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The Problem
• Crosscutting concerns in agent-based 

development
– Learning, code mobility, autonomy…
– It does not matter which abstractions the software 

developers are relying on
• object-oriented programming, AOSE abstractions
• they are always crosscutting

– Quality attributes depend largely on the modularity 
provided by SE abstractions

• reusability
• maintainability
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Crosscutting Agent-Related Concerns 
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public Result searchKW(String KW) { 
adaptKnowledge(KW);
processInformation(KW);
...
...
<< searching-specific code >>

...

...
if (result = null) {

this.move(KW)
}

}
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AOSD is the key?
• Seeking the answers…

– Agent-DSL
– Architectural approach
– Design and implementation method
– Design pattern language
– AO generative approach
– AspectT: Implementation Framework
– Empirical studies

• Qualitative ones: quality model
• Quantitative ones: metrics suite

Our Aspect-Oriented Approach
• Agent-DSL: modelling crosscutting features

<MAS ... xsi:noNamespaceSchemaLocation= "agent-dsl.xsd"> 
  <agent> 
 <name>ResearcherUserAgent</name> 
 <belief> ... </belief> 
 <goal> ... </goal> 
 
 <role> 
    <name>Chair</name> 
    <belief> ... </belief> 
    <goal> 

       <name>PaperDistributionGoal</name> 
        <type>Reactive</type>  
    </goal> 
    <plan> 
        <name>PaperDistributionPlan</name> 
        <type>Reactive</type> 
        <communication>false</communication> 

   </plan>  
 
     <interaction>  
        <sensor> 
                  <name>sensorAgent</name> 
                  <type>AgentCommunication</type> 
                  <platform>JADE</platform> 
        </sensor> 
        <effector> 
                  <name>effectorAgent</name> 
                  <type>AgentCommunication</type> 
                  <platform>JADE</platform> 
        </effector> 
        <message> 
                   <id>REQUEST_DISTRIBUTE_PAPER</id> 
                   <performative>REQUEST</performative> 
                   <service> SERVICE_DISTRIBUTE_PAPERS </service> 
         </message> 
        </interaction> 
 
       <autonomy> 
        <executionAutonomy> 
           <concurrencyStrategy> ThreadPool </c.S.> 
        </executionAutonomy> 
               <reactiveAutonomy>  

          <messageToGoal> 
       <message> REQUEST_DISTRIBUTE_PAPER </message> 

Agent Type
Code Template

Role Aspect 
Code Template

Autonomy Subaspect
Code Template

Interaction Subaspect
Code Template
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Environment

Our Approach
• Detailed Design

– Aspect-oriented design patterns
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Learning Concern

• The Observer Pattern with 
the Strategy Pattern [SML04]
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• Problem: How to separate the 

learning concern from the other 
agency concerns?

The Learning 
Pattern (II)

The Learning Pattern (III)

• Solution:
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*
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The Pattern Language
• Abstract aspects

– Refining the aspects to different contexts
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...
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...
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Reviewer

UserAgent

JudgementPlan
executePlan()
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...

What we have learned?
1. What are the main motivations to use 

AOSD techniques for MAS development?

2. Successful aspectization of MAS-related 
concerns?

3. Limitations of existing AOSD techniques to 
address MAS crosscutting concerns? 

4. Future directions emerged from our 
practical exploration of AOSD in AOSE?
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Main motivations?
• Crosscutting phenomena manifests early 

in the software lifecycle
– domain engineering (agent-oriented product 

lines)
• Crosscutting agent features

– Affect other feature trees

Crosscutting in Domain Modelling
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Main motivations?
• Crosscutting phenomena manifests early 

in the software lifecycle
– domain engineering (agent-oriented product 

lines)
• Crosscutting agent features

– Affect other feature trees

– software architecture (ADL and UML-based 
representations) 

• Crosscutting architectural concerns of a software 
agent

– Affect several architectural components and their 
interfaces

Architectural Crosscutting 
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• Leads to tangling and scattering at the agent 
architecture description

• Hinders modular reasoning on architectural 
agent properties

• Causes architectural interface bloat
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Main motivations?
• Maintainable and reusable MASs

– Finer granularity
– Allow for reuse and variation of those concerns

• Adaptive MAS in open environments
– Dynamic reconfiguration

• roles
• collaboration protocols

– Context-aware learning strategies

• Full modularization of crosscutting concerns 
across MAS lifecycle

What we have learned?
1. What are the main motivations to use 

AOSD techniques for MAS development?

2. Successful aspectization of MAS-related 
concerns?

3. Limitations of existing AOSD techniques to 
address MAS crosscutting concerns? 

4. Future directions emerged from our 
practical exploration of AOSD in AOSE?
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Successful aspectization?
• Detailed design and implementation

– AspectJ and Hyper/J
– Separable concerns

• Code mobility, learning, roles, autonomy
• Autonomy

– thread management (execution autonomy)
– triggering of proactive behaviour (proactive autonomy)
– triggering of decision-making plans (decision autonomy)

• Roles
– Separation of intrinsic and extrinsic knowledge (roles)
– role binding
– protocol enforcement

Quantitative Evaluation
• Viewpoint: Role-related Concerns
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Quantitative Evaluation
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Quantitative Evaluation
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GARCIA, A. et al. Separation of Concerns in Multi-Agent Systems: An Empirical Study. In: 
Software Engineering for Multi-Agent Systems II, Springer, LNCS 2940, March 2004, pp. 49-72.
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Quantitative Evaluation
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Successful aspectization?
• “Inseparable concerns”

– Interaction
– message assembling from different 

plans/roles
• very coupled to the role or plan context

• the composition rules is the central 
contribution of AOSD
– conclusions specific to the AspectJ join point 

model

Successful aspectization?

• Inter-aspect relationships
– mobility does not affect only the agent kernel

• also crosscuts roles, interaction, and learning
• AspectJ-oriented abstractions forces indirect interaction, 

which sometimes complicates the design

• Complex solution for simple reactive agents
– crosscutting concern is not evident 

• e.g. autonomy-related behaviour tends to be localized in 
few methods
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Successful aspectization?

• Aspects as the “glue”
– agent kernel vs. concern-specific 

implementation framework/platform (e.g. 
Aglets/Jade for mobility) 

• Incremental process vs. iterative process
– we mostly had an iterative process
– lack of obliviousness

What we have learned?
1. What are the main motivations to use 

AOSD techniques for MAS development?

2. Successful aspectization of MAS-related 
concerns?

3. Limitations of existing AOSD techniques to 
address MAS crosscutting concerns? 

4. Future directions emerged from our 
practical exploration of AOSD in AOSE?
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Limitations?
• Our Agent-DSL requires more powerful 

composition rules
– ideally their specification should be separated from 

the aspects themselves
• Aspects in agent-oriented ADLs

– to express architectural aspects in MASs
• Tropos/i* somewhat deal with aspects at 

requirements stage
– softgoals
– But… need for enhancing agent-oriented design 

languages with aspects
• Gaia, AUML, MAS-ML, …

• Isolate solutions
– e.g. Kendall et al – aspectization of agent roles

Limitations?

• Detailed design and implementation
– Inter-aspect conflicts in the composition

• roles – introduction of similar behaviour
• mobility – composition of agent kernel and 

abstract methods of mobility frameworks
– e.g. getName() – JADE

– Repetitive and time-consuming tasks
• interaction

– enumeration of all message senders in the aspects
– our 1st solution: naming convention 
– our 2nd solution: code generators based on the 

Agent-DSL descriptions 
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What we have learned?
1. What are the main motivations to use 

AOSD techniques for MAS development?

2. Successful aspectization of MAS-related 
concerns?

3. Limitations of existing AOSD techniques to 
address MAS crosscutting concerns? 

4. Future directions emerged from our 
practical exploration of AOSD in AOSE?

Future Directions

• We have investigated the aspectization
of internal agent properties
– systemic properties: coordination, fault-

tolerance, …
• Need for improved traceability

– Aspects in agent-oriented modelling
• agent-oriented meta-models
• modelling languages

– Code generation



18

Concluding remarks
• In a stage where we are facing a number of 

growing AOSE abstractions…
– Is not the case to try to understand their 

commonalities?
– We see aspect-oriented abstractions and 

composition mechanisms as promising candidates
• Many of those abstractions are in fact to address 

crosscutting concerns
– Autonomy, roles, coordination, mobility…

– However, we still need to investigate effective 
composition rules/mechanisms to the context of 
AOSE 

Aspects in
Agent-Based Software Engineering:

Lessons Learned
Alessandro Garcia

Lancaster University, UK

Uira Kulesza, Claudio Sant’Anna, Carlos Lucena
PUC-Rio, Brazil

Christina Chavez
UFBA, Brazil

garciaa@comp.lancs.ac.uk, [uira,claudios,lucena]@inf.puc-rio.br, flach@im.ufba.br

© Alessandro Garcia, 2005. 
Copyright of material from other sources belongs to the respective authors.


