.18).

In particular, the Reference Requirement-Task table ((L)RRTt) specifies
the mapping between each requirement and the generated tasks, the Refe-
rence Requirement-Function table ((L)RRFt) specifies the mapping between
each requirement and the generated functions; the Reference Requirement-
Topology table ((L)RRTot) specifies the mapping between each requirement
and the generated topologies; the Reference Requirement-Dependency table
((L)RReqDt) specifies the mapping between each requirement and the gene-
rated dependencies; the Reference LegacySystem-Function table ((L)RLSFt),
which specifies the mapping between each legacy-system and the corres-
ponding functions; the Reference LegacySystem-Topology table ((L)RLSTt),
which specifies the mapping between legacy-systems and topologies; and the
Reference Relation-Dependency table ((L)RRelDt), which specifies the map-
ping between relations and dependencies.

Responsibilities Tables (Figure 2.19) define the abstract entities tied to
the concept of “responsibilities centre”—namely, tasks and functions. So,

Reference
Requirement-
Function table

Reference
Requirement-

Dependency table
Q

D

Dependency

Requirement

c

Reference Tables

Reference
Requirement-

Task table
Q

Task

Requirement

D

Q

D

Function

Requirement

Q

D

Topology

Requirement

Q

D

Function

LegacySystem

Q

D

Topology

LegacySystem

Q

D

Dependency

Relation

Reference
Requirement-
Topology table

Reference
LegacySystem-
Function table

Reference
LegacySystem-
Topology table

Reference Relation-
Dependency table

c

Responsibilities
Tables

c

Dependencies
Table

c

Topologies Tables

RF

Task

Function

Task table

RF

Function Table

Dependency

Q

Task

R

Function

Q R

RF

Dependency
table

Topology

Q R

Topology-
Dependency table

Function-
Dependency table

Task-Dependency
table

Topology

Q

Task

R

Function

Q R

RF

Topology table

Task-Topology
table

Function-
Topology table

Zooming table

Task
Topology

Function Depenency

F F F FR R R RD D D D
R

R

R

R

R

R

R

D

Figure 2.17: The Analysis work products

Requirement Task
requirement name task names

Requirement Function
requirement name function names

Requirement Topology
requirement name topology names

Requirement Dependency
requirement name dependency names

Legacy-System Function
legacy-system name function names

Legacy-System Topology
legacy-system name topology names

Relation Dependency
relation name dependency names

Figure 2.18: References Tables, in top-down order: (L)RRTt, (L)RRFt,
(L)RRTot, (L)RReqDt, (L)RLSFt, (L)RLSTt, (L)RRelDt.

this set of tables includes the Task table ((L)Tt), which lists all the tasks,
and the Function table ((L)Ft), which lists all the functions.

Task Description
task name task description

Function Description
function name function description

Figure 2.19: Responsibilities Tables, in top-down order: (L)Tt, (L)Ft

Dependencies Tables (Figure 2.20) relate functions and tasks with each
other. More precisely, the Dependency table ((L)Dt) describes all the depen-
dencies among abstract entities, while the Task-Dependency table ((L)TDt)
specifies the set of dependencies where each task is involved, the Function-
Dependency table ((L)FDt) specifies the list of dependencies where each
function is involved, and Topology-Dependency table ((L)TopDt) specifies
the list of dependencies where each topology is involved. Typically, when a
requirement generates both a task and a function, the function is necessary

to achieve the task. Correspondingly, other dependencies arise, in addition
to the dependencies originating from the SODA relations.

Dependency Description
dependency name dependency description

Task Dependency
task name dependency names

Function Dependency
function name dependency names

Topology Dependency
topology name dependency names

Figure 2.20: Dependencies Tables in top-down order (L)Dt, (L)TDt, (L)FDt

and (L)TopDt.

Topologies Tables (Figure 2.21), in turn, express the topological constraints
over the environment. So, the Topology table ((L)Topt) describes the topolo-
gical constraints, while the Task-Topology table ((L)TTopt) specifies the list
of the topological constraints where each task is involved, and the Function-
Topology table ((L)FTopt) specifies the list of the topological constraints
where each function is involved.

Topology Description
Topology name topology description

Task Topology
task name topology names

Function Topology
function name topology names

Figure 2.21: Topologies Tables in top-down order: (L)Topt, (L)TTopt,
(L)FTopt.

2.3 The Architectural Design

Figure 2.22 presents the Analysis process, while Figure 2.23 presents the flow
of activities, the involved roles and the work products

Transition

Role design Resource design

Space design

Interaction design

Constraint design

Role layering
Resource layering

Space layering

Interaction layering

Constraint layering

Layering

Layering

other layer?

another layer? another layer?

another layer?

another layer?

need another layer?

yes
yes

yes

yes

yes

new iteration

no

yesno

no
no

no

no

are all the models well specified?

yes

Figure 2.22: The Architectural Design process

Zooming table

Architectural
Designer

Transition

<<performs,

prim
ary>

>

<<input>>

<<input>>

<<input>>

<<input>>

Layering

<<output>>

<<predecessor>>

<<predecessor>>

Map Analysis-
ArchDes

<<output>>

Role Design

Resource Design

Space Design

Role Layering

<<predecessor>>

<<predecesso
r>>

<<
pr

ed
ec

es
s

or
>>

Action Design

<<input>>
<<output>>

Zooming table

<<
ou

tp
ut

>>

<<input>>

<<predecessor>>

<<
pr

ed
ec

es
so

r>
>

Resource Layering

<<
pr

ed
ec

es
so

r>
><<predecessor>>

Operation Design<<output>>

Zooming table

<<
ou

tp
ut

>
>

<<input>>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<
pe

rfo
rm

s,
pr

im
ar

y>
>

Space Layering
<<predecessor>>

<<predecessor>>

Space Design

Zooming table

<<input>>

Constraint Design

Constraint Layering

<<predecessor>> <<
pr

ed
ec

es
so

r>
>

Zooming table
<<output>

>

Layering

<<predecessor>>

<<predecessor>>

Rule Design

<<input>>

<<perform
s, prim

ary>>
<<output

>>

<<output>>

Architectural
Designer

Architectural
Designer

Architectural
Designer

c

Responsibilities
Tables
c

Dependencies
Table

c

Topologies Tables

Interaction Design

Interaction Layering Interaction Design

<<predecesso
r>>

<<predecesso
r>>

<<predecessor>>

<<predecessor>>

Zooming table <<input>>

<<input>>

Architectural
Designer

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

<<
ou

tp
ut

>>

<<predecessor>>

<<
pr

ed
ec

e
ss

or
>>

<<output>>

<<input>>

<<
in

pu
t>

>

c

Topological
Tables

c

Constraints
Tables

c

Interactions
Tables

c

Entities Tables

c

Transition Tables

<<perform
s,

prim
ary>>

<<input>>

<<input>>

<<input>>

<<output>><<input>>

c

Entities Tables

<<input>>

Figure 2.23: The Architectural Design flow of activities, roles and work pro-
ducts

Map Analysis-
ArchDes

Architectural
Designer

Zooming table

c

Responsibilities
Tables

c

Dependencies
Table

c

Topologies Tables

c

Transition Tables

Figure 2.24: The flow of task in the Transition activity

2.3.1 Process roles

One role is involved in the Layering pattern: the Architectural Designer.

Architectural Designer

System Analyst is responsible for:

2.3.2 Activity Details

For the details about the different Layering activities please refer Section 1.3.

Transition activity

The flow of tasks inside this activity is reported in Figure 2.24 and the tasks
are detailed in the following table.

Role Design activity

The flow of tasks inside this activity is reported in Figure 2.25 and the tasks
are detailed in the following table.

Action Design

Architectural
Designer

Zooming table
Transition

Task-Action
table

Transition Role-
Task table

Action tableRole-Action
table

Figure 2.25: The flow of task in the Role Design activity

Resource Design activity

The flow of tasks inside this activity is reported in Figure 2.26 and the tasks
are detailed in the following table.

Constraint Design activity

The flow of tasks inside this activity is reported in Figure 2.27 and the tasks
are detailed in the following table.

Interaction Design activity

The flow of tasks inside this activity is reported in Figure 2.28 and the tasks
are detailed in the following table.

Space Design activity

The flow of tasks inside this activity is reported in Figure 2.29 and the tasks
are detailed in the following table.

Operation
Design

Architectural
Designer

Zooming table
Transition

Resource-Function
table

Transition
Function-

Operation table

Operation tableResource-
Operation table

Figure 2.26: The flow of task in the Resource Design activity

Constraint
Design

Architectural
Designer

Zooming tableSpace tableTransition
Dependency-Rule

table

Interaction tableRole-Action
table

Resource-
Operation table

Rule tableRole-Rule table
Interaction-Rule

table Resource-Rule
table

Space-Rule table

Figure 2.27: The flow of task in the Constraint Design activity

Interaction
Design

Architectural
Designer

Zooming tableAction table Operation table
Transition

Dependency-
Interaction table

Resource-Interaction
tableRole-Interaction

tableInteraction table

Role-Action
table

Resource-
Operation table

Figure 2.28: The flow of task in the Interaction Design activity

Topology
Description

System Analyst

Zooming table

Reference
Requirement-
Topology table

Reference
LegacySystem-
Topology table

Topology tableTask-Topology
table

Function-
Topology table

Figure 2.29: The flow of task in the Space Design activity

Transition
Task-Action

table

Transition
Resource-Function

table
Q

D

Resource

Function

c

Transition Tables

Transition Role-
Task table

Q

Role

Task

D

Q

D

Action

Task

Q

D

Operation

Function

Q

D

Interaction

Dependency

Q

D

Rule

Dependency

Q

D

Space

Topology

Transition
Function-

Operation table

Transition
Dependency-

Interaction table

Transition
Dependency-

Rule table

Transition Topology-
Space table

RF

Role Action Rule

Q

Role

R

Function

Q R

RF

Rule table

Topology

Q R

Role-Rule table

Q

Resource

R

Role

Q R

RF

Space table

Resource-Space
table

Role-Space
table

Zooming table

Role SpaceResource Interaction

F F F FR R R RD D D D
R

R

R

R

R

R

R

D

c

Entities Tables

c

Interactions
Tables

c

Constraints
Tables

c

Topological
Tables

Action

R FD

Operation

FR

Rule

FR

Action tableRole-Action table

RF

R

RF

Operation Resource

Resource-
Operation tableOperation table

RF

R

Space-Connection
table

Space

D D

Space

RQ

Interaction

Role

Q R

Resource

Q R

Resource-Interaction
table

Role-Interaction
table

Interaction table

RF

Topology

Q R

Interaction-Rule
table

Resource-Rule
table

Space-Rule table

Figure 2.30: The Architectural Design work products

2.3.3 Work products

The Architectural Design step consists of four sets of tables: Transition
Tables, Entities Tables, Interaction Tables and Topological Tables.

Their relationships with the MMMElements are described in Figure 2.30.
This diagram represents the Layering in terms of the Work Product and

its relationships with the SODA meta-model (Section 1.2) elements.

Details of the tables

In order to link the Analysis step with the Architectural Design step, the
Analysis entities are related to the Architectural Design by means of Tran-
sition Tables (Figure 2.31). So, for each layer, the Transition Role-Task
table ((L)TRTt) relates tasks and roles, the Transition Task-Action table
((L)TTAt) relates tasks and actions, the Transition Resource-Function table
((L)TRFt) links functions and resources, the Transition Function-Operation
table ((L)TFOt) links functions and operation, the Transition Interaction-
Dependency table ((L)TIDt) maps dependencies onto interactions, the Tran-

sition Rule-Dependency table ((L)TRuDt) maps dependencies onto rules,
and the Transition Topology-Space table ((L)TTopSt) specifies the mapping
between topologies and spaces.

Role Task
role name task names

Task Action
task name action names

Resource Function
resource name function names

Function Operation
function name operation names

Dependency Interaction
dependency name interaction names

Dependency Rule
dependency name rule names

Topology Space
topology name space names

Figure 2.31: Transition Tables, in top-down order: (L)TRTt, (L)TTAt,
(L)TRFt, ((L)TFOt), (L)TIDt, (L)TTopSt.

Entities Tables (Figure 2.32) describe both the active entities (the roles)
able to perform some action in the system, and the passive entities (the
resources) which provide services. In particular, the Action table ((L)At)
describes the actions executable by some roles, while the Operation table
((L)Ot) specifies the operations provided by resources. Then, the Role-Action
table ((L)RAt) specifies the actions that each role can do, while the Resource-
Operation table ((L)ROt) specifies the operations that each resource can
provide.

Interactions Tables (Figure 2.33) describe the interaction between roles
and resources: more precisely, the Interaction table ((L)It) defines the single
interactions, the Action-Interaction table ((L)AcIt) specifies the interactions
where each action is involved, and the Operation-Interaction table ((L)OpIt)
specifies the interactions where each operation is involved.

Constraints Tables (Figure 2.34) describe the constraints over the enti-
ties behaviours: more precisely, the Rule table ((L)Rut) defines the single

Action Description
action name description

Operation Description
operation name description

Role Action
role name action names

Resource Operation
resource name operation names

Figure 2.32: Entities Tables, in top- down order: (L)At, (L)Ot, (L)RAt,
(L)ROt

Interaction Description
interaction name description

Action Interaction
action name interaction names

Operation Interaction
operation name interaction names

Figure 2.33: Interactions Tables, in top- down order: (L)It, (L)AcIt, (L)OpIt

rule, the Rule-Interaction table ((L)IRut) specifies the constraints over the
interactions, the Resource-Rule table ((L)ReIt) specifies the rules where each
resource is involved, the Role-Rule table ((L)RoRut) specifies the rules where
each role is involved, and the Space-Rule table ((L)SRut) specifies the rules
where each space is involved.

Finally, Topological Tables (Figure 2.35) describe the logical structure
of the environment. More precisely, the Space table ((L)St) describes the
spaces, the Space-Connection table ((L)SCt) shows the connections among
the spaces of a given layer (the hierarchical relations between spaces are
expressed via the Zooming Table), and the Space-Resource table ((L)SRet)
shows for each resources the spaces where it is involved. Similarly, the Space-
Role table ((L)sRot) lists the spaces where each role is involved.

Rule Description
rule name description

Interaction Rule
interaction name rule names

Resource Rule
resource name rule names

Role Rule
role name rule names

Space Rule
space name rule names

Figure 2.34: Constraints Tables, in top- down order: (L)Rut, (L)IRut,
(L)ReRut, (L)RoRut, (L)SRut

2.4 The Detailed Design

The goal of Detailed Design is to choose the most adequate representation
level for each architectural entity, thus leading to depict one (detailed) de-
sign from the several potential alternatives outlined above. For the sake of
concreteness, let us refer to Figure 2.36 (left), where the hypothesis that the
Architectural Design phase outlined roles R1, R2 at the core layer C, roles
R4, R5 and the projection of R2 at layer C+1, and roles R6, R7, R8 and
R9 at layer C+2, is made. Turning this conceptual view into a real design
view means to choose one representation (i.e., zoom) level for each entity,
starting from the core layer: so, for instance, we could decide to zoom only
R1, keeping R2 at the basic (core) representation level. Moreover, we could
choose to further in-zoom R4 as the set of (sub)roles R6,R7, while keeping
R5 as is. The result can be graphically expressed by carving out the roles
R1, R2, R4, R5, R6 and R7 from the Architectural Design view, as shown
with the curbed line in Figure 2.36 (centre).

A similar approach is adopted for the environmental entities: the un-
zoomed resources identified in the previous step are now mapped onto sui-
table artifacts (intended as entities providing some services), and in-zoomed
resources are mapped onto aggregates of artifacts.

This “carving operation” represents the boundary between Architectural
Design – expressed in terms of roles, services, resources and workspaces – and
Detailed Design—expressed in terms of agents, agent societies, artifacts and
aggregates. In the case of our example (see Figure 2.36 (right)), role R1 is to

Space Description
space name description

Space Connection
space name space names

Resource Space
resource name space names

Role Space
role name space names

Figure 2.35: Topological Tables, in top-down order: (L)St, (L)SCt, (L)SRet
and (L)SRot

be mapped onto an agent society (A1), while role R2 is to be mapped onto
an individual agent (A2). Going further, the agent society A1 is composed of
two entities, representing roles R4 and R5: again, the first is to be mapped
onto an agent society (A4), since role R4 is in-zoomed in the carving, while
R5 is to be mapped onto an individual agent (A5); the same process applies
to A4, which turns out to be composed of agents A6 and A7, mapping roles
R6 and R7, respectively.

Figure 2.37 presents the Analysis process, while Figure 2.38 presents the
flow of activities, the involved roles and the work products

2.4.1 Process roles

One role is involved in the Layering pattern: the Detailed Designer.

Detailed Designer

System Analyst is responsible for:

2.4.2 Activity Details

Carving activity

The flow of tasks inside this activity is reported in Figure 2.39 and the tasks
are detailed in the following table.

A4
Society

A1
Society

R2

+R2

R1

R5

R9R8

R4

R7R6

C+1

C

C+2

A6 A7

A5

Carving Operation Detailed DesignArchitectural Design

R2

+R2

R1

R5

R9R8

R4

R7R6

A2

Figure 2.36: Design steps and Carving Operation

Mapping activity

The flow of tasks inside this activity is reported in Figure 2.40 and the tasks
are detailed in the following table.

Agent Design activity

The flow of tasks inside this activity is reported in Figure 2.41 and the tasks
are detailed in the following table.

Environment Design activity

The flow of tasks inside this activity is reported in Figure 2.42 and the tasks
are detailed in the following table.

Interaction Detailed Design activity

The flow of tasks inside this activity is reported in Figure 2.43 and the tasks
are detailed in the following table.

Workspace Design activity

The flow of tasks inside this activity is reported in Figure 2.44 and the tasks
are detailed in the following table.

Carving

Mapping

Agent design Environment design Workspace design

Interactions design

noyes

is the system well specified?

Figure 2.37: The Detailed Design process

Zooming table

Detailed Designer

Carving

<<
pe

rfo
rm

s,

pri
mary

>>

<<input>>

<<input>><<input>>

<<input>>
Carving

<<output>>

Agent Design

Environment Design

Workspace Design

<<
pr

ed
ec

es
s

or
>>

Agent/Society
Design

<<output
>>

Mapping

<<predecessor>>

Environment Design

<<output>>

<<performs, primary>>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

Workspace Design

Detailed Designer

Interaction Detailed
Design

Interaction Detailed
Design

<<predecessor>>

<<predecessor>>

<<output>>

<<output>>

<<
in

pu
t>

>
c

Topological
Design Tables

c

Interaction Design
Tables

c

Mapping Tables

<<performs, primary>>

<<
inp

ut
>>

c

Environment
Design Tables

<<input>>

c

Entities Tables

c

Interactions
Tables

c

Constraints
Tables

c

Topological
Tables

<<input>> Carving
Diagram

a

Map ArchDes-
DetDes

<<input>>

c

Entities Tables

c

Interactions
Tables

c

Constraints
Tables

c

Topological
Tables

<<input>>

<<input>>

<<input>>

<<input>>

<<output>>

c

Agent/Society
Design Tables

<<input>>

c

Environment
Design Tables

<<input>>

c

Agent/Society
Design Tables

<<input>>

<<
pe

rfo
rm

s,

pr
im

ar
y>

>

Detailed Designer

Detailed Designer

<<input>>

<<predecessor>>

c

Agent/Society
Design Tables

c

Environment
Design Tables

<<
in

pu
t>

>

<<
pr

ed
ec

es
so

r>

>

<<predecessor>>

Figure 2.38: The Detailed Design flow of activities, roles and work products

Carving

Detailed
Designer

Zooming table

Carving
Diagram

a

c

Entities Tables

c

Interactions
Tables

c

Constraints
Tables

c

Topological
Tables

Figure 2.39: The flow of task in the Carving activity

Map ArchDes-
DetDes

Detailed
Designer

Carving
Diagram

ac

Entities Tables

c

Interactions
Tables

c

Constraints
Tables

c

Topological
Tables

c

Mapping Tables

Figure 2.40: The flow of task in the Mapping activity

Agent/Society
Design

Detailed
Designer

c

Agent/Society
Design Tables

Mapping Artifact-
Action table

Mapping Society-Role
table

Mapping Agent-Role
table

Figure 2.41: The flow of task in the Agent Design activity

Environment
Design

Detailed
Designer

Mapping
Aggregate-

Resource table
Mapping Artifact-
Operation table

c

Environment
Design Tables

Mapping Artifact-
Resource table

Figure 2.42: The flow of task in the Environment Design activity

Interaction
Detailed Design

Detailed
Designer

c

Topological
Design Tables

c

Mapping Tables

c

Agent/Society
Design Tables

c

Environment
Design Tables

c

Interaction
Design Tables

Figure 2.43: The flow of task in the Interaction Detailed Design activity

Workspace
Design

Detailed
Designer

c

Topological
Design Tables

c

Mapping Tables

Figure 2.44: The flow of task in the Workspace Design activity

2.4.3 Work products

The Detailed Design step exploits several sets of tables: Mapping Tables,
Agent/Society Design Tables, Environment Design Tables, Interaction De-
sign Tables, and Topological Design Tables.

Their relationships with the MMMElements are described in Figure 2.45.
This diagram represents the Layering in terms of the Work Product and

its relationships with the SODA meta-model (Section 1.2) elements.

Details of the tables

In order to link the Architectural Design step with the Detailed Design step,
the Architectural Design entities are related to the Detailed Design by means
of Mapping Tables (Figure 2.46). the Mapping Agent-Role table (MARt)
maps roles onto agents, the Mapping Society-Role table (MSRt) maps role
onto society, the Mapping Artifact-Action table (MAAct) maps actions onto
individual artifacts, the Mapping Artifact-Resource table (MArRt) maps
resources onto artifacts, the Mapping Aggregate-Resource table (MAggRt)
maps resources onto aggregate, the Mapping Artifact-Operation table (MArOpt)
maps operation onto environmental artifacts, the Mapping Artifact-Rule
table (MArRut) maps the rules specified in the Architectural Design onto the

Mapping
Aggregate-

Resource table

Mapping Artifact-
Operation tableQ

D

Artifact

Operation

c

Mapping Tables

Mapping
Artifact-Action

table
Q

Artifact

Action

D

Q

Aggregate

Resorce

Q

D

Artifact

Rule

Q

D

Workspace

Space

Q

D

Manifest

Interaction

Q

D

LinkedTo

Interaction

Mapping Rule-
Artifact table

Mapping Space-
Workspace table

Mapping
Interaction-

Manifest table

Mapping Interaction-
LinkedTo table

Rule

Q

Role

R

Agent

Q R

RF

Use-Protocol
table

Agent-Use tabe

Q

Artifact

R

Agent

Q R

RF

Workspace
table

Workspace-
Artifact table

Agent-
Workspace

table

R

R

R

R

R

R

R
c

Agent/Society
Design Tables

c

Environment
Design Tables

c

Interaction
Design Tables

c

Topological
Design Tables

Workspace-
Connection table

Workspace

Workspace

RQ

Artifact

Aggregate

R

Aggregate
R

Aggregate-Agent
table

Aggregate-Artifact
table

Artifact-
UsageInterface table

RF

Agent-SpeakTo
table

SpeakTo

RF

SpeakTo-
Protocol table

Artifact

Q R

Artifact-Manifest
table

ManifestManifest-Protocol
table

RF

Artifact

Q R

Artifact-LinkedTo
table

LinkedToLinkedTo-
Protocol table

RF

Agent-Artifact
table

Q

Agent

R

Artifact

RF

Society-Agent
table

Society

RFR

Society-Artifact
table

Society

R

Artifact

RF

RF

RF

Agent

Q

R
D

Interaction

Q

Mapping Interaction-
SpeakTo table

SpeakTo

R
D

Interaction

Q

Mapping Interaction-
Use table

Use

RF

D

R
D

Role

Q

Mapping Society-Role
table

Society

R

D

Role

Q

Mapping Agent-Role
table

Agent

Carving
Diagram

a

D

Aggregate

Q

Mapping Artifact-
Resource table

Resource

Figure 2.45: The Detailed Design work products

artifacts that implement and enforce them, the Mapping Artifact-Operation
table (MSWt) maps spaces onto workspaces, the Mapping Interaction-Use
table (MIUt) maps interactions onto uses, the Mapping Interaction-Manifest
table (MIMt) maps interactions onto manifests, the Mapping Interaction-
SpeakTo table (MISpt) maps interactions onto speak to, the Mapping Interaction-
LinkedTo table (MILt) maps interactions onto linked to.

Agent/Society Design Tables (Figure 2.47) depicts agents, individual ar-
tifacts, and the agent societies derived from the carving operation. More
precisely, the Agent-Artifact table (AAt) specifies the individual artifacts re-
lated to each agent, the Society-Agent table (SAt) lists the agents belonging
to a specific society, and the Society-Artifact table (SArt) lists the artifacts
belonging to a specific society.

In turn, Environment Design Tables concern the design of artifacts and
workspaces: the Artifact-UsageInterface table (AUIt) details the operations
provided by each artifact, the Aggregate-Artifact table (AggArtt) lists the
artifacts belonging to a specific aggregate, while the Aggregate-Agent table
(AggAget) lists the agents belonging to a specific aggregate Here the dis-
tinction between the artifact types is not presented because the design of
the usage interface, the allocation of the artifacts to workspaces and the
aggregates are done in the same way for all the artifact’s types.

In turn, Interaction Design Tables (Figure 2.49)concern the design of
interactions among entities: the Use-Protocol table (UPt) details the pro-
tocols for each “use interaction”, the Use-Agent table (UAget) specifies the
“use” where each agent is involved, the SpeakTo-Protocol table (SPt) de-
tails the protocols for each “speak to interaction”, the SpeakTo-Agent table
(SpAget) specifies the “speak to” where each agent is involved, the Manifest-
Protocol table (MPt) details the protocols for each “manifest interaction”,
the Manifest-Artifact table (MArtt) specifies the “manifest” where each ar-
tifact is involved, the LinkedTo-Protocol table (LPt) details the protocols for
each “linked to” interaction, the LinkedTo-Artifact table (LArtt) specifies
the “linked to” where each artifact is involved.

Finally, Topological Design Tables (Figure 2.50) describe the structure of
the environment. More precisely, the Workspace table ((L)Wt) describes the
workspaces, the Workspace-Connection table ((L)WCt) shows the connec-
tions among the workspaces, and the Workspace-Artifact table ((L)WArtt)
shows the allocation of the artifacts to workspaces. Similarly, the Workspace-
Agent table ((L)WAt) lists the workspaces that each agent can perceive.

Agent Role
agent name role names

Society Role
society name role name

(Individual) Artifact Action
artifact name action names

(Environmental) Artifact Resource
artifact name resource names

Aggregate Resource
aggregate name resource name

(Environmental) Artifact Operation
artifact name operation names

Rule Artifact
rule name artifact names

Workspace Space
workspace name space names

Interaction Use
interaction name use names

Interaction Manifest
interaction name manifest names

Interaction Speak to
interaction name speak names

Interaction Linked to
interaction name linked names

Figure 2.46: Mapping Tables in top- down order: MARt, MSRt, MAAct,
MArRt, MAggRt, MArOpt, MArRut, MSWt, MIUt, MIMt, MISpt,
MILt

Agent (Individual) Artifact
agent name artifact names

Society Agent
Society name agent names

Society Artifact
society name artifact names

Figure 2.47: Agent/Society Design Tables in top- down order: AAt, SAt,
SArt

Artifact Usage Interface
artifact name list of operations

Aggregate Artifact
aggregate name artifact names

Aggregate Agent
aggregate name agent names

Figure 2.48: Environment Design Tables in top- down order: AUIt, AggArtt,
AggAget

Use Protocol
use name protocol description

Agent Use
agent name use names

Speak To Protocol
speak name protocol description

Agent Speak To
agent name speak names

Manifest Protocol
speak name protocol description

Artifact Manifest
artifact name manifest names

Linked To Protocol
linked name protocol description

Artifact Linked To
artifact name linked names

Figure 2.49: Interaction Design Tables in top-down order: UPt, UAget, SPt,
SpAget, MPt, MArtt, LPt, LArtt

Workspace Description
workspace name description

Workspace Connection
workspace name workspace names

Workspace Artifact
workspace name artifact names

Agent Workspace
agent name workspace names

Figure 2.50: Topological Design Tables, in top-down order: (L)Wt, (L)WCt,
(L)WArtt and (L)WAt

3
Work products dependencies

The diagram in Figure 3.1 describes the dependencies among the different
composite work products.

56

c

Requirements
Tables

c

Domain Tables

c

Relation Tables

Zooming table

c

References
Tables

c

Responsibilities
Tables

c

Dependencies
Table

c

Topologies Tables

c

Transitions
Tables

c

Entities Tables

c

Interactions
Tables

c

Constraints
Tables

c

Topological
Tables

c

Mappings
Tables

c

Agent / Society
Design Tables

c

Environment
Design Tables

c

Interaction
Design Tables

c

Topological
Design Tables

Zooming table

Zooming table

Carving
Diagram

a

Figure 3.1: The work products dependencies

Bibliography

[1] aliCE Research Group. SODA home page. http://soda.alice.unibo.it.

[2] Ambra Molesini, Andrea Omicini, Enrico Denti, and Alessandro Ricci. SODA:
A roadmap to artefacts. In Oğuz Dikenelli, Marie-Pierre Gleizes, and Ales-
sandro Ricci, editors, Engineering Societies in the Agents World VI, volume
3963 of LNAI, pages 49–62. Springer, June 2006. 6th International Work-
shop (ESAW 2005), Kuşadası, Aydın, Turkey, 26–28 October 2005. Revised,
Selected & Invited Papers.

[3] Ambra Molesini, Andrea Omicini, Alessandro Ricci, and Enrico Denti. Zoo-
ming multi-agent systems. In Jörg P. Müller and Franco Zambonelli, editors,
Agent-Oriented Software Engineering VI, volume 3950 of LNCS, pages 81–93.
Springer, 2006. 6th International Workshop (AOSE 2005), Utrecht, The Ne-
therlands, 25–26 July 2005. Revised and Invited Papers.

[4] Object Management Group. Software & Systems Process Engineering Meta-
Model Specification 2.0. http://www.omg.org/spec/SPEM/2.0/PDF, April 2008.

[5] Andrea Omicini. SODA: Societies and infrastructures in the analysis and design
of agent-based systems. In Paolo Ciancarini and Michael J. Wooldridge, editors,
Agent-Oriented Software Engineering, volume 1957 of LNCS, pages 185–193.
Springer, 2001. 1st International Workshop (AOSE 2000), Limerick, Ireland,
10 June 2000. Revised Papers.

[6] Andrea Omicini. Formal ReSpecT in the A&A perspective. Electronic Notes
in Theoretical Computer Sciences, 175(2):97–117, June 2007. 5th Internatio-
nal Workshop on Foundations of Coordination Languages and Software Ar-
chitectures (FOCLASA’06), CONCUR’06, Bonn, Germany, 31 August 2006.
Post-proceedings.

[7] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Agens Faber: Toward a
theory of artifacts for MAS. Electronic Notes in Theoretical Computer Sciences,
2005. 1st International Workshop “Coordination and Organization” (CoOrg
2005), COORDINATION 2005, Namur, Belgium, 22 April 2005. Proceedings.

58

	Introduction
	The SODA Process Lifecycle
	The Meta-model
	The Layering
	Process roles
	Activity Details
	Work products

	Phases of the SODA process
	The Requirements Analysis
	Process roles
	Activity Details
	Work products

	The Analysis
	Process roles
	Activity Details
	Work products

	The Architectural Design
	Process roles
	Activity Details
	Work products

	The Detailed Design
	Process roles
	Activity Details
	Work products

	Work products dependencies
	Bibliography

