=E
i

N\O

AOSD-eurore

ork

epartment

Aspects in
Agent-Based Software Engineering:
Lessons Learned

Computing

Alessandro Garcia
Lancaster University, UK

Uira Kulesza, Claudio Sant’Anna, Carlos Lucena
PUC-RIo, Brazil

Christina Chavez
UFBA, Brazil

garciaa@comp.lancs.ac.uk, [uira,claudios,lucena]@inf.puc-rio.br, flach@im.ufba.br

© Alessandro Garcia, 2005.
Copyright of material from other sources belongs to the respective authors.

ANCASTER
MAVERSIT

The Problem

» Crosscutting concerns in agent-based
development
— Learning, code mobility, autonomy...

department

Computing

— It does not matter which abstractions the software
developers are relying on

* object-oriented programming, AOSE abstractions
- they are always crosscutting

— Quality attributes depend largely on the modularity
provided by SE abstractions
* reusability
* maintainability

[Ager N
Basic Functionalitg __Ager |

Mobility

., S
Interaction =
: I——

Collaboration

Adaptation

getName()
addAgent()

Collaborati

I T
[InterfaceAgent |[InformationAgent APUb“C Result seaych tring KW) {
OB adaptKnowled 77

preCond() IECSI | | itinerary | processinformati 7 4

posCond() remoteEnvironments™ .-

goal
roles

rece!velnstructlon() roles o

searckrf_?}%s << searching-specific code >>
search(4§ ..
move()

reunHod@fAY if (result = null) / f
les act;w% / SIERoIEN) this.move(KW)

acti acf;on3() } ¥ ‘
actj /
| processinf() |] —

==
-

Aspect-Oriented Software
Development (AOSD)

n
department

Comput

Concern 3

AOSD tools, techniques
and
methodology

e <G

=E
i

ok Our Timeline
L5
=t Aspects in MAS
a@‘ Dg clopment Generative Programming
E V P and AOSE
o Metrics AO Agent !
) 1st Quantitative Suite Architecture | 2nd Quantitative
Study (MAS) ‘ § | Study (MAS)
2001 2002 | 2003 | | 2004 2005
‘ IS i : *—— 1 *— /—}
AOSD IS 1% ouarita | - o
1st Qualitative Study 1 1
the Key? © (MAS) Y . AO Patterns Lessons

| for Agent Designﬁ Learned?
How to assess | i

aspect-oriented artifacts? |
Agent-DSL

. Aspects‘in
rosscutting Concerns | Agent-Oriented
AS Development 2nd Qualitative Study Modelling

(MAS)

o AOSD is the key?
= Our Approach
Q_—o
=
(@] Roles
O —Collaboration

[

AOSD tools, techniques
and
methodology

Roles
Collaboration

AOSD is the key?

» Seeking the answers...
— Agent-DSL

— Architectural approach
— Design and implementation method
— Design pattern language
— AO generative approach
— AspectT: Implementation Framework
— Empirical studies

 Qualitative ones: quality model
* Quantitative ones: metrics suite

department

Comput

Our Aspect-Oriented Approach

* Agent-DSL: modelling crosscutting features

<MAS ...
<agent>

department

sear
xsi:noNamespaceSchemalocation= "agent-dsl.xsd">

<name>ResearcherUserAgent</name>
<belief> ... </belief>
<goal> ... </goal>

<role>
<name>Chair</name>
<belief> ... </belief>
<goal>

Comput

perDistributi
<type>Reactive</type>
</goal>
<plan>

DistributionP
<type>Reactive</type>

</plan>

<interaction>
<sensor>
<name>sensorAgent</name>
<type>AgentCommunication</type>
<platform>JADE</platform>

</sensor>
<effector>
<name>effectorAgent</name> ...-'

<type>AgentConmunication</type> o
<platform>JADE</platform> -
Interaction Subaspect
</effector>
<nessage> Code Template _
<id>REQUEST_DISTRIBUTE_PAPER</id>
<performative>REQUEST</performative>

<service> SERVICE_DISTRIBUTE_PAPERS </service>
</message>
</interaction>

<autonomy> éugun?wy futtmspec(
<executionAutonomy> ode Template _ S
<concurrencyStrategy> ThreadPool </c.S.> -

o =

‘. o Chair
</executionAutonomy>
<reactiveAutonomy> Pl

<messageToGoal>
<message> REQUEST DISTRIBUTE PAPER </message

Our Approach

» Detailed Design

— Aspect-oriented design patterns
Agenthood Additional Properties

w Adaptation Mobility

incoming message

Computing

new message new goal absent knowledge

¥
new
. i i event
Interaction [-----2U99I9____{ Kernel = fJe--eee---i- S
message
3 ' g
N ! absent knowledge t
new message agent creation s ; _ hew even
D ; collaboration :
joining !
v ¥
Legend: Autonomy Roles
---» Crosscuts

Observable Learning
addLC() Conjponent
learningRate

The Learning

m emoel =D processinf()
notifyLC()
= Pattern
e /\
= : TD-Learnin LMS
%l © The Observer Pattern with R Cii ity S S
processinf() processinf()
=l the Strategy Pattern [SML04] |Ei0 GetLRO
O getReward()
c : Role : Agent ‘ RevisionProposal ‘ ! Plan !
o 3 agents 3 goals 1 goal :
= ' |protocol ' | agent 1
T i |getNamep : 2;2;3 i |preConditions(Kerngel
o 1 |addAgent() ! addAgent() isAccepted() ' posConditions() .
-% i [removeAgent() ' - etReviewer | |createObject() :
— Col ' i |executePlan() ;
o : P :
o 1 e D
#y UserAgent — — I
‘ Chair ‘ Reviewer goals Distribution Judgement Judgement
| :
papers chairName K;gsts Plan Plan ReceptionPlan
LClist
submissionDate set(I:hair() myRoles
reviewDeadline
add,
;ir:;m?,;?::(t)o executePlan() executePlan() executePlan()

evaluaypPias

disiehis

judgeDpppg0
- ##4# Learning Concern

getP:
getReviewers()

The Learning comon |

learningRate

Pattern (I1) e

« Problem: How to separate the | 0|

on
I=
=
>
ot
£
o
o

. getLR()
learning concern from the other | |
agency concerns? @ /e
Plan !
° goals paper i |goal 1
= : ' I i |agent ,
© ' ! 2:2;3 ' | preConditions() Kernel
o addAgent() isAccepted() i |posConditions() :
-% i [removeAgent() ' - etReviewer | |createObject() :
— Col ' i |executePlan() ;
o : P :
O ! ! N
; ‘ UserAgent — — I
‘ Chair ‘ Reviewer goals Distribution Judgement Judgement
papers chairName /rilggsts Plan Plan ReceptionPlan
LClist
submissionDate set(l:shair() myRoles
reviewDeadline
add.
;exr:;\l/;ggl]::(t)() executePlan() executePlan() executePlan()

distipgi/ | | judgepasa

evaluaipfiges
getP;
getReviewers()

The Learning Pattern (lll)

e Solution:

Information
Gathering

events_()

Learning
learnPreferences() Component

updatePreferences() K >—

learningRate

Learning processinformation()

Knowledge

beliefl
belief2

bemndenden action1()
action2()

ANCASTER
MAVERS

The Pattern Language

» Abstract aspects

— Refining the aspects to different contexts

Learning
Knowledge

,,,,,,,,,,,,,,,,,,,,

Computing

RevisionProposal paperinterest

reviewer
Paper

deadlines
isAccepted()
getReviewer()

evaluation

getinterest()

learnPreferences()
updatePreferences(),
getEvaluation() | | ...

getPaper()

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Information
Gathering

Reviewer

v events_() Learning‘
Reviewer initTDLearning() TD-Learning
UserAgent getResponse() processinformation()

getTD()

getReward()
setReward()

executePlan()
judgeProposal()

=E
i

What we have learned?

What are the main motivations to use
AOSD techniques for MAS development?

on
I=
—
>
ot
£
o
o

Successful aspectization of MAS-related
concerns?

Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

Future directions emerged from our
practical exploration of AOSD in AOSE?

Main motivations?

department

» Crosscutting phenomena manifests early
in the software lifecycle
— domain engineering (agent-oriented product
lines)

» Crosscutting agent features
— Affect other feature trees

on
c

£
>
ot
£
o

O

IMIVERSITY

Crosscutting in Domain Modelling

department

Agent / Role

SIOSSGUIS., —_O -
AdditionalProperties

Agenthood
‘ Learning ‘ ‘ Mobility ‘ ‘Collaboration‘
CCCCCCC its

crosscuts
7
Crosscuts
Decisi
Behavior

Sensory
Behavior

5..0[055.(2“‘5........

Computing

Message
Sending

Legend:
lil mandatory feature
lﬁl optional feature

f]C } alternative features
O inspected features

=E
i

Main motivations?

epartment

» Crosscutting phenomena manifests early
in the software lifecycle

— domain engineering (agent-oriented product
lines)
» Crosscutting agent features
— Affect other feature trees
— software architecture (ADL and UML-based
representations)

» Crosscutting architectural concerns of a software
agent
— Affect several architectural components and their
interfaces

on
c
..|':)
-]
Q_‘D
£
o
O

=E
£

Architectural Crosscutting

Decision
Autonomy

department

Computing

b e
Behavior . o
Adaptation 7 i 7 _,L’Oji
(@ -7er) . | s

ollaboration

Behavior
Adaptation

_______ ’

(b) Mediator Architecture

Leads to tangling and scattering at the agent
architecture description

Hinders modular reasoning on architectural
agent properties

Causes architectural interface bloat

(a) Layered Architecture

Main motivations?

department

* Maintainable and reusable MASs
— Finer granularity
— Allow for reuse and variation of those concerns

» Adaptive MAS in open environments

— Dynamic reconfiguration
* roles
« collaboration protocols

— Context-aware learning strategies

Computing =

* Full modularization of crosscutting concerns
across MAS lifecycle

What we have learned?

department

1. What are the main motivations to use
AOSD techniques for MAS development?

Computing =

2. Successful aspectization of MAS-related
concerns?

3. Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

4. Future directions emerged from our
practical exploration of AOSD in AOSE?

=E
i

Successful aspectization?

epartment

» Detailed design and implementation
— AspectJ and Hyper/J

— Separable concerns

» Code mobility, learning, roles, autonomy
* Autonomy
— thread management (execution autonomy)
— triggering of proactive behaviour (proactive autonomy)

Computing

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

— Separation of intrinsic and extrinsic knowledge (roles)
— role binding ‘

— protocol enforcement

=E
i

Quantitative Evaluation

on
C3s
'FE
= . .
=t] * Viewpoint: Role-related Concerns
8 Y LD] Medat
@) Strategy - Agent Rﬁoperty Pattern
ey s e
Searching|: |1 | Interface . .
Plan Cg) t| Agent Autonomy | |Interaction Adaptatlonl
el I I <
Composite Pattefn Z‘%

Collaboration
Knowledge

i Role Pattern

...

! Collaborativ ollaboration _(Collaboration
Proposal | i''| Agent Core Role

. e somiil | A

I I 1 i [I I I
§ Middle User || Information : Content

\
Agent Agenp|| Agent Ol: |Supplier Answerel{ Editor| Caller

&

X o

A &
o

moo
Concerns mOA

CDLOC - Concern Difusion over LOC

@00
Concern mOA

Quantitative Evaluation

System Viewpoint

12%
— _

9% 6%
= = -

[l Patterns
X
o M Aspects
(/f ’5/ A %,
Or Q, GO’ ?9 /}O@ /O,)
%% %,
%, %,

GARCIA, A. et al. Separation of Concerns in Multi-Agent SystemJS: An Empirical Study. In:
Software Engineering for Multi-Agent Systems 11, Springer, LNCS 2940, March 2004, pp. 49-72.

12

=E
i

department

Strategy| Plan

Agent

Pattern

Ay ‘2

on
c
)
>
ot
£
o
O

bz

Quantitative Evaluation

[\

ilability[Searching] | |
lan Plan |i]:

mposite Pattgrn

o

Interface
Agent

Autonomy

Knowledge

oA

E Role Pattern

i i Collaborativ

Collaboration

Proposal | | | | Agent Core
Vs e

Middle User ||Information |:| Content

Agent Agent Agent |i| Supplier Answerer

=E
i

epartment

Plan

Quantitative Evaluation

Computing

ilability| | Searching
lan Plan

Knowledge

Proposal

Agent

Adaptation

JAN

Interaction

/N

Interface
Agent
[[
Middle User Information
Agent Agent Agent

13

Successful aspectization?

department

* “Inseparable concerns”
— Interaction

— message assembling from different
plans/roles
* very coupled to the role or plan context

Computing =

« the composition rules is the central
contribution of AOSD

— conclusions specific to the AspectJ join point
model

Successful aspectization?

department

* Inter-aspect relationships

— mobility does not affect only the agent kernel
« also crosscuts roles, interaction, and learning
¢ AspectJ-oriented abstractions forces indirect interaction,
which sometimes complicates the design

» Complex solution for simple reactive agents

— crosscutting concern is not evident

* e.g. autonomy-related behaviour tends to be localized in
few methods

Computing =

14

Successful aspectization?

department

» Aspects as the “glue”

— agent kernel vs. concern-specific
implementation framework/platform (e.g.
Aglets/Jade for mobility)

on
c
£
>
ot
£
o
O

* Incremental process vs. iterative process
—we mostly had an iterative process
— lack of obliviousness

What we have learned?

department

1. What are the main motivations to use
AOSD techniques for MAS development?

Computing =

2. Successful aspectization of MAS-related
concerns?

3. Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

4. Future directions emerged from our
practical exploration of AOSD in AOSE?

15

department

Computing

department

Computing

Limitations?

» Our Agent-DSL requires more powerful
composition rules

— ideally their specification should be separated from
the aspects themselves

» Aspects in agent-oriented ADLSs
— to express architectural aspects in MASs
 Tropos/i* somewhat deal with aspects at
requirements stage
— softgoals
— But... need for enhancing agent-oriented design
languages with aspects
+ Gaia, AUML, MAS-ML, ...
* Isolate solutions
— e.g. Kendall et al — aspectization of agent roles

Limitations?

» Detailed design and implementation

— Inter-aspect conflicts in the composition
* roles — introduction of similar behaviour
* mobility — composition of agent kernel and
abstract methods of mobility frameworks
— e.g. getName() — JADE

— Repetitive and time-consuming tasks

* interaction
— enumeration of all message senders in the aspects
— our 1st solution: naming convention

— our 2" solution: code generators based on the
Agent-DSL descriptions

16

What we have learned?

department

1. What are the main motivations to use
AOSD techniques for MAS development?

on
c
£
>
ot
£
o
O

2. Successful aspectization of MAS-related
concerns?

3. Limitations of existing AOSD techniques to
address MAS crosscutting concerns?

4. Future directions emerged from our
practical exploration of AOSD in AOSE?

Future Directions

department

» We have investigated the aspectization
of internal agent properties
— systemic properties: coordination, fault-
tolerance, ...
* Need for improved traceability

— Aspects in agent-oriented modelling
 agent-oriented meta-models
» modelling languages

— Code generation

Computing =

17

=E
i

Concluding remarks

epartment

* In a stage where we are facing a number of
growing AOSE abstractions...

— Is not the case to try to understand their
commonalities?

— We see aspect-oriented abstractions and
composition mechanisms as promising candidates

* Many of those abstractions are in fact to address
crosscutting concerns

— Autonomy, roles, coordination, mobility...
— However, we still need to investigate effective
composition rules/mechanisms to the context of
AOSE

on
c
..|':)
-]
Q_‘D
£
o
O

=E
i

N\O

AOSD-eurore

ork

department

Aspects in
Agent-Based Software Engineering:
Lessons Learned

Computing

Alessandro Garcia
Lancaster University, UK

Uira Kulesza, Claudio Sant’Anna, Carlos Lucena
PUC-RIo, Brazil

Christina Chavez
UFBA, Brazil

garciaa@comp.lancs.ac.uk, [uira,claudios,lucena]@inf.puc-rio.br, flach@im.ufba.br

© Alessandro Garcia, 2005.
Copyright of material from other sources belongs to the respective authors.

18

