
1

Aspects in
Agent-Based Software Engineering:

Lessons Learned
Alessandro Garcia

Lancaster University, UK

Uira Kulesza, Claudio Sant’Anna, Carlos Lucena
PUC-Rio, Brazil

Christina Chavez
UFBA, Brazil

garciaa@comp.lancs.ac.uk, [uira,claudios,lucena]@inf.puc-rio.br, flach@im.ufba.br

© Alessandro Garcia, 2005.
Copyright of material from other sources belongs to the respective authors.

The Problem
• Crosscutting concerns in agent-based

development
– Learning, code mobility, autonomy…
– It does not matter which abstractions the software

developers are relying on
• object-oriented programming, AOSE abstractions
• they are always crosscutting

– Quality attributes depend largely on the modularity
provided by SE abstractions

• reusability
• maintainability

2

Crosscutting Agent-Related Concerns

C
ol

la
bo

ra
tio

n

Agent
goals
...

addGoal()
executePlan()
…

InterfaceAgent

receiveInstruction()
monitor()
...

InformationAgent

search(Keyword)
search(Keywords)
…

UserAgent

getUser()
checkPreference()
…

Role

agents
protocol

Caller

sendRequest()
receiveResponse()
...

Answerer

receiveRequest()
sendResponse()
...

Plan
goal

preCond()
posCond()
…

action1()
action2()
...

Plan1
action1()
action2()
action3()
...

Plan2

Basic Functionality

getName()
addAgent()
…

caller answerer

DB userNameuser

efectors
adapters
threads

adapters

move()
returnHome()

itinerary

processInformation()

LCs

processInformation()

LCs

move()
returnHome()
startRole()

itinerary
remoteEnvironments
roles

processInf ()
startRole()

LCs
roles

processInf ()

LCs

sendMsg()
receiveMsg()
addAdapter()
removeAdapter()
notifyAdapters()
makeDecision()
startThread()

roles

startRole()

addAdapter()
removeAdapter()
notifyAdapters()

Mobility

Collaboration
Adaptation

Autonomy

Interaction

Learning

public Result searchKW(String KW) {
adaptKnowledge(KW);
processInformation(KW);
...
...
<< searching-specific code >>

...

...
if (result = null) {

this.move(KW)
}

}

Aspect-Oriented Software
Development (AOSD)

Concern 1

Concern 2

Concern 3

AOSD tools, techniques
and

methodology

Concern 1

Concern 2
Concern 3

3

Our Timeline

2000

Facing Crosscutting Concerns
in MAS Development

2001

Aspects in MAS
Development

2002 2003 2004

How to assess
aspect-oriented artifacts?

1st Qualitative Study
(MAS)

1st Quantitative
Study (MAS)

Aspects in
Agent-Oriented

Modelling

Metrics
Suite

AO Patterns
for Agent Design

Generative Programming
and AOSE

AspectT
Framework

Agent-DSL

AO Agent
Architecture 2nd Quantitative

Study (MAS)

2nd Qualitative Study
(MAS)

200520052005

Lessons
Learned?

AOSD is
the Key?

AOSD is the key?
Our Approach

Learning

Code Mobility

Roles
Collaboration

AOSD tools, techniques
and

methodology

Learning

Code Mobility

Roles
Collaboration

4

AOSD is the key?
• Seeking the answers…

– Agent-DSL
– Architectural approach
– Design and implementation method
– Design pattern language
– AO generative approach
– AspectT: Implementation Framework
– Empirical studies

• Qualitative ones: quality model
• Quantitative ones: metrics suite

Our Aspect-Oriented Approach
• Agent-DSL: modelling crosscutting features

<MAS ... xsi:noNamespaceSchemaLocation= "agent-dsl.xsd">
 <agent>
 <name>ResearcherUserAgent</name>
 <belief> ... </belief>
 <goal> ... </goal>

 <role>
 <name>Chair</name>
 <belief> ... </belief>
 <goal>

 <name>PaperDistributionGoal</name>
 <type>Reactive</type>
 </goal>
 <plan>
 <name>PaperDistributionPlan</name>
 <type>Reactive</type>
 <communication>false</communication>

 </plan>

 <interaction>
 <sensor>
 <name>sensorAgent</name>
 <type>AgentCommunication</type>
 <platform>JADE</platform>
 </sensor>
 <effector>
 <name>effectorAgent</name>
 <type>AgentCommunication</type>
 <platform>JADE</platform>
 </effector>
 <message>
 <id>REQUEST_DISTRIBUTE_PAPER</id>
 <performative>REQUEST</performative>
 <service> SERVICE_DISTRIBUTE_PAPERS </service>
 </message>
 </interaction>

 <autonomy>
 <executionAutonomy>
 <concurrencyStrategy> ThreadPool </c.S.>
 </executionAutonomy>
 <reactiveAutonomy>

 <messageToGoal>
 <message> REQUEST_DISTRIBUTE_PAPER </message>

Agent Type
Code Template

Role Aspect
Code Template

Autonomy Subaspect
Code Template

Interaction Subaspect
Code Template

5

Environment

Our Approach
• Detailed Design

– Aspect-oriented design patterns

absent knowledge

Agenthood Additional Properties

Autonomy

Mobility

Legend:
Crosscuts

new message

new message

incoming message

new goal

collaboration
joining

agent creation

Kernel

new eventabsent knowledge

new
eventoutgoing

message

Roles

Interaction Learning

Adaptation

The Learning
Pattern

Agent RevisionProposal
paper
oaoerInterest
evaluation
isAccepted()
getReviewer()
getPaperInterest()
getEvaluation()
…

Observable
addLC()
removeLC()
notifyLC()

LMS
processInf()
getLR()
…

Learning
Component

goals
plans
agents
addAgent()
…

Role
agents
protocol
getName()
addAgent()
removeAgent()
…

Chair
papers
LClist
submissionDate
reviewDeadline
addLC()
removeLC()
notifyLC()
getPapers()
getReviewers()
...

Reviewer
chairName
LClist
setChair()
addLC()
removeLC()
notifyLC()
setChair()

UserAgent
goals
plans
Agents
myRoles
LClist
addAgent()
removeAgent()
executePlan()
addLC()
removeLC()
notifyLC()
…

Plan
goal
agent
preConditions()
posConditions()
createObject()
executePlan()
…

Distribution
Plan

LClist
addLC()
removeLC()
notifyLC()
executePlan()
distribute()
...

Judgement
Plan

Judgement
ReceptionPlan

learningRate
processInf()
…

TD-Learning
processInf()
getTD()
getReward()
…

LClist
addLC()
removeLC()
notifyLC()
executePlan()
judgeProposal()
...

LClist
addLC()
removeLC()
notifyLC()
executePlan()
evaluate ()
...

Kernel

C
ol

la
bo

ra
tio

n

Learning Concern

• The Observer Pattern with
the Strategy Pattern [SML04]

6

Agent RevisionProposal
paper
oaoerInterest
evaluation
isAccepted()
getReviewer()
getPaperInterest()
getEvaluation()
…

Observable
addLC()
removeLC()
notifyLC()

LMS
processInf()
getLR()
…

Learning
Component

goals
plans
agents
addAgent()
…

Role
agents
protocol
getName()
addAgent()
removeAgent()
…

Chair
papers
LClist
submissionDate
reviewDeadline
addLC()
removeLC()
notifyLC()
getPapers()
getReviewers()
...

Reviewer
chairName
LClist
setChair()
addLC()
removeLC()
notifyLC()
setChair()

UserAgent
goals
plans
Agents
myRoles
LClist
addAgent()
removeAgent()
executePlan()
addLC()
removeLC()
notifyLC()
…

Plan
goal
agent
preConditions()
posConditions()
createObject()
executePlan()
…

Distribution
Plan

LClist
addLC()
removeLC()
notifyLC()
executePlan()
distribute()
...

Judgement
Plan

Judgement
ReceptionPlan

learningRate
processInf()
…

TD-Learning
processInf()
getTD()
getReward()
…

LClist
addLC()
removeLC()
notifyLC()
executePlan()
judgeProposal()
...

LClist
addLC()
removeLC()
notifyLC()
executePlan()
evaluate ()
...

Kernel

C
ol

la
bo

ra
tio

n
• Problem: How to separate the

learning concern from the other
agency concerns?

The Learning
Pattern (II)

The Learning Pattern (III)

• Solution:

learnPreferences()
updatePreferences()
...

Agent

Belief

Plan

events_()

Information
Gathering Learning

Learning
Component

learningRate
processInformation()
...

belief1
belief2
...

action1()
action2()
...

Learning
KnowledgeAspect

*

7

The Pattern Language
• Abstract aspects

– Refining the aspects to different contexts

paperInterest
evaluation
...
getInterest()
getEvaluation()
...

Learning
Knowledge

learnPreferences()
updatePreferences()
...

LearningRevisionProposal
reviewer
Paper
deadlines
isAccepted()
getReviewer()
getPaper()
…

initTDLearning()
getResponse()
...

events_()

Information
Gathering Reviewer

Learning

TD-Learning
processInformation()
getTD()
getReward()
setReward()
…

Reviewer

UserAgent

JudgementPlan
executePlan()
judgeProposal()
...

What we have learned?
1. What are the main motivations to use

AOSD techniques for MAS development?

2. Successful aspectization of MAS-related
concerns?

3. Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

4. Future directions emerged from our
practical exploration of AOSD in AOSE?

8

Main motivations?
• Crosscutting phenomena manifests early

in the software lifecycle
– domain engineering (agent-oriented product

lines)
• Crosscutting agent features

– Affect other feature trees

Crosscutting in Domain Modelling

ReactiveGoal
Management
ReactiveGoal
Management

KnowledgeKnowledge

AgenthoodAgenthood

Agent / RoleAgent / Role

BeliefBelief GoalGoal PlanPlan

AutonomyAutonomy InteractionInteractionAdaptationAdaptation

AdditionalPropertiesAdditionalProperties

LearningLearning MobilityMobilityPlanPlan LearningLearning

PlanAdaptationPlanAdaptation BeliefAdaptationBeliefAdaptation

GoalGoal PlanPlan MessageMessage BeliefBelief

ExecutionAutonomyExecutionAutonomy

DecisionAutonomyDecisionAutonomy

InternalEventInternalEvent

ConcurrencyStrategyConcurrencyStrategy

ThreadPoolThreadPool ThreadPerRequestThreadPerRequest

DecisionGoalDecisionGoal DecisionPlanDecisionPlanBeliefBelief

Interaction
Behavior

Interaction
Behavior

EffectorEffector SensorSensor

PlatformPlatform

CollaborationCollaboration

Legend:
mandatory feature

optional feature

alternative features

Sensory
Behavior
Sensory
Behavior

DecisionPlanDecisionPlan

Message
Reception
Message
Reception

Message
Sending
Message
Sending

ParserParserParserParser

PlanPlan MessageMessage

crosscuts
crosscuts

crosscuts

crosscuts

crosscuts

DecisionGoalDecisionGoal

DecisionAutonomyDecisionAutonomy

ProactiveGoalProactiveGoal

ProactiveAutonomyProactiveAutonomyProactiveAutonomyProactiveAutonomy

MessageMessage ReactiveGoalReactiveGoal

inspected features

MessageMessage

ProactiveGoal DecisionGoal

Goal

Goal

9

Main motivations?
• Crosscutting phenomena manifests early

in the software lifecycle
– domain engineering (agent-oriented product

lines)
• Crosscutting agent features

– Affect other feature trees

– software architecture (ADL and UML-based
representations)

• Crosscutting architectural concerns of a software
agent

– Affect several architectural components and their
interfaces

Architectural Crosscutting

Kernel

Interaction

Message
Reception

(a) Layered Architecture

Message Sending

Adaptation

Message
ProcessingBehavior

Adaptation

Knowledge Adaptation

Autonomy

Execution Autonomy
Behavior

Adaptation Message Processing

Collaboration

Message
Reception

Protocol Enforcement

Services

Role Binding

Role Binding

Decision
Autonomy

Mobility

Traveling

Kernel

Interaction

Message
Reception

(a) Layered Architecture

Message Sending

Adaptation

Message
ProcessingBehavior

Adaptation

Knowledge Adaptation

Autonomy

Execution Autonomy
Behavior

Adaptation Message Processing

Collaboration

Message
Reception

Protocol Enforcement

Services

Role Binding

Role Binding

Decision
Autonomy

Mobility

Traveling

(b) Mediator Architecture

Mobility

Traveling

Kernel

Interaction

Message
Reception

Adaptation

Message
ProcessingServices

Autonomy

Behavior Adaptation
Knowledge Adaptation

Collaboration

Message
Sending

Role Binding

Traveling
Role Binding

Protocol Enforcement

Execution
Autonomy (?)

(b) Mediator Architecture

Mobility

Traveling

Kernel

Interaction

Message
Reception

Adaptation

Message
ProcessingServices

Autonomy

Behavior Adaptation
Knowledge Adaptation

Collaboration

Message
Sending

Role Binding

Traveling
Role Binding

Protocol Enforcement

Execution
Autonomy (?)

• Leads to tangling and scattering at the agent
architecture description

• Hinders modular reasoning on architectural
agent properties

• Causes architectural interface bloat

10

Main motivations?
• Maintainable and reusable MASs

– Finer granularity
– Allow for reuse and variation of those concerns

• Adaptive MAS in open environments
– Dynamic reconfiguration

• roles
• collaboration protocols

– Context-aware learning strategies

• Full modularization of crosscutting concerns
across MAS lifecycle

What we have learned?
1. What are the main motivations to use

AOSD techniques for MAS development?

2. Successful aspectization of MAS-related
concerns?

3. Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

4. Future directions emerged from our
practical exploration of AOSD in AOSE?

11

Successful aspectization?
• Detailed design and implementation

– AspectJ and Hyper/J
– Separable concerns

• Code mobility, learning, roles, autonomy
• Autonomy

– thread management (execution autonomy)
– triggering of proactive behaviour (proactive autonomy)
– triggering of decision-making plans (decision autonomy)

• Roles
– Separation of intrinsic and extrinsic knowledge (roles)
– role binding
– protocol enforcement

Quantitative Evaluation
• Viewpoint: Role-related Concerns

Counter
Proposal

ailability
Plan

Agent

Collaborative
Agent

Collaboration
Core

Property

Autonomy AdaptationInteraction

Collaboration

Collaboration
Role

Editor CallerUser
Agent

Information
Agent

Interface
Agent

Middle
Agent

Mediator
Pattern

Role Pattern

Plan

Answerer

Searching
Plan

Strategy
Pattern

Content
Supplier

Knowledge

Proposal

Composite Pattern

12

Quantitative Evaluation

CDLOC - Concern Difusion over LOC

0
20
40
60
80

100

Ada
pta

tio
n

Int
era

cti
on

Auto
no

my

Colla
bo

ra
tio

n
Edit

or

Concern

%

OO
OA

CDO - Concern Difusion over Operations

0
20
40
60
80

100

Ada
pta

tio
n

Int
era

cti
on

Auton
om

y

Coll
ab

ora
tio

n
Edit

or

Concerns

%

OO

OA

CDC - Concern Diffusion over Components

0
20
40

60
80

100

Ada
pta

tio
n

Int
era

cti
on

Auto
no

my

Coll
ab

ora
tio

n
Edit

or

Concerns

%

OO
OA

Quantitative Evaluation
Ponto de Vista do Sistema

0
10
20
30
40
50
60
70
80
90

100

Nro. Componentes

LOC
Nro. Atributos

Peso de Operações

Acoplamento Componentes

Profundidade Herança

Falta de Coesão

% OO
OA

7% 12% 9% 6% 9% 40% 3%

Number of Modules

System Viewpoint

Patterns
Aspects

Attributes

Weighted Operations

Coupling

Inheritance

Cohesion

GARCIA, A. et al. Separation of Concerns in Multi-Agent Systems: An Empirical Study. In:
Software Engineering for Multi-Agent Systems II, Springer, LNCS 2940, March 2004, pp. 49-72.

13

Quantitative Evaluation

Counter
Proposal

ailability
Plan

Agent

Collaborative
Agent

Collaboration
Core

Property

Autonomy AdaptationInteraction

Collaboration

Collaboration
Role

Editor CallerUser
Agent

Information
Agent

Interface
Agent

Middle
Agent

Mediator
Pattern

Role Pattern

Plan

Answerer

Searching
Plan

Strategy
Pattern

Content
Supplier

Knowledge

Proposal

Composite Pattern

Answerer

Counter
Proposal

ailability
Plan

Agent

User
Agent

Information
Agent

Interface
Agent

Middle
Agent

Plan

Searching
Plan

Knowledge

Proposal

Autonomy

Interaction

Collaboration

Adaptation

Editor
Content
Supplier

Caller

Quantitative Evaluation

14

Successful aspectization?
• “Inseparable concerns”

– Interaction
– message assembling from different

plans/roles
• very coupled to the role or plan context

• the composition rules is the central
contribution of AOSD
– conclusions specific to the AspectJ join point

model

Successful aspectization?

• Inter-aspect relationships
– mobility does not affect only the agent kernel

• also crosscuts roles, interaction, and learning
• AspectJ-oriented abstractions forces indirect interaction,

which sometimes complicates the design

• Complex solution for simple reactive agents
– crosscutting concern is not evident

• e.g. autonomy-related behaviour tends to be localized in
few methods

15

Successful aspectization?

• Aspects as the “glue”
– agent kernel vs. concern-specific

implementation framework/platform (e.g.
Aglets/Jade for mobility)

• Incremental process vs. iterative process
– we mostly had an iterative process
– lack of obliviousness

What we have learned?
1. What are the main motivations to use

AOSD techniques for MAS development?

2. Successful aspectization of MAS-related
concerns?

3. Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

4. Future directions emerged from our
practical exploration of AOSD in AOSE?

16

Limitations?
• Our Agent-DSL requires more powerful

composition rules
– ideally their specification should be separated from

the aspects themselves
• Aspects in agent-oriented ADLs

– to express architectural aspects in MASs
• Tropos/i* somewhat deal with aspects at

requirements stage
– softgoals
– But… need for enhancing agent-oriented design

languages with aspects
• Gaia, AUML, MAS-ML, …

• Isolate solutions
– e.g. Kendall et al – aspectization of agent roles

Limitations?

• Detailed design and implementation
– Inter-aspect conflicts in the composition

• roles – introduction of similar behaviour
• mobility – composition of agent kernel and

abstract methods of mobility frameworks
– e.g. getName() – JADE

– Repetitive and time-consuming tasks
• interaction

– enumeration of all message senders in the aspects
– our 1st solution: naming convention
– our 2nd solution: code generators based on the

Agent-DSL descriptions

17

What we have learned?
1. What are the main motivations to use

AOSD techniques for MAS development?

2. Successful aspectization of MAS-related
concerns?

3. Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

4. Future directions emerged from our
practical exploration of AOSD in AOSE?

Future Directions

• We have investigated the aspectization
of internal agent properties
– systemic properties: coordination, fault-

tolerance, …
• Need for improved traceability

– Aspects in agent-oriented modelling
• agent-oriented meta-models
• modelling languages

– Code generation

18

Concluding remarks
• In a stage where we are facing a number of

growing AOSE abstractions…
– Is not the case to try to understand their

commonalities?
– We see aspect-oriented abstractions and

composition mechanisms as promising candidates
• Many of those abstractions are in fact to address

crosscutting concerns
– Autonomy, roles, coordination, mobility…

– However, we still need to investigate effective
composition rules/mechanisms to the context of
AOSE

Aspects in
Agent-Based Software Engineering:

Lessons Learned
Alessandro Garcia

Lancaster University, UK

Uira Kulesza, Claudio Sant’Anna, Carlos Lucena
PUC-Rio, Brazil

Christina Chavez
UFBA, Brazil

garciaa@comp.lancs.ac.uk, [uira,claudios,lucena]@inf.puc-rio.br, flach@im.ufba.br

© Alessandro Garcia, 2005.
Copyright of material from other sources belongs to the respective authors.

