September 2, 2005

Towards an AO Methodological Convergence
Aim: To bring together, in a collaborative framework, as many AO methodology researchers worldwide as possible in order to create an agreed approach to the issue of how to offer to industry acceptable AO methodologies, bearing in mind that “one size does not fit all”.
Rationale: When industry adopts agent technology en masse, they will need a widely accepted methodological approach that is complete in its coverage of both the software development lifecycle and all aspects of agents and is also well supported by both tools and theory. Disarray (in the form of a wide choice of “competing” methodologies) will be read by industry as a sign of immaturity. Non adoption follows. (The historical perception is that OO was slowed in its uptake by industry until the very many methodological groups started to collaborate e.g. Rational’s “purchases” and the OPEN Consortium).

Solution: we ask all researchers to contribute to an international project to make this happen. To accommodate the largest number of collaborators possible, the project is structured in two parts: A and B. The proposal is that according to their interests, researchers either contribute partly to only Part A of the project, or contribute wholly to both parts of the project, Parts A and B as follows:
Project proposal:

PART A
(i) Agree that there will be need for a number of methodologies since a single methodology lacks flexibility and is usually highly prescriptive (Appendix I), and therefore will never be able to handle all software development needs. The one size fits all philosophy, prevalent in the ‘80s and ‘90s, can never be successful, although specialist, domain-specific approaches may still be feasible.
(ii) Agree that AO methodological approaches should be underpinned by a metamodel and work towards its creation (Appendix III).

PART B
(iii) Agree that the most likely current technology to support this necessary flexibility is that of method engineering (see Appendix II for more details).

(iv) Agree to collaborate to create a single, agreed metamodel plus method engineering repository that not only unifies the field but also continues to permit individual tailoring. This means that any individual AO methodology (e.g. Prometheus, Tropos) can be re-created directly from the appropriate method fragments, as now stored in the repository. Each of these constructed methodologies will then target particular organizational, project and product needs as appropriate, perhaps with interesting enhancements from other AO or non-AO method fragments.

Research objectives:
PART A
1. Seek or create an appropriate metamodel. Currently available are SPEM (from OMG) [8], OOSPICE metamodel (EU project) and various fragmentary metamodels e.g. Agentis. More recently, Australian Standard AS4651-2004 [12] builds on all these together with the OPF metamodel [2] using the theory of powertypes [7] and supports both process and product aspects of a methodology.
PART B
2. Create an appropriate set of methodology fragments. One research issue is the granularity of these (papers like [4] and [10] have different views on this that need to be resolved). The population of the repository comes from (a) pulling fragments out of existing methodologies – this has been partially done already by members of the Australian AO methodology community and (b) identifying fragments from scratch from AO methodologies and ontologies. Note that this can lead to overlaps and other inconsistencies, which becomes a research issue. This is part of the FAME project, funded in Sydney, Australia.
3. Research the rules for method fragment combination. The French group of Rolland and colleagues has many published papers in this area; also Brinkkemper and colleagues in the Netherlands and the MetaCASE project in Finland. Much, however, still needs to be done to “commercialize” this.

4. Develop interfaces to the repository to facilitate access to specific methodologies. The hypothesis is that we construct an interface to the repository for each “branded” AO methodology such that users of that branded methodology (say BrandX) will perceive the contents of the repository in BrandX terminology, notation etc. To them, the repository will contain fragments of BrandX together with fragments from other methodologies but still of the BrandX style (Figure 1).

5. Develop tools to support all of the above. There are some large companies like Borland and Microsoft that are already working in this direction (based on AS4651) as well as all the individual AO methodology research groups around the world. It is important to ensure that existing support tools will still be useful in the collaboratively established environment proposed here. COTAR has developed the Xome toolset and the MethodComposer prototype that serve as a proof-of-concept.
[image: image1.wmf]Repository

Tropos

-

style

interface

BrandX

-

style

interface

Prometheus

-

style

interface

Repository

Tropos

-

style

interface

BrandX

-

style

interface

Prometheus

-

style

interface

Figure 1 Concept of a repository with many interfaces

How to make all this happen?
1. Commit to the project – either just Part A or both Parts A and B.
2. The Australian team will serve the community by integrating existing research efforts of collaborators, at times requiring help of the originators of the efforts and at other times through mediation between different collaborators when needed, and perhaps at other times suggesting problems for any interested team or suitable existing collaborators, to achieve the overall aims of the project and leverage synergy from direct collaboration.

3. Get together at some international event(s) during 2005. We propose meeting as an international group at one or more of the following conferences (perhaps as a “birds of a feather” group or on the day immediately before or after the main conference):

Discussions held during AOIS/AOSE at AAMAS July 25-29

ISEAT at QSIC Sept 19-21

AO Methodology workshop at OOPSLA Oct 16-20

AOIS at ER Oct 24-28

Others????

Timeline
January 2005. Xome toolset available to consortium members. Draft metamodel based on AS4651 available – also a preliminary agent-oriented modeling language (AOML), compatible with this.
April 2005. MethodComposer prototype tools available to consortium members.

May 2005. First version of a method fragment repository (populated with modelling fragments) available.

July 2005. Second version of the repository (populated with process fragments taken from OPEN and existing AO methodologies) available.

January 2006. Third version of the repository (including additional fragments and prototype repository maintenance tools) available.

What effort is required?
Initial email discussions regarding the technicalities are expected. Also, some minor rejigging to an agreed metamodel for those who already have a metamodel will probably be necessary. Some time will be spent on writing joint papers. We will also need time to meet with others in the group, perhaps at an international conference you are already attending, perhaps when a collaborator from overseas visits your home institution. Finally, we will need to review documents created by the international core team members when they relate specifically to your methodology.
What is the benefit to the individual researcher/research group?
1. Leverage from others’ work. Working in a common framework of understanding will be synergistic rather than destructively competitive. The project will establish not a unified methodology but a methodological framework into which individual methodologies will fit. This also gives a context for increased publications.

2. Visibility of our (largely academic) work to industry. [In the OO world, it was not until collaborations happened in terms of Rational’s RUP and the OPEN Consortium that industry began to take up OO methodologies in a serious way.] Increased international visibility will lead in the coming years to faster uptake by industry, commercialization of our prototype tools and more consultancies.

3. A common metamodel will support not only individuals’ methodologies but also permit different notations to be used prior to any initiative (by this group or the OMG, for instance) to identify or create a single agreed and standard AOSE notation, if necessary.

4. Collaboration can lead to higher productivity (more papers per author).
5. International collaboration is seen by many universities and funding bodies as giving extra “brownie points”.
6. Identification as being in the vanguard of AOSE internationally.
7. Increased funding. Many funding agencies worldwide are keen to support internationally collaborative projects. For instance, the EU, the Australian Research Council, NSF. There are also travel funds available to facilitate researchers getting together for the purposes of scientific collaboration.

8. Lower risk. Working as an individual depends on local conditions e.g. availability of funds and PhD students. In an international collaboration, in the “lean years”, colleagues can offer sustenance and continued collaborative research and publications.

9. Younger researchers get easy access to senior researchers. This aids networking, profile and learning.

Already circulated to (in alphabetical order)
Ghassan Beydoun

Massimo Cossentino

Paolo Giorgini

Cesar Gonzalez-Perez

Brian Henderson-Sellers

Graham Low
Jim Odell

Lin Padgham

Leon Sterling

To be circulated to other potential collaborators
Carole Bernon

Paolo Bresciani

V. Camps

Jaelson Castro
Luca Cernuzzi
L. Cysneiros
John Debenham

Scott DeLoach

R. Fuentes

F. Garijo

M. Garijo

Marie-Pierre Gleizes

Juan Gómez-Sanz

M.-Ph. Huget

Carlos Iglesias

Nick Jennings
Manuel Kolp
Yves Lesperance
Carlos Lucena

Philippe Massonet

H. Mouratidis
John Mylopoulos
Juan Pavón

G. Picard
Kuldar Taveter

Viviane Torres da Silva

Numi Tran

Gerd Wagner

Michael Winikoff

Mike Wooldridge

Eric Yu
Franco Zambonelli
Potentially interested companies
Whitestein

Agentis

Agent-Oriented Software

Holocentric

Appendix I. Methodologies
A methodology is a specification of the chores that must be tackled in order to achieve a particular result from a well-known starting point. In particular, a software development methodology is a specification of the job that must be done in order to create a working software system from a description of the problem that needs to be solved.

The term “method” is taken here as a synonym of “methodology”. [We understand that there are good reasons for differentiating between these two terms. Terminology is important and will be addressed in this project through the ontology described by the metamodel.]
In order to specify “the chores that must be tackled”, methodologies often focus on different interdependent aspects:

· The conceptual building blocks that can be used plus the rules that govern their composition into larger constructs and, eventually, into the final result. For example, the OPEN/Metis methodology [3] defines the concepts of “service” and “operation” as well as the relationships between them, thereby establishing rules for their usage.

· The intermediate products that are used and/or created during the application of the methodology to a particular problem. It is often unrealistic to construct the final result in a single big-bang operation, so intermediate products are often necessary. Intermediate products are often called “work products”.

· The process to follow in order to achieve the desired result from the starting point. This process describes the steps to take and how to utilise the above mentioned building blocks to construct intermediate products and, ultimately, the final result.

· The organizational and human structures necessary to perform the process. Most methodologies are utilised in the context of a specific organizational and human environment, across which responsibilities for the execution of the process must be distributed.

· The quality and maturity characteristics of the above mentioned aspects. Depending on the desired quality of the final result, as well as the maturity of the organization employing the methodology, different jobs may need to be done.

Very few existing methodologies contain thorough specifications of all the aspects listed above. Many focus on the first three, and most only pay attention to two of them. The Rational Unified Process (RUP) [6], for example, focuses on intermediate products and process, but neglects building blocks, organizational and quality issues. OPEN/Metis includes building blocks, intermediate products and process, but doesn’t consider organizational or quality aspects. UML [9] specifies building blocks and, to some extent, intermediate products, but says nothing about process, organizational and quality aspects. A fully comprehensive methodology, however, should include a balanced and well integrated specification of every single aspect.

No methodology is universal, i.e. serves for a broad range of problem types. As in any other aspect of technology, power and wide applicability are opposite forces. Therefore, different methodologies (or variations of the same one) are often necessary to tackle different kinds of problems. For example, a methodology that is perfect for the quick development of small or medium sized web sites may be useless when faced with the development of a real-time embedded system. However, it has been observed that even completely different methodologies are locally similar to each other, i.e. small regions of them often coincide. Different methodologies, while being distinct in every other aspect, can still make use of various identical work products, process steps or conceptual building blocks. In other words, methodologies vary enormously because they need to be perfectly adapted to the problem kind to solve, but many of their pieces can be drawn from a common pool and combined as necessary.

Appendix II. A brief overview of method engineering

This appendix presents some basic terms and concepts of method engineering. Most of these are in general use and are reasonably accepted by the software engineering community.
Method engineering is the discipline that studies the design and construction of methodologies by using a pre-existing pool of method fragments [1, 11]. A method fragment can be the specification of an intermediate product, the specification of a piece of work to be done, or the specification of some organizational or human structure. Method fragments should be self-contained and expose a well-defined interface so they can be flexibly combined as necessary in order to construct full-fledged methodologies.

Method fragments must exist before a method engineer can build a methodology.
Method fragments can be created by method engineers and stored in a method repository, which may take the form of a database or some other kind of persistent store. Once a repository is available, method engineers can query it to find the appropriate method fragments, and combine them as allowed by their interfaces. It is possible that the necessary method fragment is not in the repository; in that case, the method engineer can create it especially for the methodology being constructed and, if generic enough, add it to the repository for future re-use.

It should be noted that the quality of the constructed method needs to be established. There are currently no tools to ensure that the method fragments have been correctly (usefully) put together. Most method construction is done “by hand” by skilled method engineers. A large research area (that this project and the new ME Working Group under IFIP) can address includes objective methods of construction of a high quality methodology; quality assessment of the constructed methodology and how to build tools to support these aims.
Finally, in advocating method engineering, in which methods are built up from pieces, an alternative is often touted as being easier. That is, it can be proposed that the same result can be obtained by starting with an existing methodological package and then “tweaking” it perhaps by removing the bits that are not needed. For instance, starting with RUP or XP which have elements closely intertwined, there would be clear challenges in removing any part in a manner consistent with a final quality product (i.e. a smaller methodology). Such tweaking could, for instance, result in the removal of the testing practice from XP – in which case the resultant methodology is not only clearly not XP but would also be dangerous to be applied to a real project.
Appendix III. A brief overview of metamodelling
Metamodels are useful for specifying the concepts, rules and relationships used to define methodologies (Appendix I). Although it is possible to describe a methodology without an explicit metamodel, formalizing the underpinning ideas of the methodology in question is valuable when checking its consistency or when planning extensions or modifications. A good metamodel must address all of the different aspects of methodologies, i.e. the process to follow, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies defining the basic modelling building blocks from which they are built.

[image: image2.wmf]metamodel

metamodel

method

methodology

project

endeavour

represents

represents

metamodel

metamodel

method

methodology

project

endeavour

represents

represents

Figure 2 Three conceptual abstraction layers for methodology metamodelling
Metamodels are often used by method engineers to construct or modify methodologies. In turn, methodologies are used by developers to construct products or deliver services in the context of endeavours. Metamodel, methodology and endeavour constitute, in this approach, three different areas of expertise (Figure 2) that, at the same time, correspond to three different levels of abstraction and three different sets of fundamental concepts. As the work performed by developers at the endeavour level is constrained and directed by the methodology in use, the work performed by the method engineer at the methodology level is constrained and directed by the chosen metamodel. These relationships between “modelling layers” are seen as represents relationships; although in traditional, so-called “strict metamodelling”, the relationship is instance-of in which elements in one layer are instances of some element in the layer above [see discussion in 5].

Regarding the methodology layer, it must be noted that more than one “methodology” may exist at this level, linked by refinement relationships. For example, it is common that organizations create organization-wide, generic methodologies from a metamodel, and then adjust and customize said methodologies for each particular endeavour. In cases like this, both kinds of methodologies (organization-wide and endeavour-specific) belong in the methodology layer and are connected via a refinement relationship (as opposed to instance-of). Cases with more than two steps of refinement are also possible.

Why metamodel instead of merging methodologies

We can identify four approaches for combining the existing body of agent-oriented software engineering knowledge into a more effective and easier to access methodological approach. They are as follows:

1. An ad-hoc approach consisting of merging existing methodologies one at a time, with an arbitrary methodology as a starting point, and no specific guidance on attaching methodologies (beyond avoiding repetition and inconsistent use of terms).

2. An ad hoc method engineering approach characterised by using method concepts to delineate concerns of method fragments.

3. A metamodelling method engineering approach characterised by having a formal generic metamodel. Method fragments are identified using metamodel concepts.

4. A feature-identification-based approach to combine features of methodologies deemed as valuable into a single methodology (recently suggested by recent works such as [13]
In what follows, we discuss the merits of each approach. We consider three issues: how applicable the outcome is (applicability), how easy it is for software developers to actually apply the outcome (useability) and how feasible the approach is (realisability). We first note the following, which pertains to the whole endeavour (and of relevance to all approaches): different methodologies may or may not cover the same area of concern in the software development lifecycle (SDLC) and, if they do, they may not necessarily cover it in the same way or with the same rigour. They may use different terms or processes.

Merging methodologies without a common universal metamodel as a guide on the scope of SDLC concepts (i.e. approach 1) can lead to one of two types of errors: assuming differences of concern exist when none exists, or falsely assuming similarity of concern because of common use of terms. The first type of error may lead to repetition and lead to an unnecessarily large and cumbersome methodology, rendering it less accessible to developers. Tolerating errors of the first type, in approach 1, a successful unification effort would result in a large methodology with its bulk concerned with a collection of ‘exceptional cases’ without common structures. We find that this is exactly what happened with UML. The second type of error can create inconsistencies because of inconsistent interpretations of terms. Tolerating such errors, the resultant methodology would produce inconsistent models and lower its usability, as software developers subsequently struggle to deal with problems resulting from inconsistencies and would most likely lead to its abandonment. The two errors are more likely to occur for areas of concern in the SDLC which are not well known and uncommon, where agreement on concepts and approaches is less likely.

The second approach produces an outcome with a wider applicability than the first approach. It leaves an element of flexibility. This allows tackling a wider range of software systems. Whilst it is still exposed to the possibility of inconsistencies, it is less so than approach 1. Most likely, this benefit in its usability can outweigh the cost of the added effort required for putting methods together prior to use.

Using the alternative method engineering approach, based on metamodelling (approach 3), existing software engineering knowledge is more compactly represented and accessible. The metamodel units would serve to generate fragments with similar concern, but with a different flavour according to the context of the development project. That is, it is the development project that decides the concern and the flavour of the methodology generated rather than subjective ‘interpretations’ skewed towards a forced merging between methodologies and their fragments. Such interpretations are in this way completely avoided, preventing any inconsistencies. Furthermore, this approach gives access to components of methods outside the context where they were originally developed. Different combinations of fragmented methods provide a suite of versatile solutions, giving the approach an appealing flexibility and accessibility, thus overall increasing the reuse of the valuable software engineering knowledge involved in the conception of the methods originally.

In comparison with approach 3, approach 4 takes less effort to realize and is more useable as it does not require merging of fragments. However, it provides less applicability since some flexibility is lost in not leaving fragments loose until development time.

Conclusion of our analysis is shown below.

[image: image3.jpg]Applicability

Ease of use (Usability)

Appendix IV. References

1.
Brinkkemper, S., 1996. Method Engineering: Engineering of Information Systems Development Methods and Tools. Information and Software Technology. 38(4): p. 275-280.

2.
Firesmith, D.G. and B. Henderson-Sellers, 2002. The OPEN Process Framework. The OPEN Series. London: Addison-Wesley.
3.
González-Pérez, C.A., 2003. OPEN/Metis White Paper (PDF). Accessed on 18th February 2003. http://www.openmetis.com
4.
Henderson-Sellers, B., 2005, Creating a comprehensive agent-oriented methodology – using method engineering and the OPEN metamodel, Chapter 13 in Agent-Oriented Methodologies (eds. B. Henderson-Sellers and P. Giorgini), Idea Group, Hershey, PA, USA (in press)

5.
Henderson-Sellers, B. and Gonzalez-Perez, C., 2005, The rationale of powertype-based metamodelling to underpin software development methodologies, Conferences in Research and Practice in Information Technology, 43 (eds. S. Hartmann and M. Stumptner), Australian Computer Society, 7-16

6.
Kruchten, P., 2003. The Rational Unified Process: An Introduction. 3rd edition. Reading, MA: Addison-Wesley.

7.
Odell, J., 1994,: Power types. Journal of Object- Oriented Programming, 7(2): 8-12.

8.
OMG, 2002. Software Process Engineering Metamodel Specification. formal/2002-11-14. Object Management Group.
9.
OMG, 2003. Unified Modelling Language Specification. formal/03-03-01. Object Management Group.

10.
Ralyté, J., 2004, Towards situational methods for information systems development: engineering reusable method chunks, Procs. 13th Int. Conf. on Information Systems Development. Advances in Theory, Practice and Education (eds. O. Vasilecas, A. Caplinskas, W. Wojtkowski, W.G. Wojtkowski, J. Zupancic and S. Wrycza), Vilnius Gediminas Technical University, Vilnius, Lithuania, 271-282

11.
Ralyté, J. and C. Rolland, 2001. An Assembly Process Model for Method Engineering. In 13th Conference on Advanced Information Systems Engineering (CAiSE). Interlaken, Switzerland, 6-8 June 2001. LNCS 2068. Springer-Verlag: Berlin.

12.
SA, 2004. Standard Metamodel for Software Development Methodologies. AS 4651-2004. Standards Australia.

13.
Tran, Q.N.N., G.C. Low, and M.A. Williams, 2003, A Feature Analysis Framework for Evaluating Multi-Agent System Development Methodologies. in 14th International Conference on Methodologies for Intelligent Systems,. Japan.

