
eta-model for the analysis and design of Organizations in multi-agent systems

Jacques FERBER Olivier GUTKNECHT

Laboratoire d’Informatique, Robotique et Micro-electronique
de Montpellier. Universite Montpellier 11, France

ferber@lirmm.fr gutkneco@lirmm.fr

Abstract

This paperpresents a generic meta-model of multi-agent
systems based on organizational concepts such as groups,
roles and structures. This model, called AALAADIN, de-
jines a very simple description of coordination and nego-
tiation schemes through multi-agent systems. Aalaadin is
a meta-model of artijicial organization by which one can
build multi-agent systems with diflerent forms of organiza-
tions such as market-like and hierarchical organizations.

We show that this meta-model allows for agent het-
erogeneity in languages, applications and architectures.
We also introduce the concept of organizational reflection
which uses the same conceptual model to describe system-
level tasks such as remote communication and migration
of agents. Finally, we briejly describe a platform, called
MADKIT, based on this model. It relies on a minimal agent
kernel with platform-level services implemented as agents,
groups and roles.

1 Introduction

Whereas organization has been presented as a major is-
sue of multi-agent systems, very few works have attempted
to develop models of such systems using organizational ap-
proaches. Concepts such as roles, groups or organizations
are used in a very informal, almost casual, way. Practically
no effort has been made to incorporate organizational terms
and concepts into multi-agent systems.

One of the rare attempts to include organizational con-
cepts in multi-agent systems occurs in the work of L.
Gasser. His early system, MACE, introduced the concept
of role to describe multi-agent systems [9]. For instance, in
the contract net protocol, agents with the role of manager
make proposals to agents with the role o f b i d d e r . He also
advocated the importance of computational organizational
theories to fertilize multi-agent researches in an invited talk
at ICMAS’95. Other examples of work on the use of or-

0-8186-8500-W98 $10.00 @ 1998 IEEE

ganizational concepts in MAS come from M. Fox [7], and
Lesser and Decker (see for instance [17]) but they do not
tackle the problem of how to design (in software engineer-
ing terms) such organizations. Work on organizational the-
ories has also been conducted in the context of the Com-
monKADS effort but has focused on human organizations
models [2].

An exception is found in [I] which describes an analysis
method for MAS in organizational terms, and in [101 which
describes an algorithm for reorganizing societies of agents.
A close, although more specific approach can also be found
in [l l] .

This lack of interest in organizations comes from the
general conceptual trend that defines multi-agent systems
as mere aggregations of agents interacting together, where
agent means an autonomous entity that behaves individu-
ally, almost selfishly.

Most of the work today in multi-agent systems has cho-
sen to describe coordination and interaction structures from
what could be called the “agent oriented” path. In that view,
the designer of a multi-agent system is only concerned with
agents’ individual actions, and it is supposed that social
structures come from patterns of actions that arise as a re-
sult of interactions. Moreover, it is often admitted that the
behavior of an agent is a consequence of its mental state (be-
liefs, intentions, goals, commitments, etc.) (see for instance
[16]). Even works with reactive agents [4] often take the
agent-oriented view by considering that structures emerge
from interaction between individual agents, even if these
agents are not supposed to have mental states.

But, with the agent-oriented view it is often difficult to
design complex systems because of the following problems:

0 Heterogeneity of language. While heterogeneity has
been considered as an important issue in multi-agent
systems, there are no implemented systems, to our
knowledge, that accept agents speaking different lan-
guages. Efforts to bring a standardized language such
as KQML or ACL of the FIPA group, show that the
problem of language heterogeneity has been consid-

128

mailto:ferber@lirmm.fr
mailto:gutkneco@lirmm.fr

ered so important that it required standardization meth-
ods to reduce language discrepancies.

Multiple applications and architectures. No imple-
mented systems, to our knowledge, allow several ap-
plications with different objectives and different in-
ternal architectures to work concurrently on the same
platform.

Security. While security is a major concern in dis-
tributed systems, no multi-agent techniques, to our
knowledge, have been proposed to prevent agents from
interacting with other agents. Any agent, in a system,
is supposed to be able to interact with any other agent
regardless of its capabilities, goals and authorizations.

In this paper, we claim on the contrary, that considering
organizational concepts, such as groups, roles, structures,
dependencies, etc. as first class citizens, and relating them
to the behavior of agents is a key issue for building large
scale and complex systems, and resolves all the previous
problems in a very clear and efficient manner.

An organizationcan be defined, adapting [SI, as a frame-
work for activity and interaction through the definition of
groups, roles and their relationships. Thus, we will regard
an organization as a structural relationship between a collec-
tion of agents. In our view, an organization can be described
solely on the basis of its structure, i.e. by the way groups
and roles are arranged to form a whole, without being con-
cerned with the way agents actually behave, and multi-agent
systems will be analyzed from the “outside”, as a set of in-
teraction modes.

Therefore, we will not address any issues about the archi-
tecture of agents, nor about the way agents act. Agents will
only be defined by their functions in an organization, i.e. by
their roles, and by the sets of constraints which they must
accept to be able to play those roles. It does not mean that
structures should be static, nor that groups should be totally
separated. On the contrary, the power of structures comes
from the ability of agents to join groups, and by doing so, to
acquire new abilities that they would have not obtained oth-
erwise. Their power lies also, as we will see below, in the
fact that agents can play different roles in different groups,
i.e. a computer scientist can also be a tennis player, an aver-
age musician and a good cook. Those activities are related
to different communities in which he plays different roles
and use different languages: the world of tennis does not
use the same words and expressions as the world of com-
puter science or the world of cooking, this becomes even
more obvious when computer scientists speak English and
cooks speak French.

AALAADIN is a generic meta-model of multi-agent sys-
tems based on the three main concepts of agents, groups
and roles. It is a meta-model for describing organizations

because one can build different models of organizations in
AALAADIN such as market-like or hierarchical organiza-
tions. Section 2 is devoted to the description of the meta-
model (which we will call simply “model” for short. The
reader should bear in mind that this model does not describe
specific organizations, but a generic way to describe specific
organizatioins).

As we vvill see in section 3, AALAADIN directly pro-
vides some sort of reflection that we call “organizational
reflections”. This kind of reflection describes the opera-
tional aspects of groups, and system-level functions such
as remote message passing, migration and resources man-
agement, through the use of meta-level groups and agents.

Section 4 briefly describes an implementation of
AALAADIN in Java called MADKIT which allows for the
description of several multi-agent systems working concur-
rently. System-level aspects, and the way agents, groups
and roles are represented in the platform is described.

2 Conceptual Model

We assume in our model that the idea of collective struc-
ture permits two levels of analysis:

The concrete level corresponds to the core concepts of
agent, group and role. It describes the actual agent or-
ganization.

The abstract, methodological level defines all possible
roles, valid interactions, and structures of groups and
organizations.

2.1 Core concepts

The AALAADIN model is based on three core concepts:
agent, group and role. Figure 1 presents a diagram of this
model.

Figure 1. The core model

2.1.1 Agent

This model places no constraints on the internal architecture
of agents and does not assume any formalism for individual
agents. An agent is only specdied as an active communicat-
ing entity which plays roles within groups.

129

- - - KQML age‘gendgroup j < - -

Machine A ;patabase Wrappeq ‘\,I

Machine B

Figure 2. A scenario involving multiple groups

This agent definition is intentionally left general to al-
low agent designers to adopt the most accurate definition
of agenthood relative to their application. The agent de-
signer is responsible for choosing the most appropriate
agent model.

2.1.2 Group

We define groups as atomic sets of agent aggregation. Each
agent is part of one or more groups. In its most basic form,
the group is only a way to tag a set of agents. In a more
developed form, in conjunction with the role definition, it
may represent any usual multi-agent system. An agent can
be a member of n groups at the same time. A major point
of AALAADIN groups is that they can freely overlap.

A group can be founded by any agent, and an agent must
request its admission to an existing group. Groups might be
distributed among several machines.

We will take as an example (figure 2) the classical appli-
cation of travel assistance agents [20]. In our example, we
will suppose that it is composed of agents involved in a spe-
cific contract-net protocol (to find the best offer for its user),
with bidder agents (for travel assistance) communicating in
KQML [6] with database agents. In our model, the “bidder”
agent is part of both an application-dependant contract-net
group as it is involved in this type of dialog, and a KQML
group as it is able to communicate in this language. The
user agent is part of a group gathering mobile agents, and
simultaneously of the same contract-net group.

2.1.3 Role

The role is an abstract representation of an agent function,
service or identification within a group. Each agent can han-
dle several roles, and each role handled by an agent is local
to a group. As with group admission, handling a role in a
group must be requested by the candidate agent, and is not
necessarily awarded. By relating communications to roles,

and by authorizing an agent to play several roles, our model
allows agents to handle several heterogeneous dialog defi-
nitions simultaneously.

In the “travel assistance agent” example, cited in the last
section, the contract-net group would contain two roles: the
bidder role which is multiple and the unique manager role.
This contract-net example also reveals that the communi-
cation model within this group can be easily described by
identifying an abstracted interaction scheme between the
“bidder” and the “manager” roles rather than between in-
dividual, actual agents.

A special role in a group is the group manager role,
which is automatically awarded to the group creator. It has
responsibility for handling requests for group admission or
role requests. It can also revoke roles or group membership.
By default, every request is fulfilled (i.e. if the agent does
not specify specific group management behavior). It is the
evaluator of the acceptance functions: an agent a can enter a
group g to play a role r associated to a boolean acceptance
evaluation function fStr, if and only if, f ,(a) evaluates to
true.

Notice that we do not define the particular mechanism
for role access within a group. The following examples il-
lustrate several possible functions controlling acceptance of
a role within a group:

Systematic acceptance or refusal a local group gathering
every agent running on an agent platform would al-
ways accept any agent

Acceptance conditioned by competences In this accep-
tion scheme, a role is awarded to an agent depend-
ing of on owned skills. Supposing that within a
group each role ri requires a set of competences
required(ri) = {cZ;,ca, ..., e:}, f (a) ++ true if’v’c E
required(r), c E competences(a)

Constrained by implementation where the candidate
must exhibit some interface to be authorized to join
the group.

Conditioned to an admission dialog where the request
induces an interaction between the manager and the
candidate to negotiate the admission.

Constrained by group status for instance by defining a
coefficient of similarity between the current group
members and the candidate (similar to trusted agents
in [131).

2.2 Methodological concepts

In addition to the core agent-group-role model, several
concepts are added that are not represented directly in multi-
agent organizations (figure 3). These additional concepts

130

only serve as an analysis and design tool. The purpose is to
provide an organizational model specification from which
an actual multi-agent system can ultimately be developed,
and expressed with the core concepts.

In this section, we will detail the concepts of group
and organizational structure, and their relation to the core
model.

Orgonirotio~rol Sllucmre

Figure 3. The methodological model

2.2.1 Group structure

The group structure is an abstract description of a group.
It identifies all the roles and interactions that can appear
within a group.

We define a group Structure as a tuple: S = (R, G, L)
0 R is a finite set of roles identifiers. It represents the

enumeration of all possible roles than can be played
by agents within a group.

0 G is the interaction graph. More precisely, it is a la-
belled oriented graph specifying the valid interactions
between two roles. G : R x R -+ L. The edge orien-
tation correponds to the role initiating the interaction.
Each edge represents an interaction initiated by ri with
a role rj and named label

0 L is the interaction language. It is the chosen formal-
ism for the individual interaction definitions. For each
relation within the graph, we associate a unique pro-
tocol definition p to any edge (Ti, r j , ZabeZ) within G.
V(ri , r j , label) E G, 3!p E L

We emphasize the fact that the group structure might be
instantiated in a partial form in the actual group: all the roles
defined in the group structure might not be present at a given
moment in the group, depending on the group dynamics.

For instance, we can define a highly sophisticated market
group with several broker, client and service roles, but the
instanciated market group may only include a few of these
roles.

2.2.2 Organizational structure

We define the organizational structure as the set of group
structures e:xpressing the design of a multi-agent organiza-
tion scheme.

Thus, the organizational structure can be seen as the
overall specification of the initial problem (i.e. conceiv-
ing an agerit marketplace). Given the different group struc-
tures involved, the organizational structure permits the vi-
able management of heterogeneity in agent communication
languages, models and local applicative domains, within a
single system.

We define an organizational structure as a couple 0 =
(S, Rep) where:

0 S is a set a valid group structures.

0 Rep is the representative graph. It is a labelled graph
where each edge s a & is labelled where two roles
r11-2, with Sa E S and Sb E S , and where r1 and 7-2

are roles which are included in the set of roles defined
in the group structures Sa and sb, respectively.

Therefore, a representative structure definition between
two groups A and B is an agent having simulteneously the
role Ra,i in group a and role Rbj in group b.

As with the relation between group structures and
groups, we note that the actual organization is just one pos-
sible manifestation of the organizational structure. It might
not include every group defined in the abstract organiza-
tional strucime.

2.2.3 A market organization example

To clarify the inter-relations between structures and actual
instances, and between organizational and group model, we
present a short example of a market-like community mod-
eled with these methodological guidelines (figure 4a).

We defke three groups. The link between the two differ-
ent interaction models is held by the broker role, which
acts as a representative of the service provider
group by the way of its broker role within this group.
The clients interact with the broker to find a suitable ser-
vice agent, and the contract group structure definition is
aimed at ephemeral groups containing only the two agents
involved in the final phase of a negociation.

A possible state of a market organization resulting from
this organizational structure is shown in figure 4b.

3 Reflection

There ha.s been a large amount of work done on reflec-
tion in computer science. In [19], B. Smith coined the
term "computational reflection" to describe a process that

131

<Market Organizational Structure)

Figure 4. (a) The organizational and group
structure of a market organization, (b) An ac-
tual market organization

is able to represent itself and reason about itself. Computa-
tional reflection has been applied to various languages and
implementations [141. Computational reflection has been
shown to be very important representing system level activ-
ities such as resource management, task load balancing and
object migration in parallel and distributed systems. An im-
portant body of work has been devoted to computational
reflection in object oriented languages in general (see for
instance [21]).

The most common implementation of procedural reflec-
tion for object oriented language is to use an individual-
based model of reflection in which each object has its own
meta-object which governs its computation [3]. An attempt
to use this kind of reflection in the context of agent oriented
languages can be found in [5] . But in this model it is dif-
ficult to represent the various aspects of an object (or an
agent) with just one meta-object.

This limitation has led to the definition of the so-called
group-based model of reflection in which the behavior of an
object is realized at the meta-level by coordinated action of
multiple meta-level objects [15].

But group-based reflection, while being very useful for
representing and implementing various aspects of a set of
distributed objects, requires a complete redesigning of the
language and, in addition, is very resource consuming be-

cause of the great number of meta-level objects it requires.
In the following, we will introduce a new model of re-

flection, which we call Organization-based model, which
overcomes all these difficulties.

This organization-based model is a direct consequence
of our organizational meta-model. Thus, there is no need
to introduce new concepts, such as "meta-level entities" or
"meta-level groups", because all the reflective power comes
directly from the fact that agents can belongs to several
groups at once and play different roles in different groups.
All theories about reflection have to describe which enti-
ties and processes are reified, i.e. that are represented at the
meta-level.

Reflection is performed by three general and comple-
mentary mechanisms:

1 . Cross-membership. An agent can belong to both a
domain-related group and a meta-level group which
will handle system level activities such as management
of resources, remote message passing, dynamic secu-
rity, migration of agents, etc. Thus, meta-level opera-
tions are realized by entering a meta-level group. For
instance, an agent will be able to migrate if it can en-
ter the local group called Mobi 1 i ty and play the role
itinerant.

2. Agentification of services. System level services are
represented in AALAADIN as agents that play speclfic
roles in meta-level groups. For instance, mobility is
achieved through agents that play the migratory
role in the local Mobili ty group.

3. Use of representative. An agent can be a representa-
tive of a group A in a group B. Thus, it is possible
to transform an agent into a group if this is necessary
and implement a kind of group-based reflection. All
we have to do is to modify the behavior of an agent so
that it delegates its tasks to agents of the group B.

As an example of the reflective behavior of AALAADIN,
let us consider how the problem of migration is accom-
plished. Mobility is carried out by two groups. Not ev-
ery agent within a system wants (or even can) be mobile.
Expressing mobility as a specialized group allows for the
description of mobility features in the same standard for-
malism of group and roles. Each site has a local group
called a Mobi 1 i ty - Group which contains all the itiner-
ant agents, i.e. agents that are potentially mobile, of a site
s and a migratory agent which can make itinerant agents
migrate. To play the itinerant role, and receive the ca-
pacity of being able to migrate, an agent needs to have the
competence of being serializable. Thus, an agent that can-
not be serialized cannot be accepted as an itinerant member
ofthe group. There is only one agent with the migratory
role in a Mobility group. This agent is responsible for

132

Site A Site B

I Site A Site B

Figure 5. A migration scenario

the migration of other local agents on a remote platform.
Migratory agents are also members of the Sys tern group,
which contains agents that can control the resources allo-
cated to other agents, to be able to control the life-cycle of
other agents.

There is another group, called Mobility-Control,
which gathers all agents with the migratory role in dif-
ferent local groups. This group eases all the communication
and negotiation between migratory agents that are necessary
to control the actual migration process.

Let us now consider a scenario of agent migration (figure
5) . Let us suppose that there is an agent a that belongs to
a domain group that resides in a site s. Let us suppose that
for any reason a needs to migrate to another site s' (if there
are too many agents on s, for instance).

Here is a typical scenario of agent migration:

0 The agent a sends a request to the group manager of
its local Mobility-Group to join the group With
itinerant role. The group manager decides if the
agent is suitable for migration, i.e. if it possesses the
competence of being serializable.

0 When this agent wants to migrate on another agent ker-
nel, for any reason, a request is sent to the agent having
the migratory role within the group to make a mi-
grate. This request can be sent by a (if it can reason

Figure 6. The MadKit platform Architecture

about such things) or by a system-level agent in charge
of resource allocation.

0 The migratory agent serializes the candidate, requests
the kernel agent to suspend the activity of the candi-
date, and sends a to its peer on another site s'.

0 The remote migratory agent deserializes the agent
a, confirms good reception and asks the kernel agent
to resume the new a. The local migratory agent which
resides on s then asks the kernel agent to kill the old
suspended agent.

4 The MadKit platform

To demonstrate the effectiveness of this model, we have
built an agent platform [12], called MADKIT (for "Multi-
Agent Development Kit") to validate this approach. The
MADKIT platform implements at its core, the concepts of
agent, group and role, and adds three design principles:

0 Micro-kernel architechu-e

0 Agentification of services

0 Graphic component model

The basic]philosophy of the MADKIT architecture is to use
wherever possible the platform for its own management:
any services beside those assured by the micro-kernel are
handled by agents, organized in groups, and identified by
roles.

MADK [T runs on every platform supporting a Java 1.1
implementation.

4.1 Agent micro-kernel

The MADKIT micro-kernel is a small (less than 40 Kb)
agent kernel. The term "micro-kernel" is intentionaly used
as a reference to the role of micro-kernels in the domain
of OS engiineering [181. We would define an agent micro-
kernel as a minimal set of facilities allowing deployment of
agents services.

133

The MADKIT micro-kernel only handles the following
tasks:

Control of local groups and roles The micro-kernel is re-
sponsible for maintaining correct information about
group members and roles handled, and transmits ad-
mission requests to the appropriate group manager.

Agent life-cycle management The micro-kernel launches
agents and has full control of their life-cycle. It also
assigns the globally unique agent identifiers.

Local message passing Messages between agents are de-
livered via the micro-kernel facilities if the receiver is
a local agent. If not, the message might be delegated
to a specialized system agent.

The platform is not an agent platform in the classical
sense. The reduced size of the micro-kernel, combined with
the principle of modular services managed by agents, en-
able a range of multiple, scalable platforms (figure 6).

4.2 Agentification of services

4.2.1 Agents, groups and roles in the platform

Agents are defined by inheriting from an abstract class that
provides agent identification, messaging API, and group
and role related calls. These methods offer group creation,
joining and various calls to identify which roles are present
in a group, which agents are playing a given role, to make a
request for role handling, delegation, or removal.

A few special groups and roles exist on the platform.
The local group contains every agent running on the lo-
cal micro-kernel, Admission to this group is automatic, thus
finding local agents uses the standard group and role model
and implementation.

The second special group, the sys t e r n group, gathers
members having the capacity to access the micro-kernel,
thus potentially having control over life-cycles of other
agents. Access to the system group is tightly restricted to
agents identified by a trusted entity.

Interaction with the micro-kernel uses standard agent
communication. The very first agent created at kernel boot-
strap is a wrapper agent having full access and control
on the agent micro-kernel. It founds and has the group-
manager role for the sys t e r n and the local groups. Then
members of the s y s t e m group can request privileged ac-
tions by interacting with it: group and role mechanisms are
used to manage agent groups.

4.2.2 Agents services

In contrast to other architectures, MADKIT uses agents to
achieve distributed message passing, migration control, dy-
namic security, and other aspects of system management.

This allows a very high level of customizing, as these ser-
vice agents can be replaced without difficulty.For instance,
it is possible to implement a completely different mecha-
nism of distributed messaging without changing anything
to the other agents on the platform. These services can also
change at runtime by dezegating roles to other agents.

The role delegation principle has the other interesting
side-effect of allowing easy scaling. An agent can hold
several roles at the beginning of a group, and as the group
grows, launch other agents and delegate to them some of
these roles.

4.2.3 Communication and distribution

Messaging, as well as group and role management, uses
a unique agent identifier, and as this identifier is unique
across distant kernels, MADKIT agents can be transparently
distributed without changing the agent code. Groups can
spread across different kernels, and agents usually do not
even notice it.

Distribution in the MADKIT platform relies on agents
handling two roles in the sys tern group:

0 The communicator is used by the micro-kernel
to route non-local messages to other communicator
agents, on distant platforms, which then inject the
now-local messages into their kernel.

0 The group synchronizer agents allow groups and
roles to be distributed among kernels by distributing
group and role changes to other synchronizers, which
in turn enter this information into their local kernel.
These group synchronizers use their own distributed
group to ease distributed group management, after a
bootstrap phase.

Since the distributed systems mechanisms are built as
regular agents in the platform, communication and migra-
tion could be tailored to specific platform or application
requirements only by changing the communication agents,
for instance to manage disconnected modes for laptops. A
MADKIT platform can rcul in full local mode by just not
launching the communication agents.

These services are not necessarily handled by only one
agent. For instance, the communicator agent can be the rep-
resentative of a group gathering agents specialized in SMTP,
sockets, or CORBA IIOP communications and delegate the
task to the appropriate agent.

4.3 Graphic model

The MADKIT graphic model is based on independent
graphic components. Each agent is solely responsible for its
own graphical interface, in every respect (rendering, event

134

Figure 7. MadKit running in applet, G-Box and
console modes

processing, actions ...) An agent interface can be a simple
label, or a complex construction based on multiple widgets.

Thus, the agent micro-kernel can run in various "graph-
ical modes". In its current implementation, MADKIT can
run in three different modes (figure 7): a development en-
vironment (called G-Box), a console-only mode, and in ap-
plets.

5 Conclusion and future work

The development of complex systems necessitates the
development of models of multi-agent systems which al-
low for real heterogeneity of agents and of communication
languages. In this paper we have presented a meta-model of
organizations for MAS, called AALAADIN, which is able to
overcome these problems by allowing designers of multi-
agent systems to describe any kind of organization using
only the core concepts of groups, agents and roles.

We have also presented a development platform, called
MadKit, in which all these concepts have been imple-
mented.

Various projects based on this meta-model and this plat-
form are in development. An early application resulted
in the construction of agents for collaborative work in ge-
netic sequencing. The group and role formalism allowed
easy customization and auto-assembly of processing chains.
Current projects include a dynamic load-balancing scheme
for agents, multi-agent robot control, and various projects
in distributed simulation.

References

[11 A. Collinot and A. Drogoul. Agent oriented design for a soc-
cer robot team. In M. T. Kyoto, editor, Proc. of Second Inter-

national Conference on Multi-Agent Systems, pages 41-47.
AAA.1 Press, 1996.

[2] R. de Hoog, B. Benus, C. Metselaar, M. Vogler, and
W. EvIenezes. Organisation model: Model definition docu-
ment. Technical report, ESPRIT Project P5248, 1994.

[3] J. Ferber. Computational reflection in class based object ori-
ented languages. In OOPSLA Proceedings, 1989.

[4] J. Ferber. Reactive distributed artificial intelligence: Princi-
ples and application. In G. O'Hare and N. Jennings, editors,
Foundations of Distributed Arhjicial Intelligence, 1996.

[5] J. Ferber and P. Carle. Actors and agents as reflective con-
current objects: a Mering IV perspective. IEEE Trans. on
Syste,nzs, Man and Cybernetics, 2 1(6), 199 I .

[6] T. Firdn and R. Fritzson. KQML- A language and protocol
for knowledge and information exchange. In Proc. of the
13th htl . Distributed Artificial Intelligence Workshop.

[7] M. Fox. An organizational view of distributed systems.
IEEE Trans. on Man, Systems and Cybernetics, 1 1 (1):7&
80, l!%l.

[8] L. Gasser. An overview of distributed artificial intelligence.
In L. Gasser and N. M. Avouris, editors, Distributed Arti-
jkial Intelligence: Theoly and Praxis. Kluwer Academic
Publiishers, 1992.

[9] L. Gasser, C. Braganza, and N. Herman. Mace: a flexible
testbed for distributed ai research. In M. N. Huhns, editor,
Distributed Artijicial Intelligence, pages 1 1 %I 52. 1987.

[101 N. Glaser and P. Morignot. Societes of autonomous agents
and their reorganization. In ATAL, 1997.

[l 11 R. Gustavsson. Multi agent systems as open societies. In 4th
Workshop on Agent Theories Architectures and Languages,
1997.

[12] 0. Gutknecht and J. Ferber. Madkit reference page.
httg://www.lirnun.fr/-gutkneco/madkit.

[131 Y. Lacihkari, M. Metral, and P. Maes. Collaborative interface
agents. In Proc. ofAAAI'94, 1994.

[141 P. Maes and D. Nardi, editors. Meta-level architectures and
rejexi:on, 1988.

[151 S. Matsuoka, T. Watanabe, and A. Yonezawa. Hybrid group
reflective architecture for object-oriented concurrent reflec-
tive programming. In Proc. of European Conference on
Object-Oriented Programming, pages 23 1-250, 199 1.

[16] J. P. h4uller, M. J. Wooldridge, and N. R. Jennings, editors.
Intelligent Agent III: Agent Theories, Architecture and Lan-
guage. Springer-Verlag, 1997.

[I71 M. V. N. Prasad, K. Decker, A. Garvey, and V. Lesser. Ex-
ploring organizational designs with TAEMS: A case study
of distributed data processing. In M. Tokoro, editor, Proc.
of Second International Conference on Multi-Agent Sytems,
pages 283-290. AAA1 Press, 1996.

[181 R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Julin,
D. Orr, and R. Sanzi. Mach: A foundation for Open Sys-
tems. In Proc. of the Second Workshop on Workstation Op-
eratin,p System, September 1989.

[191 B. C. Smith. Rejection and Semantics in a Procedural Lan-
guage. PhD thesis, M.I.T., 1982. Technical Report 272.

[20] J. White. Telescript technology: Mobile agents. In J. Brad-
shaw, editor, S o f l a w Agents. MIT Press, 1996.

[21] A. Yainezawa and B. C. Smith, editors. Imsa Workshop
on Rcflection and Meta-Level Architecture. ACM SigPlan,
1992.

135

