
 1

Agent-Oriented Software Engineering Technical Forum Group

Report of the TFG Activity

26, November 2005

Massimo Cossentino, ICAR - Consiglio Nazionale delle Ricerche, Italy, cossentino@pa.icar.cnr.it

Juan Pavón, Universidad Complutense Madrid, Spain, jpavon@sip.ucm.es

Carole Bernon, Université Paul Sabatier, IRIT, France, bernon@irit.fr

1 Introduction
The Agent-Oriented Software Engineering Technical Forum Group (AOSE TFG) has been established with the purpose

of creating a path towards integration and interoperability of existing methodological approaches for the development of

Multi-Agent Systems (MAS). This involves the definition of a common framework for MAS specification, which

includes the identification of a minimum set of concepts and methods that can be agreed in the different approaches.

The tool for defining this framework is meta-modelling. The principle of meta-modelling has been already used in other

fields of software engineering, for instance, in the specification of UML by OMG, to describe the elements of the

language, their constraints and relationships. This approach is also valid to specify the concepts that are used by agent-

oriented methodologies. With this assumption, one of the main issues in AOSE TFG has been to elaborate and discuss

MAS meta-models for different methodologies. Work on the compilation of one or more MAS meta-models can be

used as reference points by the whole community. Although this work presents several challenges, all of us agree that

achieving concrete results in this area, would be very useful for several reasons: (i) this partly solves the lack of

standardization in this area, as it has been remarked in the AgentLink Roadmap, (ii) this could encourage the

development of more flexible and versatile design tools and (iii) this is one of the essential steps for reaching a concrete

maturity in the study of the whole agent design process.

Complementary to the definition of such a common meta-model for MAS, AOSE TFG has also proposed a framework

for the evaluation of agent-oriented methodologies. This was set up in order to gain knowledge of the different

methodologies from the pragmatics and the underlying theories. In the end, the results of evaluating methodologies can

be useful for the selection of method fragments in a method engineering approach.

This report describes the evolution of the activities of the AOSE TFG along the different meetings, which have driven

the work in these issues. Section 2 describes the activity of the first TFG meeting (in Rome). Section 3 describes the

activity of the second TFG meeting (in Ljubljana). Section 4 describes the activity of the third TFG meeting (in

Budapest). Finally, Section 5 draws some conclusions on the overall TFG activity.

2 TFG 1 - Rome Event
The AOSE TFG activity in Rome was divided into two different sessions, both of them scheduled for Friday, (2nd

July): the first session has been held in the morning and dealt with methodologies and MAS (multi-agent system) meta-

models. In the second session (in the afternoon), we discussed about methodologies evaluation, ideas for future activity

of this TFG and future trends in AOSE in general have been discussed too.

More than forty people attended the two different sessions of the AOSE meeting and seventeen talks have been

presented.

 2

In the following the discussed topics, presented talks and debates outcomes will be presented in their chronological

order.

2.1 Methodologies

More than twenty different design methodologies can be found in literature for the design of MASs. This can be seen as

a proof that agent designers in accomplishing their different tasks, and solving specific problems in distinct production

environments, often prefer to setup a methodology specifically tailored for their own needs instead of reusing existing

ones. What seems to be widely accepted is that a unique specific methodology cannot be general enough to be useful to

everyone without some level of personalization.

In this scenario we can identify two contrasting elements: first, in an interesting paper on object-oriented software

(development) processes, Fuggetta (in “Software Process: a Roadmap”, 2000) states that the research in this field is

stuck and most technologies developed by the software process community have not been adopted by the industrial

world; second, the AgentLink community, in its roadmap for agent based computing, embodying the feelings of a large

part of the agent research and industrial community, has identified the designation of a standard in design

methodologies as an essential demand.

In order to accomplish this request, during this first meeting of the AOSE TFG, we focused our attention to the

exploration of existing methodologies and the study of possible unification strategies.

2.1.1 Methodologies Overview

Several methodologies (eight) have been presented during the meeting; they gave an idea of the relevant effort spent by

the European agent community on this topic.

2.1.1.1 IDE-eli

The Integrated Development Environment for Electronic Institutions (IDE-eli) is a set of tools aimed at supporting the

engineering of multi-agent systems as electronic institutions. Software agents appear as the key enabler technology

behind the electronic institutions vision. Thus, electronic institutions encapsulate the coordination mechanisms that

mediate the interactions among software agents representing different parties. IDE-eli allows for engineering both

electronic institutions and their participating software agents. Notably, IDE-eli moves away from machine-oriented

views of programming toward organizational-inspired concepts that more closely reflect the way in which we may

understand distributed applications. It supports a top-down engineering approach: firstly the organization, secondly the

individuals. IDE-eli is composed of:

• ISLANDER. A graphical tool that supports the specification of the rules and protocols in an electronic institution.

• AMELI. Software platform to run electronic institutions. Once an electronic institution is specified with

ISLANDER, it is ready to be run by AMELI without any other programming effort.

• aBUILDER. Agent development tool.

• SIMDEI. Simulation tool to animate and analyse specifications created with ISLANDER prior to the deployment

stage.

Many more application areas may be tackled with the aid of the IDE-eli tools. In general terms, the electronic

institutions approach is deemed as appropriate in complex domains where multiple partners are involved, and a high

degree of coordination and collaboration is required. Thus, electronic institutions look promising to support workflow

management, monitoring and management of shop-floor automation, or supply network management issues.

 3

2.1.1.2 INGENIAS

The purpose of INGENIAS is the definition of a methodology for the development of MAS, by integrating results from

research in the area of agent technology with a well-established software development process, which in this case is the

Unified Software Development Process. This methodology is based on the definition of a set of meta-models that

describe the elements that form a MAS from several viewpoints, and that allow to define a specification language for

MAS. The viewpoints are five: agent (definition, control and management of agent mental state), interactions,

organization, environment, and goals/tasks. These meta-models are the basis for building the tools for the creation and

management of MAS specifications, and code generation to different target platforms.

2.1.1.3 MetaDIMA

MetaDIMA aims at bridging the gap between existing agent architectures with their development tools and agent-based

methodologies. The idea is to start from existing architectures and tools and to elaborate meta-models in order to

formulate the necessary knowledge about the development process.

MetaDIMA is inspired by the Model-Driven Architecture (MDA), proposed by OMG, which aims at separating

application logic from the underlying technologies to improve reusability and development process.

The aim of this project is to illustrate the use of MDA to define a new multi- agent system development process that is

based on a library of meta-models. These meta-models may be used by the designer to easily describe the multi-agent

models which are automatically transformed in order to generate a runnable multi- agent system.

2.1.1.4 Agile PASSI

In Agile PASSI, the primary requirement is related to not distracting developers from their main goal (producing a

system that solves some kind of algorithmic problem, for instance in robotics) with a long design process.

This could be achieved by using an agile process that supports a light (manual) design phase while it encourages the

reuse of existing contributions in form of patterns; supporting design tools automatically produce a consistent

documentation at different levels of abstraction. Agile PASSI takes advantage of the work done with PASSI and reuses

a couple of its most important features: (i) the identification of agents as a set of functionalities expressed in form of use

cases, and (ii) the central role of ontology description in analyzing the agent solution.

2.1.1.5 RIO

The RIO meta-model is centred on two concepts: role and organization. A role is an abstraction of a behaviour or a

status in an organisation, an organization is a set of roles where each role interacts with at least one another in the

organization.

In RIO, formal specifications (obtained with ObjectZ and statecharts) are linked to implementation and the designer

work is supported by tools that allow the simulation of the system and its verification.

2.1.1.6 ADELFE

ADELFE aims at covering all the phases of a classical software design: from requirements to deployment. A well-

known process, the RUP (Rational Unified Process), has been tailored to take into account specificities coming from the

design of Adaptive Multi-Agent Systems (AMAS). Only the requirements, analysis and design phases require

modifications in order to be adapted to AMAS, all the others appearing in the RUP remain the same.

 4

Three main tools are integrated into the ADELFE toolkit: an interactive tool which describes the process and helps the

designer to apply it, OpenTool, a graphical modelling tool, and a tool which analyses if using the AMAS technology is

useful to implement the target system.

2.1.1.7 MaSE

The Multi-agent Systems Engineering (MaSE) is a general purpose methodology for developing multi-agent systems

that is founded on basic software engineering principles. MaSE divides the development process into two major phases:

the analysis phase and the design phase. Each phase is composed of a set of stages.

The development process adopted in MaSE is iterative. This means that any stage can be repeated many times until the

final design is achieved and at any stage a designer may go back to a previous stage.

MaSE is supported by a CASE tool (called agent Tool) that has the capability of performing the analysis and design

activities, validating the various models, generating automatic transformation of models, and generating skeleton code.

A specific class library is available, called agentMOM, that can be used for code generation.

MaSE also supports the specification of mobility aspects and the definition of ontologies.

2.1.2 Unification Proposals

In the unification direction two different talks have been proposed. In the first talk, A. Garro presented his approach on

the composition of a new methodology starting from fragments of other existing methodologies. In the second talk, J.

Pena presented a fragment from the MacMAS methodology dealing with the analysis of the acquaintance organization

in a MAS. These contributions will now be presented more in details.

2.1.2.1 A Methods Integration Approach

This work refers to the FIPA Methodology Technical Committee activity and it consists in a quite open approach that

allows the composition of elements coming from a repository of fragments of existing design processes that could be

expressed in terms of a standard notation.

Specifically dealing with the methods integration problem in this contribution two different approaches have been

considered to obtain methods integration: (i) guided by a (MAS) meta-model; (ii) guided by a development process.

In the first approach (guided by a MAS meta-model), while building his own methodology, the designer has preliminary

to identify the elements that compose the meta-model of the MAS he is going to build; then, he has to choose the

method fragments that are able to produce the identified meta-model elements. The second approach (guided by a

development process) focuses on the instantiation of some software development process that completely covers the

development of MAS. Given a specific problem and/or an application domain, the process will be instantiated by

selecting, for each phase, suitable method fragments, chosen from agent-oriented methodologies proposed in the

literature or ad-hoc defined.

2.1.2.2 An Acquaintance Organization Fragment

The methodology fragment proposed by J. Pena consists in a systematic, iterative and incremental approach for the

development of the acquaintance organisation (interaction organisation) of a MAS structuring models in a set of

abstraction layers. It is specially tailored to deal with complexity derived from interactions, thus, we focus all the

modelling process on them. This fragment is a part of MacMAS that is a fractal methodology where a model is refined

by its bottom layer models and abstracted by its top layer model

 5

2.2 MAS Meta-models

In the object-oriented context the construction of a new methodology and the execution of the design process, rely on a

common denominator, the universally accepted concept of object and related meta-model of the object-oriented system.

The situation, in the agent-oriented context, is quite different since there is not a commonly accepted definition of the

concept of agent and related meta-model of the multi-agent system (a structural representation of the system elements

like agent, role, behaviour, ontology, etc. that compose the actual system together with their relationships).

In this case, one of the first steps of a new methodology composition process, should therefore consist in an accurate

analysis of the MAS meta-models in order to identify which elements will compose the system that will be built. Its

availability will not only be helpful for defining the whole methodology but it will help at a practical level too: the

same fact of clearly declaring the structure of the system will enable the development of design tools that are able to

check for design correctness and find parts that are not completely/coherently defined. In this view, the final result of

the design activity should, obviously, consist in a model of the system - an instantiation of the MAS meta-model – that

solves the faced problem.

The situation up-to-date is that the lack of a unique MAS meta-model leads each methodology to have its own concepts

and system structure. Starting from the proposed contributions (four talks) during this meeting our group tried to

establish a strategy that could bring to the identification of a common MAS meta-model that could be widely adopted.

There were three contributions on already adopted meta-models and one unification proposal. They are presented in the

following.

2.2.1 MAS Meta-models of Existing Methodologies

2.2.1.1 INGENIAS

The INGENIAS agent meta-model defines an isolated agent. The agent concept underlying this meta-model is the one

defined by Newell in "The Knowledge level" (1982). An agent is therefore seen as a program that exists at the

knowledge level. It has a physical body with which it can act in the environment, a knowledge body which contains

whatever the agent knows at some time, and a set of goals. Also, an agent behaves according to the principle of

rationality (if an agent has knowledge that one of its actions will lead to one of its goals, then the agent will select that

action). Following this definition, an agent has goals and there should be some association type between agent tasks and

goals.

The agent has a mental state which is used to decide what to do next; this mental state is managed by the

MentalStateManager that is in charge of adding/removing knowledge as well as consistence maintenance. Agent’s

mental state consists of control entities and information entities. Control entities specify what is expected from the

agent, whilst information entities describe the state of the world as seen by the agent.

On the other side, the INGENIAS agent plays roles in several workflows in the system. The association of an agent to a

role means that the agent acquires all the properties and responsibilities assigned to the role (goals and interactions in

which the role participates).

Social aspects in this approach are abstracted in the organization concept. An organization, in the INGENIAS approach,

characterizes a group of agents that work together towards a common goal (purpose). The organization may consist of

 6

only one agent or several groups of cooperating agents, which form part of organizational structures that establish

relationships among them.

2.2.1.2 MacMAS

In the MacMAS approach interactions are the central concept of each methodology fragment, and of the whole MAS

meta-model.

This has been done to improve the ability to deal with systems with a high interaction degree. An interaction can relate

an arbitrary number of roles (multi-Role Interactions) and can be refined by several finer–grain interactions.

This allows performing a layered description of the system which improves the possibility of dealing with complexity

through an iterative and incremental process.

MacMAS is completed by a set of automatic algorithms to compose and decompose interactions that also helps in the

transition between layers.

Interactions are related to systems goals and this enhances the traceability between requirements and final models.

2.2.1.3 Software Agents vs. Software Components

This work is based on the hypothesis that given a component, we can ascribe mental qualities, i.e., knowledge and

goals, to it; this brings to the consideration that components described in terms of their mental qualities are agents.

In this approach, the goal consists in enhancing the possibility of reusing significant parts of a MAS, this can be done by

adding some constraints on software infrastructures to better support reusability. Particularly infrastructures should be a

means for: (i) transferring knowledge and goals (mainly goals), and not only for moving data, (ii) supporting agents

finding each other transparently, i.e., without an explicit request (from the agent or from the programmer), (iii) allowing

agents finding problem solvers and not just task executors, (iv) enabling choosing a problem solver on the basis of what

it can do and not on how it can describe its capabilities.

In other words some “intelligence” should be moved to the infrastructure but still considering that the problem should

not be moved there, i.e. the system designer should not program the infrastructure.

2.2.2 Unification Proposal

One contribution in this direction has been proposed by P. Turci Her talk started from the consideration that some of the

agent-oriented methodologies that exist nowadays are dealing with specific kinds of agents or multi-agent systems; this

is, for instance, the case of ADELFE, Gaia and PASSI. ADELFE is devoted to cooperative agents and adaptive MAS,

while Gaia aims more at creating social organisations and PASSI, the more general one, considers the whole life-cycle

from the problem domain to the agent-based solution and the final level code implementation but it limits its scope to

FIPA-compliant systems. These differences are reflected in the meta-models elaborated by respecting authors to express

the concepts used in their design activities.

In the talk, these meta-models have been compared in order to begin a unification work. One of the most interesting

result is the discovery that all of the three (meta-)models share common concepts such as agent and interaction protocol,

while other elements are present only in some of them: this is the case of ADELFE and Gaia that share the

communication and environment notions, while Gaia and PASSI have in common notions like role and service. Some

concepts are only appearing in one of the three meta-models, for instance, responsibilities in Gaia, ontology in PASSI or

representation (of others) in ADELFE.

 7

Putting these different meta-models together, comparing their similarities and differences has enabled enriching them

mutually as well as unifying the different used concepts and the work resulted in the unified MAS meta-model that has

been presented at the end of the talk.

2.3 Methodologies Evaluation (Guidelines and Techniques)

There were two presentations concerning the evaluation of methodologies. One more generic, from A. Sturm

(“Evaluation Techniques for Agent-Oriented Methodologies”) and the other referring to a concrete aspect, which is the

way methodologies deal with complexity, specially for the modelling of interactions in MAS (J. Peña and R. Corchuelo,

“Guidelines, Techniques and Modelling Artefacts at the Analysis Stage of AOSE Methodologies to Deal with

Complexity”).

2.3.1.1 Dealing with Complexity at the Analysis Stage

The first presentation in this section proposed a RFC (Request for Comments) about guidelines, techniques and

modelling artefacts at the analysis stage of AOSE methodologies to deal with complexity. The complexity here is

related to the interactions between agents and it is closely linked with the organizational aspects. The proposed

approach is specially tailored to deal with complicated organizations and is based on three principles (initially identified

by N. Jennings):

• Abstraction that defines simplified models of the system emphasising some details while avoiding others in

order to focus the designer’s attention,

• Decomposition that applies the “divide and conquer” principle to limit the designer’s scope to a portion of the

problem,

• Composition that identifies and manages inter-relationships between the different sub-systems. It is then

possible to group together various basic components to treat them as higher-level units of analysis.

These principles have to be taken into account at the modelling process level which is not the case in most of the

existing methodologies. In order to do that, a set of features that should be provided by AOSE methodologies at the

analysis stage is proposed. These features are divided into:

• Techniques that are procedures to transform models,

• Modelling artefacts that are icons to graphically represent the system,

• Guidelines that indicate the best practices to deal with complexity by using the previous techniques and

modelling artefacts.

The RFC presents the three kinds of principles according to static and dynamic aspects:

• The acquaintance aspect models the relationships between agents in the system from the interaction point of

view.

• The behaviour aspect models the order of apparition of these relationships over time.

To evaluate an analysis stage, this RFC can be found on-line via a form in which the different features are asked and

can be weighted according to an agreement level (which ranges from 0 to 100) and the ability to conquer complexity

(with the same range).

 8

2.3.1.2 Evaluation of Agent-Oriented Methodologies

The second presentation of this session was based on the fact that some comparisons between different methodologies

(according to different criteria depending on the goal of the work) can be found in literature but no guideline or tool

really exist to address advantages or drawbacks of methodologies or even to compare them.

Considering that a methodology is an entire set of guidelines and activities (lifecycle process, concepts and models…),

the presented evaluation framework was based on four categories:

• Concepts and properties. Since no consensus exists within the agent community yet, the basic concepts related

to agents and MASs were determined (autonomy, reactiveness, proactiveness and sociality) and then used as

properties to evaluate whether an agent-oriented methodology is close to these concepts. Another evaluation

determines if a methodology supports building blocks (e.g. agent, belief, desire, intention, message, role,

task…), the associated notations and to what extent.

• Notations and modelling techniques. Some properties (e.g. accessibility, analyzability, modularity…) were

considered to evaluate how a methodology deals with symbols used to represent elements within a system and

how it deals with models depicting aspects of a system at different levels of abstraction.

• Process. The development process is evaluated according to the development context and the lifecycle

coverage (from requirements to implementation and tests). The evaluation should also consider whether this

methodology provides a detailed description of the various activities of the development lifecycle in order to

ease its use.

• Pragmatics. The evaluation of a methodology must take into account how this methodology deals with

practical aspects of deploying and using it in a real project or organization. In this case, issues such as available

resources, required expertise, language suitability, domain applicability and scalability have to be considered.

Finally, based on academic experiments, some results were given concerning the evaluation of four selected

methodologies: Gaia, MaSE, Tropos and OPM/MAS.

Taking into consideration the goals of the AOSE TFG, it seems that evaluation is one of the first tasks we should

address. Different techniques are being proposed: feature-based comparison, meta-modelling, metrics, ontological

evaluation, and experimentation with case studies. How to organize a common activity in the AOSE TFG towards

evaluation stays as an open issue in this meeting, but it is recognized as one of the issues to address in the next ones.

2.4 Open Directions in AOSE

In the last few years, together with the increasing acceptance of agent-based computing as a novel software engineering

paradigm, there has been a great deal of research related to the identification and definition of suitable models and

techniques to support the development of complex software systems in terms of multi-agent systems. These researches,

which can be roughly grouped under the term “agent-oriented software engineering”, are endlessly proposing a variety

of new metaphors, formal modelling approaches, development methodologies and modelling techniques, specifically

suited to the agent-oriented paradigm.

However, the research in the area of agent-oriented software engineering is still in its early stages, and several

challenges need to be faced before agent-oriented software engineering can fulfil its promises, becoming a widely

 9

accepted and a practically usable paradigm for the development of complex software systems. One possible way to

identify and frame the key research challenges in the area of agent-oriented software engineering is to recognize that

such challenges may be very different depending on the “scale of observation” adopted to model and build a software

system.

At one extreme, the micro scale of observation is that where the system to be engineered has to rely on the controllable

and predictable behaviour of (a typically limited number of) individual agents, as well as on their mutual interactions.

There, the key engineering challenges are related to extending traditional software engineering approaches toward

agent-oriented abstractions. Although the use of AUML and of a traditional “waterfall” process model – as promoted by

current researches – may have been of some use in the first years of research, the current understanding is that brand

new modelling and notational tools, as well as possibly brand new software process models may be needed, to exploit in

full the potentials of the agents paradigm.

At the other extreme, the macro scale of observation is the one where a multi-agent system is conceived as a multitude

of interacting agents, for which the overall behaviour of the system, rather than the mere behaviour of individuals, is the

key of interest. In this case, a discipline of agent-oriented software engineering should focus on totally different

problems, and should be able to develop novel “systemic” approaches to software engineering, possibly getting

inspiration from areas such as complex systems sciences and systemic biology.

In between, the meso scale of observation is that where the need of predictability and control typical of the micro scale

clashes with the emergence of phenomena typical of the macro scale. Therefore, any engineering approach at the meso

scale requires accounting for problems that are typical of both the micro and the macro scale, and possibly for new

problems specific to the meso scale. These include: identifying the boundaries of a systems – which may be challenging

in the case of open multi-agent systems; electing trust as a primary design issue; identifying suitable infrastructures for

multi-agent systems support.

3 TFG 2 - Ljubljana Event
During the second meeting, the proposed aims were more especially focused on refining the contributions about MAS

meta-models that some supporters presented. This activity led to the identification (and formalization) of a meta-model

that members hope should meet a sufficient consensus to be adopted as a common reference point by the European

research community in this area. Other aspects of agent-oriented software engineering have been faced as well with

specific contributions about agent modelling languages and agent mobility design.

Section 3.1 provides a complete overlook on the talks and discussion held during the meeting, section 3.2 describes the

main sources that have been considered in this unification work, whose result is presented in section 3.3.

3.1 Modelling Languages and MAS Meta-models

Discussion sessions in the second meeting were justified by the challenges derived from the first AOSE TFG meeting in

Rome and more especially addressed in the last talk given by F. Zambonelli [33] about open directions in AOSE. The

lack or the possible improvement of modelling tools concerning agents or multi-agent systems, and the lack of

agreement on concepts used in the AOSE area are the main factors explaining the talks given in Ljubljana.

 10

3.1.1 Modelling Languages

As discussed in Rome, one of the challenges in the AOSE area was to give new tools to express and control the

behaviour of agents and/or the behaviour of the MAS they are evolving within. Working in such a way would facilitate

the spreading of agent-based concepts and applications in the industrial world.

The first talk came from this industrial world with the presentation of AML (Agent Modelling Language) by I.

Trencansky [30]. AML is a semi-visual modelling language, versatile and easy to expand, based on the UML 2.0

specifications thus allowing to reuse well-defined concepts and to enable the support of existing CASE tools [12]. AML

is designed to support business modelling, requirements specification, analysis, and design of software systems that use

MAS concepts and principles. AML has a layered structure built on top of UML to provide an abstract syntax, a

semantics and a notation. Expressing the typical features of multi-agent systems is done by extending UML with several

new modelling concepts (such as agents, resources, environment, role, social aspects or ontologies) while ensuring that

the resulting language preserves UML specificities. A non-preserving extension is also provided to add some meta-

properties to UML and complete the definition of the AML meta-model. Above this meta-model and notation, two

UML profiles for AML are given. They enable implementing AML in CASE tools based on UML 1.* or UML 2.0; in

concrete, AML is supported by IBM Rational Rose and LS/TS from Living Systems. Using these AML profiles, a

designer is free to customise AML through the definition of extensions to this language. The V.0.9 release of AML is

available since December 2004, and has been submitted to OMG for the RFP on Modelling Agent-Based Systems.

In specific cases, mobile agents are useful, therefore, the provision of tools to model their deployment, migration and

interactions, for example, becomes then an important issue. Mario Kusek [20], talked about how to model agent

mobility with UML sequence diagrams. This work is justified because this mobility is not represented in the current

UML sequence diagrams and because modelling agent creation, mobility paths and current location of an agent has not

yet been fully addressed by FIPA, UML, AUML or AML. In AUML a deployment diagram can capture the reason why

an agent moves and the location where it moves, and an activity diagram may express when the agent has to move. In

UML these expressions are made possible by extending the activity or sequence diagrams and/or defining a stereotype

«host». Finally, AML enables a designer to model the structural and behavioural aspects of entity mobility through, as

seen above, extension of UML relationships and definition of a stereotype «move». However, all these modelling

languages do not give an overall view about agent roaming and execution path. Four solutions, extending UML

sequence diagrams, were described to try to tackle this issue. First, with stereotyped mobility diagrams, an agent is

located on a node by sending a stereotype message to it and then moves to another node by sending it a message

stereotyped with another value. Second, in swimlaned mobility diagrams, a swimlane represents a node and an agent

moves in the same way than in the first approach except that it terminates at the source node and is created again on the

destination node. Third, in state representation mobility diagrams, the mobility is represented by changing the state of

the moving agent. Finally, in frame fragment mobility diagrams, each frame fragment of a sequence diagram represents

execution on a node. The advantages and drawbacks of these approaches were then compared, with respect to the

number of nodes involved, the space needed for the graphics, the expression of the mobility, using a case study in which

agents roam the Internet to find better prices for products.

While in this section we dealt with agent modelling related issues, in the next one we present MAS meta-models related

to the different methodological approaches born in the AgentLink AOSE community.

 11

3.1.2 MAS Meta-models

Several studies have been carried on recently about the idea of assembling a new design process for agents by taking

methods from existing agent-oriented methodologies. These can be seen as an adaptation of the method engineering

approach [8][24]. Other researchers and software developing companies are working on the production of agent-specific

design and coding tools or the extension of existing ones. We can say that from requirements identification down to the

final deployment of the executable code there are important research activities that while looking at the agent systems

indeed lack of a well consolidated and sometimes even defined meta-model of the multi-agent society.

With the term meta-model we mean a model of the concepts that can be used to design and describe actual systems. The

models describing a system are instances of the meta-model (i.e., entities of the system model are instances of the meta-

model entities). In this way, it is possible to build several models (views) of a system; for instance, one model could

represent the organization view of the system at an abstract level (as an instance of the concepts in the meta-model that

describe organizational issues) while another could be more implementation oriented and show how the system is

deployed in a target platform (as an instance of a platform specific meta-model).

In the object-oriented context the construction of a design process, the definition of its components (analysis, design,

testing activities) and the execution of the design rely on a common denominator, the universally accepted concept of

object and related meta-model of the object-oriented system.

It is not so in the agent-oriented context where the lack of such a shared meta-model brings to significant differences in

the way different researchers deal with similar (at least in the name) concepts. We are not here saying that we desire to

achieve an unification of all the agent-oriented design approaches since their number is per se a richness, but instead we

mean that a unique well defined meta-model including a set of definitions of its concepts will enable a deeper

understanding of the differences of all of these approaches and their integration.

There are several direct applications of meta-models. First, as already argued, meta-models can guide the development

process as they can be seen as templates of what a system model has to be. In the case of MAS, a meta-model specifies

what types of entities the developer has to look for: agents, goals, interactions, tasks, resources, etc. It also establishes

constraints on the relationships and use of those elements. Meta-models can also be seen as the specification of a

modelling language, and therefore they are fundamental in developing tools that can support the development process,

as it has been proposed in MESSAGE and implemented by INGENIAS [17].

In the scope of the AOSE TFG, similarly to the work that is going on within the FIPA Methodology TC1, meta-models

are also used to get a better understanding of the agent concepts as applied in different methodologies and to look for

some agreement in the main elements that can be used to specify a MAS.

During the Rome meeting several MAS meta-models were presented and a first proposal of unification, based on three

AO methodologies – ADELFE, Gaia and PASSI, was discussed. Nevertheless, more work had to be done during the

second meeting in order to continue the effort of unification and to make a further step towards a reference point for the

whole European agent community.

Several MAS meta-models were presented in Ljubljana to enrich the previous discussion, they included the MAS meta-

models of ADELFE presented by C. Bernon [4], INGENIAS presented by Jorge J. Gómez-Sanz [15], PASSI presented

by L. Sabatucci [13], RICA presented by J. Manuel Serrano [29] and Tropos presented by D. Bertolini [5]. Because

working on a unifying MAS meta-model was one of the main aims of the AOSE Technical Forum Group (TFG), all of

these talks will be more detailed in a dedicated section (the next one).

1 http://www.fipa.org/activities/methodology.html

 12

Finally, Zahia Guessoum [18], talked about an MDA-based approach for MAS meta-models and how to fill the gap

between existing MAS tools (such as the multi-agent platforms DIMA, Jade, MadKit or Zeus) and agent-oriented

methodologies or meta-models using the OMG’s MDA (Model Driven Architecture) approach. This approach consists

in separating the application logic (described in a PIM – Platform Independent Model) from the underlying technology

(described in a PSM – Platform Specific Model). She gave an overview of MetaDIMA, a MDA-based MAS

development process, that could be: define the PIMs and PSMs by analysing the multi-agent applications, define a

library of meta-models by identifying the concepts used and design the transformation rules to implement a meta-model

from its description. A first step has been done trying to define a PSM for the multi-agent tool DIMA and PIMs from

PASSI and Aalaadin/PASSI meta-models. Some rules were given to enable transformations from these PIMs towards

the DIMA-based PSM.

3.2 Review of MAS Meta-models

In this section we describe the details of the MAS meta-models discussed and presented during the Ljubljana meeting.

They became the basis for the construction of the proposed unified meta-model that is presented in the next section and

is the major outcome of this event.

3.2.1 The ADELFE MAS Meta-model

Figure 3-1. The MAS Meta-model adopted by ADELFE.

ADELFE [1][2] is a methodology devoted to the design of adaptive multi-agent systems (AMAS). According to this

approach, building a system which realises the right desired global function (which is functionally adequate) is achieved

by designing agents with a cooperation-driven social attitude.

An agent belonging to an AMAS ignores the global function of the system, only pursues a local goal and tries to always

keep cooperative relations with other agents. Such an agent is called a “Cooperative Agent” because its social attitude is

based on cooperation but its lifecycle is still a classical one. It consists in having perceptions, taking decisions and then

 13

doing actions (perceive-decide-act). Local cooperation rules enable the agent to detect and solve Non Cooperative

Situations (NCS) that play a fundamental part in the ADELFE design. These NCS are cooperation failures (e.g.,

cooperation protocol not obeyed, or unpredictable situations) and they are inconsistent with the cooperative social

attitude of a cooperative agent.

The MAS meta-model adopted for ADELFE [3] is therefore explained by the features such cooperative agents possess.

It tries to constrain the agent behaviour with a cooperative attitude by using local cooperation rules that an agent

observes and which enable it to detect and solve NCS of different kinds (such as incomprehension and uselessness). The

concept of environment is essential for MAS, agents are evolving in an environment which can be a physical one, made

up of elements of different kinds, or a social one, made up of other agents. An element composing an environment is a

specialisation of the UML Classifier, more especially an agent can be also viewed as such a specialisation. A

cooperative agent has interactions with its environment, it can receive information through perceptions and act on the

environment during its action phase. Interactions may use communications which can be done in a direct manner (by

exchanging messages, using AIPs to express the communication pattern, for instance) or an indirect one (environment-

mediated). An agent has a representation of the world in terms of beliefs about other agents, the configuration of the

physical environment around it and the agent itself. The agent uses these representations to determine its behaviour. A

representation can be shared by different agents. If an agent has representations that may evolve, they can be expressed

using an adaptive multi-agent system.

On the left part of Figure 3-1, we find Skill, Aptitude and Characteristic; skills represent the specific knowledge that

enable each agent to realise its own partial function in the world. If these skills have to evolve, they may also be

implemented as an AMAS. Characteristics are intrinsic or physical properties of the agent while aptitudes relate the

agent’s capability of reasoning both about knowledge and beliefs it owns.

3.2.2 Gaia

Figure 3-2. The MAS Meta-model adopted by Gaia.

 14

The Gaia methodology evolved from an initial version [31], mainly focused on the design of handle small-scale, closed

agent-based systems to the new one [32] based on the key consideration that an organization is more than simply a

collection of roles and agents. Therefore the main difference is that it has been designed in order to explicitly model and

represent the social aspects of open agent systems, with particular attention to the social goals, social tasks or

organizational rules.

Having a deeper look at the MAS meta-model for the second, extended version of Gaia (Figure 3-2) [3] we notice that

the basic building blocks of the former version of Gaia – namely agents, roles, activities, services, and protocols – are

still present but now they are located in the context of a specific environment and of a specific organization.

The Gaia agent is an entity that can play one or more roles; a role is a specific behaviour to be played by an agent,

defined in terms of permission, responsibilities, and activities, and of its interactions with other roles. In playing a role,

an agent actualizes its behaviour in terms of services that can be activated accordingly to some specific pre- and post-

conditions.

The environment abstraction is a key element in Gaia MAS meta-model; it explicitly specifies all the entities and

resources a multi-agent system may interact with, restricting the interactions by means of the permitted actions.

As already said, the explicit representation of the agent organization is the main improvement in the Gaia extension

presented in [32], this is mainly achieved by introducing the organizational rules and the organization structure.

Organizational rules, specify some constraints that the organisation has to observe; these constraints may be global,

affecting the behaviour of the society as a whole, or concerning only specific roles or protocols while organisation

structure establishes the overall architecture of the system, that is the position of each role in the organisation and its

relationship with other roles. Organizational rules and organizational structures are strictly related, in that organizational

rules may help designers in the identification of the organizational structures that more naturally suit these rules.

 15

3.2.3 INGENIAS

Figure 3-3. Summary of INGENIAS MAS meta-model.

INGENIAS [23] is both a methodology and a set of tools for development of multi-agent systems (MAS). As a

methodology, it tries to integrate results from other proposals and considers the MAS from five complementary

viewpoints: organization, agent, tasks/goals, interactions, and environment. It is supported by a set of tools for

modelling (graphical editor), documentation and code generation (for different target platforms). INGENIAS adopts the

definition of meta-models for MAS from MESSAGE [10], but it refines and extends them, and builds support tools for

all stages of the development cycle, from requirements elicitation to implementation and testing.

INGENIAS considers the specification of a MAS from five viewpoints (Figure 3-3):

1. Organization viewpoint. Describes how system components (agents, roles, resources, and applications) are

grouped together, which tasks are executed in common, which goals they share, and what constraints exist in

the interaction among agents. These constraints are expressed in form of subordination and client-server

relationships.

An Organization is an Autonomous Entity, which pursues a Goal, and can be structured in Groups (structural

entities), and contains Workflows (dynamics of the organization processes). A Group may consist of Roles,

Agents, Resources, Applications. Workflows define precedence relationships among Tasks, the Resources

assigned to Tasks and their responsible (in terms of Roles or Agents).

2. Agent viewpoint. Describes single agents, their tasks, goals, initial mental state, and played roles. Moreover,

agent models are used to describe intermediate states of agents. These states are presented using goals, facts,

 16

tasks, or any other system entity that helps in its state description. This way, an agent model could represent in

what state should be an agent that starts an interaction.

An Agent is also an Autonomous Entity, which plays some Roles and pursues Goals. It has a Mental State,

which consists of Mental Entities, such as Goals, Facts, Beliefs. There is a Mental State Manager that provides

the mechanisms for creating, deleting, modifying mental state entities, and a Mental State Processor that

determines how the Mental State evolves and what actions an agent should try.

3. Interaction viewpoint. Describes how interaction among agents takes place. Each interaction declaration

includes involved actors, goals pursued by the interaction, and a description of the protocol that follows the

interaction.

In INGENIAS, an Interaction is initiated by an Agent, with some Goal (intention). Several Agents can

participate in an Interaction. Several formalisms can be used to describe an interaction, such as UML

collaboration diagrams, AUML and GRASIA diagrams.

4. Tasks and Goals viewpoint. Describes relationships among goals and tasks, goal structures, and task structures.

It is used also to express which are the inputs and outputs of the tasks and what are their effects on the

environment or an agent's mental state.

5. Environment viewpoint. Defines agent's perception in terms of existing elements of the system. It also

identifies system resources and who is responsible of their management.

INGENIAS viewpoints can be complemented with extensions of known notations, such as UML use case diagrams or

UML collaboration diagrams. These extensions consist of relating INGENIAS elements with UML entities, for instance

use cases with interactions.

Developers should be aware that there are elements that may appear in different viewpoints. This repetition of entities

across different viewpoints induces dependencies among them. For instance, the same task entity can appear in an agent

view, a task/goal view, an organization view, and an interaction view. Therefore, to completely define a task, creating

different diagrams for different views is required. If the developer fails to create all of these diagrams, the system

specification may be incomplete. On the other hand, if the developer creates all required diagrams, but in an

organization view a task is assigned to a role and in an agent view it is assigned to another, different role, it could be

interpreted that the specification is not consistent. These constraints are checked by the INGENIAS Development Kit

(IDK, available at http://ingenias.sourceforge.net), whose base is the INGENIAS meta-model specification.

 17

3.2.4 PASSI

Figure 3-4. The MAS meta-model adopted by PASSI

PASSI (Process for Agent Societies Specification and Implementation) [14][9] is an iterative-incremental process for

designing multi-agent systems starting from functional requirements that adopts largely diffused standards like UML

(as the modelling language, although extended to fit the needs of agents design) and FIPA (as the agent platform).

PASSI covers all the phases from requirements analysis to coding and testing with a specific attention for the

automation of as many activities as possible with the support of PTK (PASSI ToolKit) a specifically conceived design

tool.

The PASSI MAS meta-model [3] is organized in three different domains: the Problem Domain (where requirements are

captured), the Agency Domain that represents the transition from problem-related concepts to the corresponding agent

solution (that is a logical abstraction) and the Solution Domain (where the implemented system will be deployed).

The Problem Domain (Figure 3-4) deals with the user's problem in terms of scenarios, requirements, ontology and

resources; scenarios describe a sequence of interactions among actors and the system. Requirements are represented

with conventional use case diagrams.

The system operating environment is depicted in terms of concepts (categories of the domain), actions (performed in the

domain and effecting the status of concepts) and predicates (asserting something about a portion of the domain

elements), the environment also includes resources that can be accessed by agents.

The Agency Domain includes the agent that is the real centre of this part of the model; each PASSI agent is responsible

for accomplishing some functionalities descending from the requirements of the Problem Domain. Each agent during its

life can plays some roles; these are portions of the agent social behaviour characterized by some specificity such as a

goal, or providing a functionality/service and in so doing it can also access some resources. The Service component

represents the service provided by a role in terms of a set of functionalities (including pre- and post-conditions as well

Solution Domain

Agency Domain
Solution Domain

Agency Domain

Agency Domain

Problem Domain

Agency Domain

Problem Domain

 18

as many other details mostly coming from the OWL-S specifications), and can be required by other agents to reach their

goals. Agents could use portions of behaviour (called tasks) or communications to actuate the role’s aims.

In PASSI, the term task is used with the significance of atomic part of the overall agent behaviour and, therefore, an

agent can accomplishing its duties by differently composing the set of its own tasks.

A PASSI communication is composed of one or more messages expressed in message content language and following

an agent interaction protocol (AIP) composed of performatives (the predefined semantic of the message content [26]).

This structure is the consequence of the choice of adopting FIPA specifications for the systems to be designed with

PASSI.

The Implementation Domain describes the structure of the code solution in the chosen FIPA-compliant implementation

platforms and it includes three elements: (i) the FIPA-Platform Agent (the implementation class for the agent entity

represented in the Agency Domain); (ii) the FIPA-Platform Task (the implementation structure available for the agent's

Task); (iii) the ServiceDescription component that is the implementation-level description (for instance an OWL-S file)

of each service already specified in the Agent Domain. This description is also useful to enable the system openness and

the reusability of its components (agents).

3.2.5 RICA

Figure 3-5. The MAS meta-model adopted by RICA

The RICA (Role/Interaction/Communicative Action) approach [27] integrates relevant aspects of Agent

Communication Languages (ACL) and Organisational Models and it is itself based on the concepts of Communicative

Roles and Interactions. RICA describes a conceptual framework that guides the designer from the specifications of the

organisational model of the agent society to the definition of the Agent Communication Languages of the multi-agent

system.

The organisational model is specified in terms of entities such as agents, roles and interactions, while the specification

of the ACL is based on the definition of communicative actions and protocols.

RICA is essentially made of two major components: a meta-model (defining the language used to specify the

organisational and communicative entities), and a specification of the structure and behaviour of these entities. The

RICA MAS meta-model [19] [27] is organized in three different layers: the first one deals with the generic elements of

 19

the system (agent, role and action types); the second one includes social concepts like norms, and institutions; the last

one is devoted to agents’ interactions via communications.

More in details, in Figure 3-5, we can see that the RICA agent can play several roles; some roles are called ‘private’

thus meaning that they do not require interactions with other agents but only with the environment. In playing its roles

the agent performs some actions characterized by inputs and outputs parameters.

In the social layer, generic role types are specialized in social and interactive role types. Social role types participate in

scenes (represented by Scene Type in the model) that can be regarded as meeting points used to study interactions.

Scene Types are used to build Institution Types that are regulated by Norms. Interactive Role Types regards the agent’s

social interactions (represented by the Social Interaction Type element) where each agent acts as a participant.

In the third layer, we can find the specialization of some elements of the previous layer according to a communicative

direction; this produces such elements as: Communicative Interaction Type, Communicative Role Type,

Communicative Action Type and Protocol Type.

3.2.6 Tropos

Figure 3-6. The MAS meta-model adopted by Tropos

Tropos [11][7] is an incremental design methodology that aims at modelling both the multi-agent system and its

environment . The process covers the early phases of the analysis where it is characterised by the adoption of a goal-

based approach.

From the beginning (Early and Late Requirements analysis), the designer deals with domain stakeholders (modelled as

social actors) and the goals they want to reach, resources they can share and plans they may perform. Actors are related

by mutual and intentional dependencies that are consequences of their goals. In the next phase (Architectural Design),

actors are mapped to a set of software agents while in the final Detailed Design, agents capabilities and interactions are

defined in details.

Differently from the other MAS meta-models, the Tropos one introduces the concept of actor seen as a generalisation of

the agent [6] (Figure 3-6). This is the direct consequence of the early requirements phase, where actors are initially

identified and then translated to possible agents during the architectural design. Tropos role is an abstract

characterisation of the behaviour of a social actor and a set of roles compose a position. The concept of position occurs

in the architectural design phase, where agents are used to occupy previously identified positions.

More in details, we can say that in Tropos, an actor [6] models an entity with strategic goals and intentionality. An actor

can represent a physical or a software agent as well as a role or a position. Goals (representing actors' strategic interests)

 20

can be of two different kinds: hard-goals and soft-goals, the latter have no specific criteria for deciding whether they are

satisfied or not and are often used to model non-functional requirements. An actor can achieve his goals by adopting a

Plan and/or using environment Resources. Actors can have a Dependency on one another in order to satisfy their own

goal or access a resource and their goals can be decomposed in terms of sub-goals that can be related with AND/OR

relationships.

There are other two important elements of the Tropos meta-model: the Means/end Analysis (reporting that a means can

satisfy a goal by using plans, resources or other goals) and the Contribution (showing that a goal, plan or resource can

contribute to the achievement of some objective).

3.2.7 A First Proposal of a Unifying MAS Meta-model

Figure 3-7. A first proposal of unifying MAS meta-model

Starting from the analysis of ADELFE, Gaia and PASSI MAS meta-models, in [3] there is a first proposal of a unifying

MAS meta-model, which is presented in Figure 3-7. This metamodel is guided by the aim of creating societies without

(ADELFE) or with predefined organizations, in accordance with the growing interest for open systems in which an

organization cannot always be given during the design phase. To achieve this result the generic agent is enriched with

all the properties an agent may have, being cooperative or not. Furthermore, this generic agent is composed of Gaia-like

roles complemented by some PASSI features (tasks and a FIPA-compliant communication structure). This generic

agent has two choices: belonging to an organization or following cooperation rules. Agents are implemented (at code

level) in the PASSI way. The proposed meta-model is also characterized by the possibility of identifying in it the three

domains (problem, agency, solution) discussed in the PASSI approach.

 21

From the experience of merging these three models we learnt that their composition adds some significant

improvements to the new structure since they complement each other in several aspects, for example the ADELFE

representation that the agent has of its environment, the Gaia environment and the PASSI ontology, naturally relate by

representing the fact that an agent has a representation (possibly affected by errors or uncertainty) of the environment

expressed in terms of an ontological model of it.

3.2.8 A Comparison of MAS Meta-Models

The MAS meta-models presented in the previous subsections will now be compared with the precise aim of identifying

their commonalities as a first step towards a common agreed part of a unified MAS Meta-Model (MMM), and studying

their distinctive differences (that can positively enrich the collection of common elements by introducing ideas coming

from just one or a few approaches).

Meta-Model Common components Peculiarities

ADELFE Agent (cooperative), (almost)

FIPA communications

structure

Environment, Cooperation rules, Non cooperative

situations (NCS), Skill, Aptitude, Characteristic

Gaia Agent (type), Role, (almost)

FIPA communications

structure

Organization, Service, Resource, Environment,

Organizational rules

INGENIAS Agent, Role, Task, Interaction Goal, Mental State, Organization, Group

PASSI Agent, Role, Task, FIPA

communications structure

Ontology, Resources, Requirements (functional and

non-functional), Implementation Platform agent and

task, Service, ServiceDescription

RICA Agent (type), Role (type),

Protocol (FIPA

communications structure)

Norm, Institution type, Social/Interactive/

Communicative Role Type, Action Type,

Social/Communicative Action Type

Tropos Agent, Role, Plan (similar to a

task [6])

Goals, Resources, Dependency

Unifying MMM Agent, Role, Task, FIPA

communications structure

Service, Environment, Characteristic, Skill, Aptitude,

Resource, Ontology

Table 3-1. A comparison of the discussed MAS meta-models from the structural point of view

With regards to this comparison it is worth to note that in their MMM unification proposal (there the term unifying was

used to justify the intention of finding a compromise that could summarize the three original MMMs) the authors of [3]

proposed a comparison of the different MMMs based on some specific aspects classified according to four different

criteria:

• Agent structure: this criterion deals with how each of the meta-models represents its core elements (commonly

agents, roles, tasks).

• Agent interactions: how agents of different meta-models are supposed to interact using communications or the

environment.

 22

• Agent society and organizational structure: different MMMs differently approach the modelling of agents

aggregations and cooperation structures.

• Agent implementation: this deals with the way the code-level structure of the agent system is specified.

In this work we are now dealing with a slight different problem: we are aiming at identifying a unified MAS meta-

model, that could be a common reference point for the AgentLink AOSE community; this means that our attention is

initially directed towards the identification of commonalities among the different works we examined; the appreciation

of solutions that are not very diffused among the different MMMs will be part of a second step where specific

contributions will be considered to enrich the first-release unified proposal. Because of this different aim, we now prefer

to adopt a different comparison method that transversally cuts the previously listed criteria. In Table 3-1 we reported a

list of common and different components of the discussed MMMs.

Elements that can easily be identified as common points of the different MAS meta-models are:

• Agent: it is present in all the methodologies. Gaia and RICA refer to it as Agent Type.

• Role: all methodologies but ADELFE includes the Role component in their MMMs.

• Task: it is present in INGENIAS, PASSI, and Tropos (with a slightly different meaning: Plan [6])

• FIPA communications structure: with this we mean a collection of elements representing agents

communications as based on messages and following some specific Agent Interaction Protocol (AIP). Several

methodologies have a good support for this kind of interaction means: ADELFE, Gaia, INGENIAS, PASSI,

and RICA.

From the analysis of the most characterising non-common elements of the studied MMMs we can see:

• Environment: it is present in ADELFE, INGENIAS, Gaia and the Unifying MMM. In ADELFE it is seen as a

possible communication way for agents, in INGENIAS as application interfaces and resources.

• Organization (and social structures): in Gaia agents collaborate within organizations that are governed by

Organizational Rules (a similar structure can be found in RICA). Organizations in INGENIAS can be

structured in Groups and its dynamics is described in terms of Workflows.

• Cooperation related elements: ADELFE has a deep structure about cooperation, it includes: Cooperation Rules

and a hierarchy of Non Cooperative Situations (NCS); RICA has Social Roles and Actions; in INGENIAS

organizations contain Workflows describing the collaborative work.

• Mental attitudes and states of agent: ADELFE agent is modelled in terms of Skills, Aptitudes and

Characteristics; INGENIAS agent is intentional, and has a Mental State (Goals, Facts, Beliefs), a Mental State

Manager and a Mental State Processor; PASSI agent knowledge is based on an extensive model of domain

ontology; Tropos methodology is based on the concept of goal as a problem decomposition entity and each

agent acts to reach the goals it has been assigned to.

• Services and Resources: Gaia and PASSI define a similar concept of Service (PASSI includes a

ServiceDescription too as an implementation level transposition of the agent Service). Resources are modelled

in Gaia, INGENIAS, PASSI and Tropos (in this latter with more details).

The proposed analysis will directly influence the adoption of each single element of the unified MAS meta-model

described in the next section and the different meanings that each methodology gives to concepts that are similar in their

 23

name become a challenge for the definition of the glossary of terms that will complements this unified MAS meta-

model.

3.3 Towards a Unified MAS Meta-model: the AgentLink AOSE TFG Proposal

In this section we will describe the process that brought us to identify the AgentLink proposal of MMM. The work

included the identification of a core subset of MAS meta-model components and the clear definition of the meaning of

these components by establishing a sort of glossary. Then, defining the relationships between those components we

completed the MAS meta-model.

The different talks given during the different meetings of this TFG, as well as the work done in the FIPA Methodology

and Modelling TCs, constitute the background of this identification work:

• Existing methodologies for which authors are involved in this TFG are: ADELFE, Gaia, INGENIAS, PASSI,

Tropos and RICA, and are presented above,

• The first reflection on modelling structures that the FIPA Modelling TC proposed [22],

• And an attempt for a unifying meta-model done in [3].

The second step would be to agree on the components that would be identified and included in a common MAS meta-

model:

• In a first live phase, what a MAS meta-model should include will be defined with the definition of concepts like

agent, role, task (or plan), communication (message, protocol, performative, etc.),

• In a second time, after having launched a discussion during the meeting, concepts such as environment, goal,

organisation (society, group, institution, etc.), resource, service, would be discussed off-line,

• Other components such as ontology, dependency, action, mental states, organisation rules, norms, skills, aptitudes,

characteristics (or similar BDI concepts) could be studied later on.

3.3.1 Identifying the Basic Components

3.3.1.1 Defining “Agent”

The starting point for the definition of “agent” was the definition given by the FIPA Methodology TC2. The aim of this

discussion was to enumerate the minimal properties an entity must have to be considered as an agent. The essential

properties of an agent are its capabilities to act, its autonomy, its communication with others (because the notion of

collective is important in many approaches) by interacting, its perception of its environment. Other properties were

given, such as proactivity, reactivity, ability to move, or ability to reproduce itself, what could lead to defining different

kinds of agents, for instance cognitive or reactive ones. But other agents exist and they are neither cognitive nor reactive

or may be considered as a mix of these two types. A double inheritance from “agent” in the MAS meta-model could

solve the problem but since it was not mandatory to be exhaustive and define all kinds of agents, participants finally

agreed on this minimal definition for an agent as an entity:

• which is capable of acting in its environment,

2 http://www.pa.icar.cnr.it/~cossentino/FIPAmeth/glossary.htm

 24

• which is autonomous: this means that an agent has control over its own behaviour based on internal or external

stimuli,

• which can communicate with other agents,

• and which is capable of perceiving its environment.

Some features such as ability to move or reproduce were not considered as mandatory and concepts like skills or

capabilities, for example, are included in the fact that an agent is able to act. Furthermore since this definition of a

“generic” agent is sufficient to define a reactive agent (to be reactive is a specialisation of being capable of acting in an

environment), having a definition for this latter concept and differentiate the cognitive nature of an agent from the

reactive one was not considered as useful at this time. A cognitive agent will be considered as an agent:

• which is proactive: this means, its behaviour is driven by a set of tendencies, in the form of an individual objective,

or a satisfaction/survival function which it tries to optimise, or desire, or emotion,

• and which uses a representation of its environment.

3.3.1.2 Defining “Role”

Starting from the definition used in PASSI, a role has been defined as “an abstraction of a portion of a social behaviour

of an agent”.

3.3.1.3 Defining “Task”

The discussion for defining the concept of “task” was based on the FIPA TC Modelling definition and the one PASSI

gives. For FIPA TC Modelling, a task is a part of the agent behaviour and a behaviour is the observable effects of an

operation or an event, including the results, and it specifies the computation that generates the effect of the behavioural

features. For PASSI, a task specifies the computation that generates the effect of the behavioural features.

To be general enough, the AOSE TFG participants agreed that a task “specifies a (set of) activity(ies) that generates

some effects”.

A role uses observable and not observable tasks, being characterised by the first ones since they are visible; an agent

could also do something that is not a part of playing a role.

3.3.1.4 Defining “Environment”

The definition of the Environment concept involves several aspects (it is in fact the central topic of another AgentLink

III TFG, the Environment TFG) and raises a great number of questions:

1. PASSI enlarges the software engineering dichotomy about problem and solution domains by introducing the

intermediate agency domain. In the same way could it be possible to speak about a problem environment (in

which the system exists) an agency environment where agents live and a solution environment where object-

oriented implementations of agents are deployed?

2. Should the environment be characterized in a way similar to the one Russell and Norvig did in their book [25],

in which an environment can be accessible or not, dynamic or not, deterministic or not, continuous or not?

3. With regards to the solution domain, could we speak about a “system outer environment”, a “system inner

environment” and a “controllable or not environment”?

 25

Unfortunately the scope of this TFG was too narrow to have a discussion about what is really an environment and we

decided to limit our work to the definition of an environment as “something that an agent can interact with and/or

perceive”. This definition goes in the same direction of the one given by the FIPA TC Methodology in which the

environment represents all that is external to the agent, and that includes the social environment and the physical

environment.

3.3.1.5 Defining “Organisation”

In Gaia, an organisation aggregates agents and in INGENIAS, an organisation is an autonomous entity, with a purpose,

the organizational structure is defined with Groups.

Organisations can be given by roles (for example, in a soccer match where there is a goalkeeper) but they can also

emerge from interactions between agents (for example, in adaptive MAS for which ADELFE is specialised). The

discussion concerned the nature of the link between “agent” and “organisation” because both an agent and an

organisation can be seen as aggregations of roles. The definition for “organisation” was not completed during the

meeting, it is just said as being composed of roles.

3.3.2 The Unified MAS Meta-model Proposal

With the above reported definition of the concepts , the relationships among them could be drawn and in this way it has

been possible to build a first draft of a unified MAS meta-model on which AOSE TFG participants agreed and which is

shown in Figure 3-8.

Obviously, the central concept is a generic agent from which a cognitive agent can be derived. An agent is situated in an

environment for which it is able to build representations if it possesses cognitive capabilities. An agent can also be part

of the environment of other agents, that explains the bidirectional link between these two concepts. An agent

communicates with others and to communicate with an intended purpose can use FIPA-compliant conversations. A role

is related to an agent (agents play roles); some agents can use tasks without playing any role and therefore it becomes

necessary to relate “agent” to “task” with a 0..n cardinality. Finally, following the previous discussion on the definition

of “organisation”, an organisation may be composed of agents but also of roles depending on the concerned

methodology. This is expressed on the MAS meta-model by following navigation links from “agent” to “organisation”

via “role”.

 26

Figure 3-8. The AgentLink AOSE TFG MAS meta-model proposal

4 TFG 3 - Budapest Event
The third AOSE TFG meeting was aimed to complete open activities from the previous two meetings and was enriched

by the participation of invited speakers from Australia and USA, who introduced new arguments in the discussion. The

main topics of this meeting (apart of talks) were the refinement of the Ljubljana MAS meta-model and the evaluation of

several AOSE methodologies through a questionnaire-based approach.

The meeting was organized in three sessions:

1. Talks about agent-related topics from outstanding researchers in the area.

2. Refinement of the Ljubljana MAS meta-model.

3. Methodologies evaluation: results of the questionnaires, comparison and debate.

There were several talks during the first day. In the first one, G. Fortino presented an agent-based approach for the

management of distributed workflows. Then L. Padgham presented the Prometheus-ROADMAP methodology. This

was followed with a description, by B. Henderson-Sellers, of the FAME project, which deals with a method engineering

framework founded on a powertype-based metamodel. After that, J. Odell reported about his most recent industrial

experiences on the use of AUML. A. Garcia presented his work on the introduction of aspects in MAS development and

discussed both lessons learned and open issues. A. Molesini talked about the importance and role of artifacts in Agent-

Oriented Software Engineering in general and more specifically in the SODA methodology. Finally, M. Cossentino

reported about the experience in the FIPA Methodology Technical Committee where the method engineering paradigm

has been adopted in order to converge towards an agent-oriented design methodology standardization proposal.

The second meeting day was divided into two sessions. In the first one, there has been a discussion about the

introduction of new elements in the Ljubljana MAS meta-model. The work started from a proposal by P. Giorgini and

M. Cossentino about the introduction of the Goal element. The outcome was a refinement in the definition of the Task

element (initially introduced in the Ljubljana meeting and now defined as: “the activity (set of activities) motivated by

some coherent reason”), a definition of Goal as “a specification of a state of the world that may be achieved or

 27

maintained by the agent”. An initial definition was drafted for Plan as follows: “A plan specifies how a goal can be

achieved”. We concluded this session with the agreement that the MAS meta-model is worth of further work and we

plan to do it by using a mailing list.

The session about methodologies evaluation was characterized by a very active debate. The discussion mainly was

about a comparison presented by Juan Pavón of seven different methodologies on the basis of a questionnaire (that was

made available through the AOSE TFG website). The questionnaire was adapted from a paper of Khanh Hoa Dam and

Michael Winikoff presented at the AOIS’03 workshop held in Melbourne [34]. The main comments that should be

reported from this discussion regard the impact on the evaluation results of the relationship of people who compiled the

questionnaire with the methodology they evaluated. Judgements from users of methodologies were often more critical

about them (as it was expected); as a consequence, we agreed that the lack of user-filled questionnaire for some

methodologies partially limited the goodness of the presented results, but the experience was useful to improve the

questionnaire in future editions. This kind of questionnaire will be one of the main tools for an AOSE evaluation

framework, which would also include case studies and specific metrics. We discussed how to contribute towards the

definition and application of such an evaluation framework.

4.1 Talks on Agent-Oriented Software Engineering Issues

The session has been opened by G. Fortino who presented an agent-based approach for the management of distributed

workflows. In this work, he proposed an approach covering modelling and enactment of WFMSs (Workflow

Management System) so exploiting the enormous potential of agents for supporting the development of complex

systems from their modelling to their implementation. The modelling phase is enabled by a MAS which can be

instantiated by a workflow schema based on the Workflow Patterns already presented in literature. The enactment phase

is supported by an agent-based framework designed on the basis of the MAS meta-model so allowing a seamless

transition from modelling to enactment of distributed workflows. During the talk the structural and behavioural MAS

meta-models for both flat and hierarchical workflow management systems were presented. The implementation of this

framework is in progress using the JADE development platform.

Lin Padgham presented a methodological approach for development of MAS by integrating the Prometheus and

ROADMAP methodologies. Prometheus is an experimented methodology that addresses several phases of the

development lifecycle, especially system specification (by identification of requirements and the analysis of system

goals), architectural design (by identification of agents and interactions as conversation protocols, and providing a

system overview) and detailed design (by definition of process diagrams, agent capabilities, and plan types, close to

implementation). ROADMAP is more abstract and high level than Prometheus, with more focus in requirements

analysis. It mainly considers the definition of models for goals, roles, agents, and interactions. This can integrate with

Prometheus, although a common notation is still under study. A new version of the Prometheus Design Tool (PDT) has

been recently released in September, and plans exist to integrate it with Eclipse.

Brian Henderson-Sellers presented the FAME project, which intends to create an agent-oriented, method-engineering

based approach to software development. This considers both process and product aspects, including an agent-oriented

modelling language, called FAML. As a method-engineering based approach, the project intends to incorporate

fragments of several methodologies. It starts with the OPF repository, whose fragments are being translated to be

SEMDM-compatible, and is evaluating Tropos, Prometheus, MaSE, Gaia, Cassiopeia, MAS-CommonKADS,

AgentFactory, CAMLE and PASSI for new method fragments. As an example, it has been shown how to enhance

 28

Prometheus by Tropos. Concerning the activity of AOSE TFG on MAS meta-models, the FAML proposal should be

considered as it structures design and runtime concerns for specifying agent external and internal issues.

James Odell presented recent industrial experiences in the use of AUML as a modelling language. Basically, agent-

related concepts appear smoothly in existing software modelling practices, and provide some added value, both from

the point of view of the customer (for instance, goals in requirements analysis are explicit, which can be good for

managers to understand the software process) and the developer (for instance, as a way to specify and understand high-

level processes).

Alessandro Garcia discussed how Aspect-Oriented Software Development (AOSD) can be useful when developing

MAS. This has been shown for learning aspects, which could be separated from other agent concerns. And this can be

applied to other aspects, such as agent mobility or collaboration among agents. One of the main issues to work on is the

definition and implementation of more powerful composition rules that facilitate the combination of different aspects.

An interesting conclusion is that the study of aspects can improve the understanding of AOSE abstractions (autonomy,

roles, coordination, mobility, etc.) and provide a common framework for the research of effective composition rules and

mechanisms in MAS.

Ambra Molesini presented some considerations about the role of artefacts in Agent-Oriented Software Engineering;

with the term artefact, A. Molesini refers to objects or tools that agents share and use to support their activities and

achieve their objectives; an artefact exposes usage interface, operating instructions and a functionality description. An

application of the effect that artefact design has on methodologies has been presented by extending the SODA design

process. SODA concentrates on inter-agent issues, like the engineering of societies and infrastructure and one of its

three models deals with environment (the other two models are agent and society) that can be considered the base class

of all artefacts from an ontological point of view. Several artefact kinds have been introduced in SODA: the Individual

artefact in the Agent model, social rules and social artefacts in the Society model and finally resource and social

artefacts in the Environment model. The study is deepened by the application of zooming among different abstraction

layers of artefacts.

M. Cossentino in his talk reported the experience of the FIPA Technical Committee (TC) Methodology. While FIPA is

moving in the IEEE organization, all of its committees are being restructured and therefore it is the right time for a

debate about the possibilities of standardization in AOSE and specifically in design methodologies. The approach

followed by this group was based on the consideration that it makes no sense to define one unique methodology and to

force everyone to adopt it in order to be “FIPA compliant”. The proposed solution is known in classical software

engineering as (situational) method engineering. According to this approach, the development methodology is built by

assembling pieces of existing processes (called method fragments) from a repository of methods. In this way each

designer can obtain the best process for his/hers specific needs. The TC Methodology during its activity produced a

definition of method fragment and a collection of fragments extracted from several well-known methodologies.

Experiments of methodologies composition using this approach are ongoing and are already published in papers from

members of the TC.

Each talk has been followed by an active debate that involved all the participants in a very stimulating experience

exchange.

4.2 MAS Meta-models (MMM)

At the beginning of this discussion, a debate on the scope of the MAS meta-model showed that in the current state-of-

the-art it is still difficult to find a general agreement on the use of agent-related concepts. In fact, this was already

 29

remarked in the first AOSE TFG meeting, and for this reason we considered relevant the work on this task. During the

second AOSE TFG meeting held in Ljubljana there was some agreement on a reduced meta-model and a set of basic

definitions of main entities. Here the purpose was to propose extensions and refinement to that meta-model and review

the definitions.

The work started from a proposal by P. Giorgini and M. Cossentino about the introduction of the Goal element. The

outcome was a refinement in the definition of the Task element (initially introduced in the Ljubljana meeting and now

defined as: “the activity (set of activities) motivated by some coherent reason”), a definition of Goal as “a specification

of a state of the world that may be achieved or maintained by the agent”. An initial definition was drafted for Plan as

follows: “A plan specifies how a goal can be achieved”. The complete meta-model as resulting from the initial

Ljubljana proposal and following refinement is reported in Figure 4-1 (definitions of its elements in Table 1).

At the end of this session, which was finally quite short taking into account its purpose and the diversity of points of

view from participants, there was agreement on the consideration that the MAS meta-model is worth of further work. It

is expected to continue this by using a mailing list, moderated by Massimo Cossentino, with interested people who

should contact him to be included in the list.

Figure 4-1. The MAS meta-model defined by the AL3-AOSE TFG as an improvement to the result of the

previous meeting

 30

Element Definition Example
Agent An agent is an entity:

- which is capable of acting in its environment
- which is autonomous: this means that an agents

has control over its own behaviour based on its
internal or external stimuli

- which can communicate with other agents
- which is capable of perceiving its environment

Cognitive Agent A cognitive agent is an agent:
- which is proactive: this means an agent behaviour

is driven by a set of tendencies (in the form of
individual objective, or a satisfaction/survival
function which it tries to optimise, or desire, or
emotion, …)

- which uses a representation of its environment

Role An abstraction of a portion of the social behaviour of an
agent. It can be characterized by a goal, accomplishing
some functionalities/providing a service.

Task A task specifies the activity (set of activities) motivated by
some coherent reason

Environment Environment is something an agent can interact with
and/or perceive

Organization It is composed of roles3
Goal A goal is a specification of a state of the world that may be

achieved or maintained
A goal is a situation, but not all
situations are goals. A set of states
of the world is generally not a goal
unless there is an agent committed
to achieve/maintain this set of
states

Plan A plan specifies how a goal can be achieved3
Table 1. Definitions of the elements composing the MAS meta-model of Figure 4-1.

4.3 Methodologies Evaluation

This session was organized around the review of the results of the methodology evaluation questionnaire prepared and

distributed by Massimo Cossentino, as an extension of a proposal by Khanh Hoa Dam and Michael Winikoff presented

at the AOIS'03 workshop held in Melbourne [34]. This review should serve to define a framework for evaluation of

agent-oriented methodologies. Such a framework would be useful in several respects, to clarify AOSE concepts, to

identify and integrate fragments, and to promote AOSE support tools.

The questionnaire assesses an AOSE methodology against a range of criteria concerning concepts and properties,

modelling, process, and pragmatics. Several methodologies were evaluated: ADELFE, Gaia, INGENIAS, OPF, PASSI,

Prometheus, and Tropos. From the experience in the filling and comparison of questionnaires we can see that it fulfils

most of the issues to be considered when evaluating a methodology. However, some degree of subjectivity in many

questions and some divergence in the understanding of some, motivate that the questionnaire should be refined, and

probably slightly re-structured. Also, more objective metrics should be defined (although this is a tough issue).

Additionally, some standard case studies should be useful to compare the benefits of using different methodology

fragments in the development. With this purpose, the interest of having a web site to continue this activity was

considered.

Results of questionnaires are compared in tables from Table 3-1 to Table 4-7.

3 To be further refined

 31

Concept/
Property

ADELFE Gaia INGENIAS OPF PASSI Prometheus Tropos

Autonomy H H H H H/H/M H L

Mental attitudes L N H H L/L/M M M

Proactiveness M L H H H/M/H H N
Reactiveness H L H H H/H/H H N
Concurrency H M H L H/H/M H L
Teamwork /roles L H H H M/H/H L M

Cooperation
model

AMAS th. Teamwor
k

ALL ALL Task del./
Teamwork

none Negotiation/
Task del.

Protocols support H H H H H/M/H H N
Communication
modes

ALL Async
mess.

ALL ALL Direct N

Communication
language

ALL ACL like ALL ALL Speech
acts

messages

Situatedness H H H H H/M/M H H

Environment type All episodic Dynamic
Conti-
nuous

All discrete ALL ALL ALL Inacc., Non
episodic,
Dynam.

Concept/Property Adelfe Gaia Ingenias OPF PASSI Prometheus TROPOS

Other agent
features

— Opennes Opennes Opennes Mobility,
openness,
security

Plans, agent
decisions

Security,
Trust,

Delegation,
Ownership,

Dependency,
Provision

Non supported
features

— — Security &
Mobility (not

explicitly)

Security
&

Mobility
(on going

work)

Complex
design-

time social
organiza-

tions

Security &
Mobility

Dynamic
Behavior of

Agent

Clear concepts A A SA SA SA/N/N A A

Overloaded
concepts

N D D SD D/D/N D N

More Agent-
oriented than OO

A SA SA both SA/A/A SA SA

(Main) Supported
agents

Cooperative BDI (mainly) BDI
(mainly)

Mainly:
State-based,

rational,
reactive

ALL BDI,
Rational

Society of agents
modelling

No SA SA (on going
work)

A/-/- No A

Society structure - - Groups/WF - p2p,
simple

hierarchies,
holons

- Agent Society
Pattern, such

as Broker,
Mediated,

Matchmaker
Table 4-1. Concepts/properties-based comparison of methodologies. Keys: N: None, L: Low, M: Medium, H:

High, SD: Strongly Disagree, D: Disagree, N: Neutral, A: Agree, SA: Strongly Agree. For PASSI: Creator/PhD
Students/Grad. Stud.

 32

Notation ADELFE Gaia INGENIAS OPF PASSI Prometheus Tropos

Support for static
(structure) and dynamic
(processing) aspects

SA A SA — SA/A/A SA D

Symbols and syntax
well defined

A N SA — A/A/D A N

Well defined semantics A D SA — A/N/D A A

Clear notation A A N — A/A/N A N

Easy to use notation A A SA — A/A/N A SA

Easy to learn notation N SA A — N/N/N NA N

Table 4-2. Notation-based comparison of methodologies. Keys: SD: Strongly Disagree, D: Disagree, N:Neutral,
A:Agree, SA: Strongly Agree, NA: Not Applicable. For PASSI: Creator/PhD Students/Grad. Stud.

Modelling ADELFE Gaia INGENIAS OPF PASSI Prometheus Tropos

Multiple views A N SA SA SA/A/A — A

Adequate and
expressive

A N SA SA A/A/N — N

Traceability
between models
and between
models and code

A D SA SA SA/N/A — D

Guidelines and
techniques for
consistency
checking

A SD N N N/N/N — D

Supports
refinement

SA N SA N SA/A/A — A

Supports
modularity

SA D A SA SA/A/A — N

Supports
component
reusability

SA SD SA SA SA/A/A — SD

Extensible SA SD SA SA A/-/- SA A

Supports
hierarchical
modelling and
abstraction

SA D SA SA SA/N/A SA A

Other issues

Table 4-3. Modelling aspects-based comparison of methodologies. Keys: SD: Strongly Disagree, D: Disagree,
N:Neutral, A:Agree, SA: Strongly Agree, NA: Not Applicable. For PASSI: Creator/PhD Students/Grad. Stud.

 33

Lifecycle coverage ADELFE Gaia INGENIAS OPF PASSI Prometheus Tropos
Planning CE CEH CEH

Requirements analysis CE CE CEH CEH CEH/-/- CEH CE

Architectural (or agent
society) design

CE CE CEH CEH CEH/-/- CEH CE

Detailed (agent) design CE CE CEH CEH CEH/-/- CEH CE

Implementation CEH CEH CEH/-/- E P

Testing/Debugging H P CEH H PCEH

Deployment P CEH CE

Maintenance CEH P

Death CEH

Table 4-4. Lifecycle coverage-based comparison of methodologies. Keys: C: Clear definition of activities, E:
Examples given, H: Heuristics given, P: Partial. For PASSI: Creator/PhD Students/Grad. Stud.

Process ADELFE Gaia INGENIAS OPF PASSI Prometheus Tropos
Addresses Quality
Assurance

D SD N SA N/N/A A SD

Estimating guidelines
(cost, …)

— SD A N D/N/A N N

Support for decision
making (e.g. when to
move between phases)

A SD SA A N/A/A N D

Development approach Iterative/
incremental

Top-
down

Iterative/
incremental

Transformation
& architectural

based

ANY Iterative/
Incre-
mental

Iterative/
Incre-

mental/
Spiral

Top Down

Supports patterns or
reusability

A SD D SA SA/-/- N N

Degree of user
implication (i.e. it does
requires user-designer
communication ?)

Medium — Medium Strong Weak — M

Table 4-5. Process-based comparison of methodologies. Keys: N: None, L: Low, M: Medium, H: High, SD:
Strongly Disagree, D: Disagree, N: Neutral, A: Agree, SA: Strongly Agree. For PASSI: Creator/PhD

Students/Grad. Stud.

 34

Software tools ADELFE Gaia INGENIAS OPF PASSI Prometheus Tropos

Diagram editor OpenTool IDK editor PTK GR-Tool,
ST-Tool,
TAOM4E

Code generator IDK code g. Agent
Factory

Design consistency
checker

 IDK ATA Prototype PTK GR-Tool,
ST-Tool

Project Management AdelfeToolkit

Rapid prototyping

Reverse engineering Agent
Factory

Automatic testing

Commercial or
research product

OT: comm.
AT: free

 Research Research Research Research Research

Adequate level of
functionalities

A A A/-/- A N

Quick and easy to
learn

N A N/-/- A A

Support in raising the
quality

A A SA/-/- SA N

Reduces time to
design/implem.

A SA SA/-/- SA A

Other comments GPL
license,
UML/

Ingenias
notation

Considering
other tools

Table 4-6. Software tools adopted in the considered methodologies.

 35

Pragmatics ADELFE Gaia INGENIAS OPF PASSI Prometheus Tropos

Audience All All All All All/-/- All Grad. st.,

experts,

researcher

Complexity

compared to

UML/RUP

About the

same

About the

same

About the

same

A lot

simpler

About the

same/-/-

About the

same

Simpler

Resources:

Papers

X X X X X X

Text books X X X

Tutorial notes X X X X

Consulting services X X

Training services X X

Nr.applications built

with meth.

1-5 21+ 6-20 21+ in

OO/ME

21+/-/- 21+ 1-5

Were applications

real?

Yes No No All Y/Y/N Yes Yes

Any developed by

other users?

No Yes Yes Yes Y/Y/N Yes No

Target any specific

domain

Complex

systems

No No All but RT No/-/- No No

Support scalability Yes No Yes Yes A/N/- — N

Supports distributed

systems

Yes — Yes Yes SA/A/SA — N

Table 4-7. Pragmatics-based comparison of methodologies.

5 Conclusions
As far as AOSE has matured in the last years, there is a need for consolidating concepts, modelling languages and

methods for agent-oriented development. In the AgentLink AOSE TFG we had a look at major aspects of this discipline

by hosting several talks and interesting debates. Main effort has been dedicated to the study of MAS meta-models in

order to find an agreement on basic concepts in the AOSE community and to facilitate integration of several agent-

oriented models and methods. This is a work in progress and the proposed unified MAS meta-model and concepts

definition will be further extended by the TFG members using a mailing list.

Another important aspect is the evaluation of methodologies. During the first meeting there was a review of existing

works towards this aim and for the last meeting, several methodologies have been compared on the basis of a

questionnaire, which has been filled by many participants of the AOSE TFG. Results are partial and affected by the

reduced number of independent users but we think that this first attempt is nonetheless an important step towards

methodologies assessment.

 36

The three meetings have been a great success in terms of number of attending people, of participation and technical

level but most of all, we think that the AOSE TFG has decisively contributed to create new research collaborations and

to strengthen our community.

Acknowledgments
We would like to thank all the AOSE TFG meetings participants, the AgentLink III chairs and staff for their great

organization support; we also would like to thank the other TFG chairs for the coordination they did of their groups

activities thus enabling several joint meetings, activities and discussions.

References

[1] Bergenti F., Gleizes M-P., and Zambonelli F., Methodologies and Software Engineering for Agent Systems, Editions Kluwer
to appear in 2004.

[2] Bernon C., Camps V., Gleizes M-P., and Picard G., Tools for Self-Organizing Applications Engineering, In Di Marzo
Serugendo G., Karageorgos A., Rana O.F., Zambonelli F., eds. First International Workshop on Engineering Self-Organising
Applications (ESOA), Melbourne, Australia, July 2003, LNCS 2977, Springer Verlag publ., 2004.

[3] Bernon C., Cossentino M., Gleizes M-P., Turci P., and Zambonelli F., A Study of some Multi-agent Meta-models. In Agent-
Oriented Software Engineering V: 5th International Workshop, AOSE 2004. Revised Selected Papers. Editors: James Odell,
Paolo Giorgini, Jörg P. Müller. LNCS Series, pp62-77, Vol. 3382 / 2005. Jan. 2005.

[4] Bernon C., Gleizes M. P. Adelfe MAS meta-model. Agentlink III – AOSE TFG2, Ljubljana (Slovenia). 28 Feb-2 Mar 2005.
Online at: http://www.pa.icar.cnr.it/~cossentino/ al3tf2/docs/adelfe_ppt.pdf

[5] Bertolini D., Perini A., Susi A. and Mouratidis H. TROPOS meta-model. Agentlink III – AOSE TFG2, Ljubljana (Slovenia).
28 Feb-2 Mar 2005. http://www.pa.icar.cnr.it/~cossentino/al3tf2/docs/tropos_bertolini.ppt

[6] Bertolini D., Perini A., Susi A., and Mouratidis H., The Tropos Visual Language. A MOF 1.4 Compliant Meta-model.
Agentlink III AOSE TFG 2. Ljubljana (Slovenia). 28 Feb-2 Mar 2005. Available online at:
http://www.pa.icar.cnr.it/cossentino/al3tfg2/docs/tropos.pdf

[7] Bresciani P., Giorgini P.,Giunchiglia F., Mylopoulos J., and Perini A., Tropos: An Agent-Oriented Software Development
Methodology. Journal of Autonomous Agent and Multi-Agent Systems, 8(3):203 – 236, May 2004.

[8] Brinkkemper, S., Lyytinen, K., and Welke, R., Method Engineering: Principles of Method Construction and Tool Support.
Proceedings of the IFIP TC8, WG8.1/8.2 Working Conference on Method Engineering on Method Engineering : Principles
of Method Construction and Tool Support. S. Brinkkemper, K. Lyytinen and R. J. Welke Editors, Chapman & Hall, Ltd.,
Atlanta (Georgia, USA) 1996.

[9] Burrafato P., and Cossentino M., Designing a multi-agent solution for a bookstore with the PASSI methodology. In Fourth
International Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS-2002) - 27-28 May 2002, Toronto
(Ontario, Canada) at CAiSE'02.

[10] Caire, G., Coulier, W., Garijo, F. Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P., Stark, J., Evans, R., and Massonet,
P., Agent Oriented Analysis using MESSAGE/UML. In Wooldridge, M., Weiss, G., and Ciancarini. P. (Eds.): The Second
International Workshop on Agent-Oriented Software Engineering (AOSE 2001). Lecture Notes in Computer Science, Vol.
2222. Springer-Verlag, Berlin Heidelberg New York (2002) 119-135.

[11] Castro J., Kolp M., and Mylopoulos J., A Requirements-Driven Development Methodology. In Proceedings of the 13th
International Conference on Advanced Information Systems Engineering (CAiSE’01), Interlanken, Switzerland, June 2001.

[12] Cervenka R., Trencansky I., Calisti M., and Greenwood D., AML: Agent Modeling Language Toward Industry-Grade Agent-
Based Modeling, In Agent-Oriented Software Engineering V: 5th International Workshop, AOSE 2004. Revised Selected
Papers. Editors: James Odell, Paolo Giorgini, Jörg P. Müller. LNCS Series, pp31-46, Vol. 3382 / 2005. Jan. 2005.

[13] Chella A., Cossentino M., Sabatucci L., Seidita V. The PASSI and Agile PASSI MAS meta-models. Agentlink III – AOSE
TFG2, Ljubljana (Slovenia). 28 Feb-2 Mar 2005. http://www.pa.icar.cnr.it/~cossentino/al3tf2/docs/passi_ppt.zip

[14] Cossentino M., From Requirements to Code with the PASSI Methodology. In Agent-Oriented Methodologies, B. Henderson-
Sellers and P. Giorgini (Editors). Idea Group Inc., Hershey, PA, USA. 2005 (in printing)

[15] Gómez-Sanz Jorge J., Pavòn J. INGENIAS MAS meta-model. Agentlink III – AOSE TFG2, Ljubljana (Slovenia). 28 Feb-2
Mar 2005. http://www.pa.icar.cnr.it/ ~cossentino/al3tf2/docs/ingenias_slides.zip

[16] Gómez-Sanz, J. and Pavón, J., Meta-modelling in Agent Oriented Software Engineering. Proc. 8th Ibero-American
Conference on AI, Iberamia 2002, Seville, Spain, November 12-15, 2002.. Springer-Verlag, LNCS 2527, pp. 606-615.

 37

[17] Gómez-Sanz, J., and Pavón, J., Meta-modelling in Agent Oriented Software Engineering. Advances in Artificial Intelligence
- IBERAMIA 2002. LNCS 2527. Springer-Verlag (2002): 606-615.

[18] Guessom Z. MAS Meta-Models and MDA. Agentlink III – AOSE TFG2, Ljubljana (Slovenia). 28 Feb-2 Mar 2005.
http://www.pa.icar.cnr.it/~cossentino/ al3tf2/docs/zahia_slovenia.pdf

[19] J. Manuel Serrano, S. Ossowski, S. Saugar. The RICA metamodel: an organizational stance on agent communication
languages. Agentlink III AOSE TFG 2. Ljubljana (Slovenia). 28 Feb-2 Mar 2005. Available online at:
http://www.pa.icar.cnr.it/cossentino/al3tfg2/docs/rica_serrano.pdf

[20] Kusek M. and Jezic G., Modeling Agent Mobility with UML Sequence Diagram. Agentlink III – AOSE TFG2, Ljubljana
(Slovenia). 28 Feb-2 Mar 2005. Online at: http://www.pa.icar.cnr.it/~cossentino/al3tf2/docs/kusek_ppt.ppt

[21] Luck M., McBurney P., Preist C. Agent Technology: Enabling Next Generation Computing. A Roadmap for Agent Based
Computing. Online at http://www.agentlink.org/roadmap.

[22] Odell J., Norine M., and Levy R., A Metamodel for Agents, Groups and Roles. In Agent-Oriented Software Engineering V:
5th International Workshop, AOSE 2004. Revised Selected Papers. Editors: James Odell, Paolo Giorgini, Jörg P. Müller.
LNCS Series, pp78-92, Vol. 3382 / 2005. Jan. 2005.

[23] Pavón, J., and Gómez-Sanz, J.J., Agent Oriented Software Engineering with INGENIAS. In Multi-Agent Systems and
Applications III, 3rd International Central and Eastern European Conference on Multi-Agent Systems, CEEMAS 2003.
Lecture Notes in Computer Science 2691, Springer Verlag (2003) 394-403.

[24] Ralyte, J., and Rolland, C., An approach for Method Reengineering. Proceedings of the 20th International Conference on
Conceptual Modeling, ER2001, Yokohama, Japan, November 27-30 2001

[25] Russel, S. and Norvig P., Artificial Intelligence: A Modern Approach. Prentice Hall Series, 1995.

[26] Searle J.R., Speech Acts. Cambridge University Press, 1969.

[27] Serrano J. M., and Ossowski S., On the Impact of Agent Communication Languages on the Implementation of Agent
Systems, Eighth International Workshop CIA 2004 on Cooperative Information Agents, September 27 - 29, 2004, Erfurt,
Germany.

[28] Serrano J.M., Ossowski S. On the Impact of Agent Communication Languages on the Implementation of Agent Systems,
Eighth International Workshop CIA 2004 on Cooperative Information Agents, September 27 - 29, 2004, Erfurt, Germany

[29] Serrano J.M., Ossowski S., Saugar S. The RICA meta-model. Agentlink III – AOSE TFG2, Ljubljana (Slovenia). 28 Feb-2
Mar 2005. http://www.pa.icar.cnr.it/ ~cossentino/al3tf2/docs/serrano_ppt.pdf

[30] Trencansky, I., Agent Modeling Language (AML). Agentlink III – AOSE TFG2, Ljubljana (Slovenia). 28 Feb-2 Mar 2005.
Online at: http://www.pa.icar.cnr.it/~cossentino/al3tf2/docs/aml_trencansky.pdf

[31] Wooldridge M., Jennings N.R., and Kinny D., A Methodology for Agent-Oriented Analysis and Design, In Proceedings of
the 3rd International Conference on Autonomous Agents (Agents 99), pp 69-76, Seattle, WA, May 1999.

[32] Zambonelli F. Jennings N., and Wooldridge M., Developing Multiagent Systems: the Gaia Methodology, ACM Transactions
on Software Engineering and Methodology, 12(3):417-470, July 2003.

[33] Zambonelli F., Open Directions in AOSE. Agentlink III – AOSE TFG2, Ljubljana (Slovenia). 28 Feb-2 Mar 2005. Online at:
http://www.pa.icar.cnr.it/~cossentino/ al3tf1/programme.html

[34] Khanh Hoa Dam, Michael Winikoff, Comparing Agent-Oriented Methodologies, in the proceedings of the Fifth International
Bi-Conference Workshop on Agent-Oriented Information Systems held in Melbourne in July (at AAMAS03).

