
1

©B. Henderson-Sellers, 2002-2005 1

Underpinning a Method
Engineering Framework with a

Powertype-based Metamodel – the
FAME Project

3rd AgentLink III Technical Forum
meeting (AL3-TF3)

Budapest, September 15-17, 2005

Brian Henderson-Sellers
Director, COTAR

University of Technology, Sydney
www-staff.it.uts.edu.au/~brian

email: brian@it.uts.edu.au

©B. Henderson-Sellers, 2002-2005 2

Preview

• I. The FAME project
• II. Method engineering
• III. Metamodelling
• IV. Incorporating a standard method metamodel
• V. Existing repository
• VI. FAML overview
• VII. In summary

2

©B. Henderson-Sellers, 2002-2005 3

Project funded by Australian Research
Council (2004-6)

I. The FAME Project

(FAME = Framework for
Agent-oriented Method Engineering)

Lead researchers: Brian Henderson-Sellers, Graham Low

Postdoc researchers: Cesar Gonzalez-Perez, Ghassan Beydoun

©B. Henderson-Sellers, 2002-2005 4

Project to

• create an AO, method engineering (ME)-based
approach to software development

• Offer a supportive and integrative framework to
consolidate and strengthen existing AO
methodologies

• FAME project includes both process and product
aspects (based on AS4651 and forthcoming ISO
standard) including an AO modelling language
(FAML) based on a generic model of agents at
both design and run time

3

©B. Henderson-Sellers, 2002-2005 5

We thus seek consensus, whilst ensuring
consistency and maximizing coverage

• We seek collaborative incorporation of
fragments from all other identified AO
methodologies

• We propose continuing to support these
various methodologies by providing a set of
interfaces (façades) to the repository to
maintain consistency for current AO
methodology users

©B. Henderson-Sellers, 2002-2005 6

Repository

Tropos-style
interface

BrandX-style
interface

Prometheus-
style

interface

4

©B. Henderson-Sellers, 2002-2005 7

II. Method Engineering
Method fragments/
chunks/components

Repository

Methodology Instance

Step 2: Project Manager

Construction
Guidelines

uses

Metamodel

instance of

instances of

Methodology M
(a.k.a. Process Model)

Step 1: Method
engineer

(a.k.a. Process)

©B. Henderson-Sellers, 2002-2005 8

From the method fragments in the
repository can be assembled an
individually tailored process

method
fragments

Constructed methodology

5

©B. Henderson-Sellers, 2002-2005 9

III. Metamodelling
A metamodel is at a higher level of

abstraction than a conventional model. It is
often called “a model of a model“. It
provides the rules/grammar for the
modelling language (ML) itself. The ML
consists of instances of concepts in the
metamodel.

©B. Henderson-Sellers, 2002-2005 10

Strict Metamodelling
MetaModel

Model

MetaModelElement

Element

«instanceOf» «instanceOf»

contains1..* 1..*

contains1..* 1..*

“is-instance-of“ is key relationship i.e.
instance -> class is paralleled by
element -> set

BUT “is-instance-of” is not transitive

6

©B. Henderson-Sellers, 2002-2005 11

+name
+visibility

Operation

+name
Task

name = ComputeBalance
visibility = public

op1 : Operation

name = DefineOperations
ta1 : Task

«instanceOf» «instanceOf»

do1 : DefineOperations

«instanceOf»

UML OPF

M2

M1

M0

+Product

*

+Originator

*

This is illegal.

This is illegal.

Product

Originator

duration=50

Adding process to product adds problems

Enacted
tasks

need to
have a
duration

©B. Henderson-Sellers, 2002-2005 12

An apparent solution using
generalization

M2

M1

M2

Activity

duration
Diagram

DesignActivity

usePatterns

Brian’sDesigns

duration=50
usePatterns=TRUE

Brian’sClassDiagram

classCount=2
Brian’sClass

ClassDiagram

classCount

contains

«instanceOf» «instanceOf»

results in1 *

results in1 *

results in

7

©B. Henderson-Sellers, 2002-2005 13

In this “solution”
element Activity can now define an attribute duration.
Brian’sClassDiagram and Brian’sClass at same level (M1)

BUT Have lost processes being enacted at M0 and not M1
AND M2 level standardization has to identify all Activities,

all Tasks etc. i.e. all contents of a method fragment
repository

FURTHERMORE
Semantics of “Activity” have been completely changed. [This

is a commonly occurring error in the metamodelling
literature]

©B. Henderson-Sellers, 2002-2005 14

x
x

x
x

xx
x

x

x
x

x

x
x

Test

Code
Design

Activity class ActivityKind class

x
x

x Test

Code
Design

ActivityKind

Design
Design Test

Activity

x

So, in “Strictness restored” slide, we have also changed the original
“Activity” to “ActivityKind” but forgotten to rename it as such.
ActivityKind and Activity are two very different Sets. Here
Activity class has 14 elements, ActivityKind class has only 3.

8

©B. Henderson-Sellers, 2002-2005 15

IV. Incorporating a standard
method metamodel

Current possibilities include
• OMG‘s SPEM
• AS4651 (SMSDM)/draft of ISO24744

(SEMDM) – used here

©B. Henderson-Sellers, 2002-2005 16

SMSDM/SEMDM

Standard Metamodel for Software
Development Methodologies (AS4651-
2004 standard)/Software Engineering –
Metamodel for Development
Methodologies (draft ISO24744)

• Underpinned by powertype patterns
• Three layer architecture: metamodel,

method, endeavour

9

©B. Henderson-Sellers, 2002-2005 17

SMSDM/SEMDM architecture

endeavour

method

metamodel

methodologies assessment quality tools

©B. Henderson-Sellers, 2002-2005 18

An Example of a Powertype in Process
Modelling

DefineOperation

TaskKind
name : String

Task
+assignedTeam : String

name=DefineOperation
+assignedTeam : String

is classified into

: DefineOperation
+assignedTeam=Liz,John

10

©B. Henderson-Sellers, 2002-2005 19

Solves the problem
of non-transitivity

endeavour

method

metamodel

“MySystem”
Requirements
Specification

“MySystem”
Requirements
Specification

DocumentDocument

Requirements
Specification

Document

Requirements
Specification

Document

Document
Kind

Document
Kind

Title
Version

Title
Version

Name
MustBeApproved
Name
MustBeApproved

Title
Version

Title
Version

Req. Spec. Document
Must be approved: yes
Req. Spec. Document
Must be approved: yes

“MySystem” Req. Spec.
Version 1.5

“MySystem” Req. Spec.
Version 1.5

©B. Henderson-Sellers, 2002-2005 20

MethodologyElement

+Purpose
+MinCapabilityLevel

WorkUnitKind

+Type
ActionKind

WorkProductKind

ModelUnitKind

+IsSingleInstance
ModelUnitUsageKind

+Name
Template Resource

+Name
Language

+Name
Notation

+Expression
Constraint

+Description
+MinCapabilityLevel

Outcome

ProjectElement

WorkUnit

Action

+CreationDate
+LastChangeDate
+Status

WorkProduct

ModelUnit

ModelUnitUsage

+Description
Guideline

0..*

+DescribedElement

1..* On

ProducerKind

+Name
ProducerStage

StageKind

In summary:
the core of the SMSDM/SEMDM

11

©B. Henderson-Sellers, 2002-2005 21

• Precursor to FAME project focussed on the
OPF repository

• Fragments consistent with OPF metamodel
are currently being (easily) translated to be
SEMDM-compatible

• Existing fragments offer wide software
development support beyond existing AO
methodologies

V. Existing Repository

©B. Henderson-Sellers, 2002-2005 22

AOSE fragments

From the literature, we have evaluated
Tropos, Prometheus, MaSE, Gaia,
Cassiopeia, MAS-CommonKADS,
AgentFactory, CAMLE and PASSI for new
method fragments

We have so far identified 1 new Activity, 28
new Tasks, 11 new Subtasks, 23 new
Techniques and 28 new Work Products

12

©B. Henderson-Sellers, 2002-2005 23

It is now possible to
a) recreate standard AO methods like Gaia,

Prometheus
b) create an enhanced or integrated method

e.g. Prometheus enhanced by Tropos

©B. Henderson-Sellers, 2002-2005 24

Prometheus enhanced by Tropos
Tasks

Technique 1 2 3 4 5 6
Abstract class identification

Tasks
Technique 1 2 3 4 5 6
Abstract class identification
Agent internal design

Class naming
Control architecture
Context modelling
Delegation analysis
Event modelling
Intelligent agent identification
Means-end analysis
Role modelling
State modelling
Textual analysis
3-layer BDI model

.

Key:Key:
1. Model dependencies for actors and goals; 2. Construct the agent model;
3. Design agent internal structure; 4. Model the agent’s environment;
5. Model responsibilities; 6. Model permissions

Y
Y

Y
Y

Y
Y

Y

Y
Y

Y

Y

Y
Y
Y
Y

Y

Y

Y

Y

Y Y

Tasks
Technique 1 2 3 4 5 6
Abstract class identification

Tasks
Technique 1 2 3 4 5 6
Abstract class identification
Agent internal design
AND/OR decomposition
Class naming
Control architecture
Context modelling
Delegation analysis
Event modelling
Intelligent agent identification

Role modelling
State modelling
Textual analysis
3-layer BDI model

.

Key:Key:
1. Model dependencies for actors and goals; 2. Construct the agent model;
3. Design agent internal structure; 4. Model the agent’s environment;
5. Model responsibilities; 6. Model permissions

Key:Key:
1. Model dependencies for actors and goals; 2. Construct the agent model;
3. Design agent internal structure; 4. Model the agent’s environment;
5. Model responsibilities; 6. Model permissions

Y
Y

Y
Y

Y
Y

Y

Y
Y

Y

Y

Y
Y
Y
Y

Y

Y

Y

Y

Y Y

13

©B. Henderson-Sellers, 2002-2005 25

Key:Key:

1. Model dependencies for actors and goals; 2. Construct the agent model;
3. Design agent internal structure; 4. Model the agent’s environment;
5. Model responsibilities; 6. Model permissions; 7. Code

Tasks

1 2 3 4 5 6 7

Tasks
Work Product 1 2 3 4 5 6 7

Agent Class Descriptor
Agent Acquaintance Diagram
Agent Overview Diagram
Capability Diagram
Role Model
Role Schema
(Tropos) Goal Diagram
(Tropos) Actor Diagram
UML Sequence Diagram

.

Y
Y

Y

Y

Y

Y

Y

Y
Y

Y
Y

Y
Y

©B. Henderson-Sellers, 2002-2005 26

VI. FAML Overview
Start with core concepts of agent:

– Autonomy
– Situatedness
– Interactivity

Two scopes
Two layers

System-
level

Agent
definition-
level

Agent-
level

Environment-
level

Agent-
external

Design time

Run time

Agent-
internal

14

©B. Henderson-Sellers, 2002-2005 27

e.g. Agent-related, run time

Agent

+Specification
EnvironmentStatement

Action

Belief

+IsGoal
Desire

1

*

1 *

In tention

1

* *

1

Of

MessageAction

+ Parameters

Message

Plan

1

*1

*

*

*

ResultsIn

*

+Sender

1
From

*

+Recipient *

To

+Name
+ParameterSpecs

MessageSchema

*

+Template

1

IsAnInstanceOf

FacetAction

+Value

Facet

*

+Target

1

Changes

Agent
+Name

Role

* *

Plays

+Specification
Obligation

1

*

PlanSpecification

1
*

GeneratedFrom

+NewValue

FacetAction
Specification

*

1

GeneratedF rom
+Parameters

MessageAction
Specification

*

1

GeneratedFrom

©B. Henderson-Sellers, 2002-2005 28

VII. In Summary

• No one methodology can fit all situations; hence
need to create flexibility such that the process
remains “standard” yet can somehow be
moulded to various circumstances

• Method engineering a solid basis for both
standardization and flexibility

• Comprehensive metamodel needed to support
process+product aspects of an AO methodology.
Simple combination of method metamodels
dangerous because of implicit assumptions (e.g.
agents collaborate vs. agents compete) and use
of same term but with different semantics

15

©B. Henderson-Sellers, 2002-2005 29

In Summary – cont.

• Start with existing repository of method
fragments and consolidate

• Implement the new standard metamodel
• Create exemplar methodologies for industry

testing
• Encourage community effort to intercompare

approaches and make recommendations (1, 2
or more?)

• Identification of weak points for further
research endeavours?

©B. Henderson-Sellers, 2002-2005 30

THE END

