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The Problem

» Crosscutting concerns in agent-based
development
— Learning, code mobility, autonomy...
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— It does not matter which abstractions the software
developers are relying on

* object-oriented programming, AOSE abstractions
- they are always crosscutting

— Quality attributes depend largely on the modularity
provided by SE abstractions
* reusability
* maintainability
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AOSD is the key?

» Seeking the answers...
— Agent-DSL

— Architectural approach
— Design and implementation method
— Design pattern language
— AO generative approach
— AspectT: Implementation Framework
— Empirical studies

 Qualitative ones: quality model
* Quantitative ones: metrics suite
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Our Aspect-Oriented Approach

* Agent-DSL: modelling crosscutting features

<MAS ...
<agent>

department

sear
xsi:noNamespaceSchemalocation= "agent-dsl.xsd">

<name>ResearcherUserAgent</name>
<belief> ... </belief>
<goal> ... </goal>

<role>
<name>Chair</name>
<belief> ... </belief>
<goal>

Comput

perDistributi
<type>Reactive</type>
</goal>
<plan>

DistributionP
<type>Reactive</type>

</plan>

<interaction>
<sensor>
<name>sensorAgent</name>
<type>AgentCommunication</type>
<platform>JADE</platform>

</sensor>
<effector>
<name>effectorAgent</name> ...-'

<type>AgentConmunication</type> o
<platform>JADE</platform> -
Interaction Subaspect
</effector>
<nessage> Code Template _
<id>REQUEST_DISTRIBUTE_PAPER</id>
<performative>REQUEST</performative>

<service> SERVICE_DISTRIBUTE_PAPERS </service>
</message>
</interaction>

<autonomy> éugun?wy futtmspec(
<executionAutonomy> ode Template _ S
<concurrencyStrategy> ThreadPool </c.S.> -

o =

‘. o Chair
</executionAutonomy>
<reactiveAutonomy> Pl

<messageToGoal>
<message> REQUEST DISTRIBUTE PAPER </message




Our Approach

» Detailed Design

— Aspect-oriented design patterns
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The Learning  comon |
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The Pattern Language

» Abstract aspects

— Refining the aspects to different contexts
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Knowledge
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What we have learned?

What are the main motivations to use
AOSD techniques for MAS development?
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Successful aspectization of MAS-related
concerns?

Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

Future directions emerged from our
practical exploration of AOSD in AOSE?




Main motivations?
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» Crosscutting phenomena manifests early
in the software lifecycle
— domain engineering (agent-oriented product
lines)

» Crosscutting agent features
— Affect other feature trees
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Main motivations?

epartment

» Crosscutting phenomena manifests early
in the software lifecycle

— domain engineering (agent-oriented product
lines)
» Crosscutting agent features
— Affect other feature trees
— software architecture (ADL and UML-based
representations)

» Crosscutting architectural concerns of a software
agent
— Affect several architectural components and their
interfaces
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Architectural Crosscutting

Decision
Autonomy

department

Computing

b e
Behavior . o
Adaptation 7 i 7 _,L’Oji
(@ -7er) . | s

ollaboration

Behavior
Adaptation

_______ ’

(b) Mediator Architecture

Leads to tangling and scattering at the agent
architecture description

Hinders modular reasoning on architectural
agent properties

Causes architectural interface bloat

(a) Layered Architecture




Main motivations?
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* Maintainable and reusable MASs
— Finer granularity
— Allow for reuse and variation of those concerns

» Adaptive MAS in open environments

— Dynamic reconfiguration
* roles
« collaboration protocols

— Context-aware learning strategies

Computing =

* Full modularization of crosscutting concerns
across MAS lifecycle

What we have learned?
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1. What are the main motivations to use
AOSD techniques for MAS development?
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2. Successful aspectization of MAS-related
concerns?

3. Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

4. Future directions emerged from our
practical exploration of AOSD in AOSE?
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Successful aspectization?

epartment

» Detailed design and implementation
— AspectJ and Hyper/J

— Separable concerns

» Code mobility, learning, roles, autonomy
* Autonomy
— thread management (execution autonomy)
— triggering of proactive behaviour (proactive autonomy)
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— Separation of intrinsic and extrinsic knowledge (roles)
— role binding ‘

— protocol enforcement
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Successful aspectization?

department

* “Inseparable concerns”
— Interaction

— message assembling from different
plans/roles
* very coupled to the role or plan context
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« the composition rules is the central
contribution of AOSD

— conclusions specific to the AspectJ join point
model

Successful aspectization?
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* Inter-aspect relationships

— mobility does not affect only the agent kernel
« also crosscuts roles, interaction, and learning
¢ AspectJ-oriented abstractions forces indirect interaction,
which sometimes complicates the design

» Complex solution for simple reactive agents

— crosscutting concern is not evident

* e.g. autonomy-related behaviour tends to be localized in
few methods
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Successful aspectization?
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» Aspects as the “glue”

— agent kernel vs. concern-specific
implementation framework/platform (e.g.
Aglets/Jade for mobility)
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* Incremental process vs. iterative process
—we mostly had an iterative process
— lack of obliviousness

What we have learned?

department

1. What are the main motivations to use
AOSD techniques for MAS development?
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2. Successful aspectization of MAS-related
concerns?

3. Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

4. Future directions emerged from our
practical exploration of AOSD in AOSE?
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Limitations?

» Our Agent-DSL requires more powerful
composition rules

— ideally their specification should be separated from
the aspects themselves

» Aspects in agent-oriented ADLSs
— to express architectural aspects in MASs
 Tropos/i* somewhat deal with aspects at
requirements stage
— softgoals
— But... need for enhancing agent-oriented design
languages with aspects
+ Gaia, AUML, MAS-ML, ...
* Isolate solutions
— e.g. Kendall et al — aspectization of agent roles

Limitations?

» Detailed design and implementation

— Inter-aspect conflicts in the composition
* roles — introduction of similar behaviour
* mobility — composition of agent kernel and
abstract methods of mobility frameworks
— e.g. getName() — JADE

— Repetitive and time-consuming tasks

* interaction
— enumeration of all message senders in the aspects
— our 1st solution: naming convention

— our 2" solution: code generators based on the
Agent-DSL descriptions

16



What we have learned?
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1. What are the main motivations to use
AOSD techniques for MAS development?
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2. Successful aspectization of MAS-related
concerns?

3. Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

4. Future directions emerged from our
practical exploration of AOSD in AOSE?

Future Directions

department

» We have investigated the aspectization
of internal agent properties
— systemic properties: coordination, fault-
tolerance, ...
* Need for improved traceability

— Aspects in agent-oriented modelling
 agent-oriented meta-models
» modelling languages

— Code generation

Computing =
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Concluding remarks
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* In a stage where we are facing a number of
growing AOSE abstractions...

— Is not the case to try to understand their
commonalities?

— We see aspect-oriented abstractions and
composition mechanisms as promising candidates

* Many of those abstractions are in fact to address
crosscutting concerns

— Autonomy, roles, coordination, mobility...
— However, we still need to investigate effective
composition rules/mechanisms to the context of
AOSE
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