
 60

A Framework for Evaluating Agent-Oriented
Methodologies

Arnon Sturm
Technion - Israel Institute of Technology

 Haifa 32000, Israel

sturm@techunix.technion.ac.il

Onn Shehory
2nd IBM Haifa Research Lab, Haifa University

Haifa 31905, Israel

onn@il.ibm.com

ABSTRACT
Multiple agent-oriented methodologies were introduced in recent
years, however no systematic evaluation of these was offered. As
a result, it is difficult to select a methodology for a specific
project. Additionally, there are no means for determining what the
advantages and drawbacks of each methodology are. To resolve
these problems, we devise a framework for evaluating and
comparing agent-oriented methodologies. This framework focuses
on four major aspects of a methodology: concepts and properties,
notations and modeling techniques, process, and pragmatics. We
demonstrate the usage of the suggested framework by evaluating
the GAIA methodology. As sought, this evaluation identifies the
strengths and the weaknesses of GAIA, thus exemplifying the
capabilities of our framework.

Categor ies and Subject Descr iptors
D.2.1 [Software Engineer ing – Requirements/Specifications]:
Methodologies.

D.2.8 [Software Engineer ing - Metr ics]: Complexity measures,
Process metrics.

General Terms
Management, Measurement, Documentation, Design.

Keywords
Agent-oriented software engineering, evaluation of
methodologies, comparison of methodologies, agent-oriented
methodologies

1. INTRODUCTION
During the last decade, many methodologies for developing
agent-based systems have been developed. A methodology is the
set of guidelines for covering the whole lifecycle of system
development both technically and managerially. A methodology,
according to [7], should provide the following: a full lifecycle
process; a comprehensive set of concepts and models; a full set of
techniques (rules, guidelines, heuristics); a fully delineated set of
deliverables; a modeling language; a set of metrics; quality
assurance; coding (and other) standards; reuse advice; and
guidelines for project management. The relationships between
these components are shown in Figure 1.
There are more than two dozens agent-oriented methodologies.
The multiplicity and variety of methodologies result in the
following problems: (1) Industrial problem: selecting a

methodology for developing an agent-based system/application
becomes a non-trivial task, in particular for industrial developers
which hold specific requirements and constraints; (2) Standards
problem: multiple different methodologies are counter-productive
for arriving at a standard. With no standard available, potential
industrial adopters of agent technology refrain from using it; (3)
Research problems: excessive efforts are spent on developing
agent-oriented methodologies, in times producing overlapping
results. Additionally, as a result of allocating resources to multiple
methodologies, no methodology is allocated sufficient research
resources to enable addressing all aspects and providing a full-
fledged agent-oriented methodology. In this paper we provide
means for addressing these problems by supplying a framework
for evaluating agent-oriented methodologies. This evaluation
framework may be used by organizations to select a methodology
for developing agent-based applications. It can also help
researchers to examine the similarity and the differences among
existing agent-oriented methodologies and to analyze the needed
attributes of such methodologies. Additionally, setting a scale for
grading agent-oriented methodologies, and using the scale in
conjunction with our framework, may result in a selection of the
better methodologies, gradually reducing their number. This
selection may eventually converge to a small set of the most fit
agent-oriented methodologies, possibly leading to standardization.
Agent-oriented methodologies can be classified into two major
classes: general-purpose methodologies and domain-specific
methodologies. The framework provided in this paper is aimed for
the evaluation of general-purpose methodologies, e.g., GAIA
[17],[19], Tropos [2], and MaSE [6]. Yet, evaluating these
methodologies introduces several difficulties:
• Comparing methodologies is often difficult, because they

might address different aspects or differ in their terminology.
For example, they are based on different concepts – MaSE is
based on software engineering concepts (such as state
machines and components) and Tropos is based on knowledge
level concepts (such as actors, goals, dependencies, and plans).

• Some of the methodologies are influenced by a specific
approach, e.g., BDI or OO.

• The completeness of various methodologies varies
dramatically. For example, some provide only the process,
some present graphical notations, while others integrate several
aspects of a methodology (i.e., process, notations, guidelines,
etc.).

 61

Methodology

Metric

QA

Standard

Tool

Technique Set Modeling Language Lifecycle Process

MetaModel Notation

Project Management

Role

Procedure

Deliverable
based on

represents

uses

n

n n

n

n

n

n

Figure 1. The components of a methodology and the relationships among them

Since the agent-oriented paradigm can be considered as an
evolution of the object-oriented paradigm, we considered the type
of evaluations made for the object-oriented methodologies. Such
evaluations have been discussed by many studies as indicated by
[15]. These evaluations and comparisons suffer from a number of
common flaws as follows:
• Using an inappropriate framework for performing the

evaluation.

• There is no agreement on what a methodology is and on what
it should consist of.

• Sometimes there is no ranking for the support of a particular
concept of a specific methodology. This leads to unsatisfactory
results of the evaluation.

• In many cases the evaluation cannot be repeated.

A few evaluations of agent-oriented methodologies have been
suggested. In [18], the authors set a list of questions that a
methodology should address. However, neither evaluation nor a
comparison has been performed using that set. Another study [4],
suggests a framework for evaluating agent-oriented
methodologies, however, the compared criteria refer only to the
expressiveness of the methodologies and not the wider set
encompassed within the methodology definition. In [9], the author
performs an evaluation of five agent-oriented methodologies,
however, he refers only to some supported concepts such as
organization design and cooperation and not to the broad set of
attributes that constitute a complete methodology. In [11], the
authors perform an evaluation of only the modeling part within a
methodology. Other studies that deal with evaluating agent-
oriented methodologies compared two or three methodologies, yet
mainly with respect to the expressiveness and the concepts
supported by the methodology.
In this paper, we provide a comprehensive framework of
evaluating and comparing agent-oriented methodologies. This
framework offers a well-defined, structured set of aspects that an
agent-oriented methodology should include. The provided
framework is a qualitative one, however, it can be transformed
into a quantitative one borrowing the concepts from [4]. The
suggested framework, although based on the framework suggested
by [15], extends and modifies it to address the unique
requirements of agent-oriented methodologies. The framework
can be used for various evaluation techniques:
• Feature analysis – The evaluation is done by referring to

the available resources.

• Survey – The evaluation is done by examining the results of
the survey that is distributed among practitioners and

researchers. As a result of the size of the population surveyed,
these results may be statistically justified.

• Case studies – The evaluation is done by examining the results
of case studies.

• Field experiments – The evaluation is done by examining the
results of field experiments.

Due to lack of space we will not discuss the advantages and
drawbacks of each technique. However, such a discussion can be
found in [12].
The specific use of these techniques is determined mainly by
resource constraints. In this paper, we perform the evaluation
using the feature analysis technique to demonstrate its
applicability and ease of use. An evaluation of this type can be
easily performed by an organization, because it can be performed
internally within the organization, and can be confined to a small
group of evaluators. Yet, this technique is subjective and this is its
major drawback. Subjectivity may result from different evaluators
producing different evaluation results. A survey technique (for
example, using [5]) may reduce subjectivity, however, requires
much more resources.
The paper is organized as follows. In Section 2 we introduce and
define the evaluation framework. In Section 3 we perform an
evaluation over a well-known methodology: GAIA and Section 4
concludes.

2. THE EVALUATION FRAMEWORK
In this paper, we refer to a methodology as the entire set of
guidelines and activities: a full lifecycle process; a comprehensive
set of concepts and models; a full set of techniques (rules,
guidelines, heuristics); a fully delineated set of deliverables; a
modeling language; a set of metrics; quality assurance; coding
(and other) standards; reuse advice; guidelines for project
management. These are each associated with one of four major
divisions: concepts and properties, notations and modeling
techniques, process, and pragmatics.

2.1 Concepts and Properties
A concept is an abstraction or a notion inferred or derived from
specific instances within a problem domain. A property is a
special capability or a characteristic. This section deals with the
question whether a methodology adheres to the basic notions
(concepts and properties) of agents and multi-agent systems. In
order to perform such an evaluation we need to define these
concepts, since there is no agreement (yet) within the agent
community regarding the basic concepts of agent-based systems.

 62

In this paper, we leverage on previous studies (e.g., [5], [11],
[12], [14], [16]) and utilize concepts defined there as a basis for
our set of concepts. The following are the concepts according to
which an agent-oriented methodology should be evaluated:
• General concepts

1. Autonomy: is the ability of an agent to operate without
supervision.

2. Reactiveness: is the ability of an agent to respond in a
timely manner to changes in the environment.

3. Proactiveness: is the ability of an agent to pursue new
goals.

4. Sociality: is the ability of an agent to interact with other
agents by sending and receiving messages, routing these
messages, and understanding them.

• Basic building blocks

1. Agent - A computer program that can accept tasks, can
figure out which actions to perform in order to perform
these tasks and can actually perform these actions without
supervision. It is capable of performing a set of tasks and
providing a set of services.

2. Belief - A fact that is believed to be true about the world.

3. Desire - A fact of which the current value is false and the
agent (that owns the desire) would prefer that it be true.
Desires within an entity may be contradictory. A widely
used specialization of a desire is a goal. The set of goals
within an agent should be consistent.

4. Intention - A fact that represents the way of realizing a
desire. Sometimes referred to as a plan.

5. Message - A means of exchanging facts or objects
between entities.

6. Norm - A guideline that characterizes a society. An agent
that wishes to be a member of the society is required to
follow all of the norms within. A norm can be referred to
as a rule.

7. Organization - A group of agents working together to
achieve a common purpose. An organization consists of
roles that characterize the agents, which are members of
the organization.

8. Protocol - An ordered set of messages that together define
the admissible patterns of a particular type of interaction
between entities.

9. Role - An abstract representation of an agent’s function,
service, or identification within a group.

10. Service: An interface that is supplied by an agent to the
external world. It is a set of tasks that together offer some
functional operation. A service may consist of other
services.

11. Society - A collection of agents and organizations that
collaborate to promote their individual goals.

12. Task - A piece of work that can be assigned to an agent
or performed by it. It may be a function to be performed
and may have time constraints. Sometimes referred to as
an action.

2.2 Notations and Modeling Techniques
Notations are a technical system of symbols used to represent
elements within a system. A modeling technique is a set of models
that depict a system at different levels of abstraction and different
system's aspects. This section deals with the properties to which
methodology’s notations and modeling techniques should adhere.
The list of these properties is taken from [11].
1. Accessibility: is an attribute that refers to the ease, or the

simplicity, of understanding and using a method. It enhances
both experts and novices capabilities of using a new concept.

2. Analyzability: is a capability to check the internal
consistency or implications of models, or to identify aspects
that seem to be unclear, such as the interrelations among
seemingly unrelated operations. This capability is usually
supported by automatic tools.

3. Complexity management (abstraction): is an ability to deal
with various levels of abstraction (i.e., various levels of
detail). Sometimes, high-level requirements are needed,
while in other situations, more detail is required. For
example, examining the top level design of a multi-agent
system, one would like to understand which agents are within
the system, but not necessarily what their attributes and
characterizations are. However, when concentrating on a
specific task of an agent, the details are much more important
than the system architecture.

4. Executability (and testability): is a capability of performing
a simulation or generating a prototype of at least some
aspects of a specification. These would demonstrate possible
behaviors of the system being modeled, and help developers
determine whether the intended requirements have been
expressed.

5. Expressiveness (and applicability to multiple domains): is a
capability of presenting system concepts that refers to:

• the structure of the system;

• the knowledge encapsulated within the system;

• the system’s ontology;

• the data flow within the system;

• the control flow within the system;

• the concurrent activities within the system (and the
agents)

• the resource constraints within the system (e.g.,
time, CPU and memory);

• the system’s physical architecture;

• the agents’ mobility;

• the interaction of the system with external systems;
and

• the user interface definitions.

6. Modularity (incrementality): is the ability to specify a
system in an iterative incremental manner. That is, when new
requirements are added it should not affect the existing
specifications, but may use them.

7. Preciseness: is an attribute of disambiguity. It allows users
to avoid misinterpretation of the existing models.

 63

2.3 Process
A development process is a series of actions, changes, and
functions that, when performed, result in a working computerized
system. This section deals with the process development aspect of
a methodology. This aspect is evaluated using the following
issues:
1. Development context: specifies whether a methodology is

useful in creating new software, reengineering or reverse
engineering existing software, prototyping, or designing for
or with reuse components.

2. Lifecycle coverage: Lifecycle coverage of a particular
methodology involves ascertaining what elements of
software development are dealt with within the methodology.
Each methodology may have elements that are useful to
several stages of the development life cycle. In this paper, the
lifecycle stages are defined as follows:

• Requirements' gathering is the stage of the lifecycle
in which the specification (usually in free text) of
the necessities from the system, is done.

• Analysis is the stage of the lifecycle that describes
the outwardly observable characteristics of the
system, e.g., functionality, performance, and
capacity.

• Design is the stage of the lifecycle that defines the
way in which the system will accomplish its
requirements. The models defined in the analysis
stage are either refined, or transformed, into design
models that depict the logical and the physical
nature of the software product.

• Implementation is the stage of the lifecycle that
converts the developed design models into
software executable within the system
environment. This either involves the hand coding
of program units, the automated generation of such
code, or the assembly of already built and tested
reusable code components from an in-house
reusability library.

• Testing focuses on ensuring that each deliverable
from each stage conforms to, and addresses, the
stated user requirements.

Having the development stages defined is not sufficient for using
a methodology. A methodology should further elaborate the
activities within the development lifecycle, in order to provide the
user of the methodology with the means of using it properly and
efficiently. Providing a detailed description of the various
activities during the development lifecycle would enhance the
appropriate use a methodology and increase its acceptability as a
well-formed engineering approach. Hence, we suggest to examine
the process in a more detailed way. These details can be provided
by answering the following questions regarding the evaluated
methodology:
1. What are the activities within each stage of a methodology?

For example, an activity can be the identification of a role, a
task, etc. It may consist of heuristics or guidelines helping
the developer to achieve his/her goals (in developing the
system).

2. What deliverables are generated by the process? This
question refers mainly to the documentations. For example,
what models are specified and can be delivered to the
customer. Another example is weather an acceptance testing
plan is required and when it is required.

3. Does the process provide for verification? This question
checks whether a methodology has rules for verifying
adherence of its deliverables to the requirements.

4. Does the process provide for validation? This question
checks whether a methodology has rules for validating that
the deliverables of one stage are consistent with its preceding
stage.

5. Are quality assurance guidelines supplied?

6. Are there guidelines for project management?

2.4 Pragmatics
Pragmatics refers to dealing with practical aspects of deploying
and using a methodology. This section deals with pragmatics of
adopting the methodology for a project or within an organization.
In particular, the framework suggests examining the following
issues:
1. Resources: What resources are available in order to support

the methodology? Is a textbook available? Are users’ groups
established? Is training and consulting offered by the vendor
and/or third parties? In addition, are automated tools (CASE
tools) available in support of the methodology (e.g.,
graphical editors, code generators, and checkers)? This issue
should be examined in order to enable a project/organization
aiming at adopting a methodology to check the resources (in
terms of training and budget) required and the alternatives
for acquiring these.

2. Required expertise: What is the required background of
those learning the methodology? A distinguishing
characteristic of many methodologies is the level of
mathematical sophistication required to fully exploit the
methodology. Does the methodology assume knowledge in
some discipline? This issue should be examined in order to
enable a project/organization aiming at adopting a
methodology to check whether the qualifications required for
using the methodology are met by the candidate users.

3. Language (paradigm and architecture) suitability: Is the
methodology targeted at a particular implementation
language? That is, is the methodology based on concepts
from a specific architecture or a programming language? For
example, a methodology may be limited to BDI-based
applications; it may be oriented towards a specific object-
oriented language. This issue should be examined to check
whether a methodology adheres to the organization/project
infrastructure and knowledge.

4. Domain applicability: Is the use of the methodology
suitable for a particular application domain (e.g., real-time
and information systems)? This issue should be examined to
check whether the methodology adheres to the intended
problem domain.

5. Scalability: Can the methodology, or subsets thereof, be
used to handle various application sizes? For example, can it
provide a lightweight version for simpler problems? This

 64

issue should be examined to check whether the methodology
is appropriate for handling the intended scale of applications
within the project/organization.

2.5 Metric
To enable ranking the properties examined in the evaluation
process, we propose a scale of 1 to 7 as follows:
1. Indicates that the methodology does not address the property.

2. Indicates that the methodology refers to the property but no
details are provided.

3. Indicates that the methodology addresses the property to a
limited extent. That is, many issues that are related to the
specific property are not addressed.

4. Indicates that the methodology addresses the property, yet
some major issues are lacking.

5. Indicates that the methodology addresses the property,
however, it lacks one or two major issues related to the
specific property.

6. Indicates that the methodology addresses the property with
minor deficiencies.

7. Indicates that the methodology fully addresses the property.

In summary, in this section we provided a framework for
evaluating agent-oriented methodologies. We divide that
framework into four divisions of concepts and properties,
notations and modeling techniques, process, and pragmatics. In
the proceeding section we demonstrate the use of that framework.

3. EVALUATING GAIA
In this section we evaluate GAIA according to the framework
presented in Section 2. We are fully aware of studies that extend
GAIA in various aspects such as expressiveness [8] and
implementation [10]. However, in the evaluation we performed,
we refer only to [17] and [19], as they were written by the
methodology designers.

3.1 Concepts and Properties
General concepts
1. Autonomy: In GAIA the autonomy is expressed by the fact

that the role encapsulates its functionality (i.e., it is
responsible for it). This functionality is internal and is not
affected by the environment, thus represents the role's
autonomy. In addition, in GAIA there is an option to model
alternative computational paths, which gives the role (and
agents that consist of this role) autonomy in making
decisions. The ranking grade is 7.

2. Reactiveness: In GAIA the reactiveness is expressed by the
liveness properties within the role’s responsibilities.
However, this does not specify the occurrence of events and
the role’s reaction to these. The ranking grade is 3.

3. Proactiveness: In GAIA the proactiveness is expressed by
the liveness properties within the role’s responsibilities. The
ranking grade is 7.

4. Sociality: In GAIA the sociality is expressed within the
acquaintance model in which the agent types’ interactions are

depicted. Further, its sociality is expressed using the
organizational structure and rules. The ranking grade is 7.

Basic building blocks
GAIA captures the MAS as a society or an organization. It defines
a few abstract concepts as follows: a role, a permission, a
responsibility, a protocol and an activity. A role is a definition of
functionality within a social group. A permission identifies the
resources a role can access. A responsibility is the actual
definition of the role functionality. A protocol specifies the way
by which a role interacts with another role and an activity is a
private action of the role. In addition, GAIA defines a few
concrete concepts as follows: an agent type and a service. An
agent type is a set of roles and a service is a coherent block of
activity, which is defined by pre- and post conditions, inputs, and
outputs. Further, GAIA defines a term of an organizational rule to
capture the notion of general system constraints.
Examining the coverage of the framework building blocks by
GAIA, we found that GAIA addresses most of them, as seen in
Table 1. However, the BDI concepts and the knowledge
representation as well are not dealt with within GAIA. In addition,
GAIA does not support the definition of a service. The ranking
grade is 5.

Table 1. The coverage of the framework building blocks within

GAIA

Framework building block GAIA concepts
Agent Agent type
Belief
Desire
Intention
Message Protocol
Norm Organizational rule
Organization System
Protocol Protocol
Role Role
Service
Society System
Task Activity, Responsibility

3.2 Notations and Modeling Techniques
1. Accessibility: GAIA models are basically easy to understand

and use. Yet, the behavior of the system is introduced via a
set of logic expressions which might introduce difficulties to
those who would like to understand it. The ranking grade is
5.

2. Analyzability: this issue is not dealt with within GAIA. The
ranking grade is 1.

3. Complexity management: in GAIA, there is no hierarchical
presentation or any other mechanism for complexity
management. The system description is flat. The ranking
grade is 1.

4. Executability: this issue is not dealt with within GAIA. The
ranking grade is 1.

 65

5. Expressiveness: GAIA is expressive and can handle a large
variety of systems due to its generic structure. However,
GAIA is mostly suitable for small and medium scale systems.
This is because of its flatness, which limits the ability to
model a large amount of details. In the following we present
our analysis regarding the expressiveness of GAIA according
to the properties defined in the previous section:

• the structure of the system is not presented
explicitly;

• the knowledge encapsulated within the system is
not presented explicitly;

• the system’s ontology is not dealt with;

• the data flow within the system is depicted using
textual specifications (via the dot and square
brackets operators);

• the control flow within the system is not presented
explicitly;

• the concurrent activities within the system (and the
agents) are not presented explicitly;

• the resource constraints within the system (e.g.,
time, CPU and memory) are partially specified
using the permissions within GAIA;

• the system’s physical architecture is not dealt with;

• the agents’ mobility is not dealt with;

• the interaction of the system with external systems
is not presented explicitly;

• and the user interface definitions is not dealt with.

 The ranking grade is 4.
6. Modular ity: GAIA is mostly modular due to its design with

some building blocks such as roles, protocols, activities and
agent types. In GAIA, one can assign new roles to agents and
remove roles with no effect on the internal model of the
roles. However, changes within the protocol might cause
changes within the internal structure of the role. These result
in changes in permissions of the role, hence limits the
modularity of GAIA. The ranking grade is 4.

7. Preciseness: the liveness and safety properties, which are
used for depicting the functionality of a role in a formal way
(i.e., for each symbol and notation there is a clear meaning
and interpretation), make GAIA accurate and prevent
misinterpretation of the modeled functionality. The symbols
and notations of each of the other GAIA models have a clear
meaning as well. The ranking grade is 5.

3.3 Process
1. Development context: GAIA is adequate for the following

development contexts: it can be used in creating new
software, reengineering and designing systems with reuse
components. However, GAIA does not support classical
reverse engineering (from code to a model), since it does not
address implementation aspects. For the same reason, it
cannot be used for prototyping (especially, a rapid one). The
ranking grade is 5.

2. Lifecycle coverage: lifecycle coverage of GAIA is very
limited. It refers only to the analysis and the design stages

within the development lifecycle. We found that fact a
drawback of GAIA as a methodology, since it would require
developers of MAS to adjust the GAIA-based design to the
concepts of the target programming language. For example,
one may translate the GAIA analysis and design results to
UML notations and than use an object-oriented language for
implementation. The ranking grade is 3.

3. Stages’ activities within the methodology:
The analysis phase within GAIA includes the identification
of the overall goals of the organization and its expected
global behavior, the basic skills required by the organization
and the basic interactions required for the exploitation of
these skills, and the rules that the organization should respect
or/and enforce in its global behavior.
The design phase within GAIA includes the definition of the
organizational structure, the refinement of the roles and the
interaction from the analysis phase, the exploitation of well-
known organizational patterns, the definition of the agent
types that make up the system and assigning roles to them,
and the definition of the services that are required for
realizing the roles.

Overall, GAIA provides only a few guidelines for performing
the aforementioned activities. The ranking grade is 4.

4. Methodology deliverables: each stage supported by GAIA
has its own deliverables. The outcomes of the analysis phase
are a preliminary role model, a preliminary interaction
model, and a set of organizational rules. The outcomes of the
design phase are a role model, an interaction model, an
organizational structure, a set of organizational rules, a
service model, and an agent model. The ranking grade is 7.

5. Ver ification and validation: this issue is not dealt with
within GAIA. The ranking grade is 1.

6. Quality assurance: this issue is not dealt with within GAIA.
The ranking grade is 1.

7. Project management guidelines: this issue is not dealt with
within GAIA. The ranking grade is 1.

3.4 Pragmatics
1. Resources: Although GAIA is well known, there are not

much available materials on it (except of the two cited
papers). There are no users’ groups, nor training or
consulting services are offered. Additionally, GAIA does not
provide automated tools. The ranking grade is 3.

2. Required expertise: GAIA requires a solid background and
knowledge in logic and temporal logic. This causes a
reduction in its accessibility since many developers do not
know or do not want to get familiar with logic (and formal
methods). The ranking grade is 2.

3. Language suitability: GAIA is not targeted at a specific
language. It does not refer to the implementation issues, thus
the specification made using GAIA can be implemented in
any language. The ranking grade is 7.

4. Domain applicability: GAIA, as determined by its
developers, is suitable to develop applications with the
following characteristics: agents are coarse-grained
computational systems, a global goal exists, agents are
heterogeneous, the organizational structure is static, the

 66

abilities of the agents are static, and the number of agent
types is comparatively small. Yet, GAIA is not suitable for
developing applications with dynamic characteristics such as
goals generation and changing organizational structure. The
ranking grade is 4.

5. Scalability: GAIA does not support the use of subsets
thereof for system development. Yet, due to its simple
structure, it may fit different application sizes. The ranking
grade is 4.

3.5 Evaluation Summary
In this section we summarize the evaluation of GAIA. This
evaluation demonstrates the use of the proposed framework and
the way in which it identifies the strengths and the weaknesses of
a methodology. Examining the concepts and properties (as
defined by the framework) supported by GAIA, we found that
GAIA addresses these to a satisfactory level. Examining the
notations and modeling techniques provided by GAIA, we found
that it addresses these to a limited extent, mainly due to lack of
support in software engineering principles and an insufficient
expressiveness of implementation-oriented issues. Examining the
process elements provided by GAIA, we found that GAIA
provides little details on it, hence further enhancements are
required. Finally, examining the pragmatics supported by GAIA,
we found that GAIA has a solid theoretical basis but it lacks in
providing means to enforce it. Given these results, it seems that
there was no intention for GAIA to support stages other than the
analysis and design stages, and as a result it lacks in support for
other stages.

4. CONCLUSION
In this paper, we propose a framework for evaluating and
comparing agent-oriented methodologies. The framework
examines the various aspects of a methodology: concepts and
properties, notations and modeling techniques, process, and
pragmatics.
This framework addresses the problem of evaluating and
comparing methodologies. It can be utilized for selecting a
methodology for developing an agent-based application. It can
additionally be utilized for identifying the advantages and
weaknesses of existing agent-oriented methodologies. Identifying
these can promote the improvement of such methodologies.
Improvement of these may advance the acceptability of agent
technology by introducing a mature, well-structured engineering
approach.
We demonstrate the use of the framework using a feature analysis
technique by performing an evaluation of GAIA – an evolving
agent-oriented methodology. GAIA is justifiably considered an
advanced agent-oriented methodology, nevertheless, as our study
shows, there are several aspects in which the GAIA methodology
can be improved, to provide an industry grade methodology. By
detecting the shortcomings (and providing the details) of one of
the most advanced agent-oriented methodologies, we show that
our framework is applicable: it points at the weaknesses of a
methodology and thus can promote its improvement.
Although we presented the framework and the feature analysis
technique as well-structured and easy to use, we are fully aware of
its subjectivity. That is, the ranking grades may vary across
evaluators. However, we believe that the overall evaluations
resulting from using the proposed framework by several

evaluators will be similar due to the well-defined properties and
the ranking scale.
Further research is required to evaluate the suggested framework.
It may be evaluated with respect to several criteria: accessibility,
coverage, adaptability. Accessibility refers to the ease of learning
and using the framework; coverage refers to the extent to which
the framework addresses the needs of methodologies' evaluation;
adaptability refers to the ability to modify and adjust the
framework to evaluate domain-specific agent-oriented
methodologies. Another research direction could be a comparative
evaluation of agent-oriented methodologies, utilizing the
proposed framework.

5. REFERENCES
[1] P.Bayer, Marcus Svantesson, "Comparison of Agent-

Oriented Methodologies Analysis and Design, MAS-
CommonKADS versus Gaia", Blekinge Institute of
Technology, Student Workshop on Agent Programming,
2001.

[2] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A.
Perini. “TROPOS: An Agent-Oriented Software
Development Methodology” . Accepted to the Journal of
Autonomous Agents and Multi-Agent Systems, 2003.

[3] S. Brinkkemper, S. Hong, G. van den Goor, "A formal
approach to the comparison of object-oriented analysis and
design methodologies", in Proc.of the Twenty-Sixth Hawaii
Intl. Conf. on , Vol. 4 , pp. 689-698, Jan 1993.

[4] L. Cernuzzi, G. Rossi, "On the Evaluation of Agent Oriented
Methodologies", in Proc. of the OOPSLA 2002 Workshop
on Agent-Oriented Methodologies, November 2002.

[5] K. H. Dam, M. Winikoff, Survey on Agent-Oriented
Methodologies,
http://yallara.cs.rmit.edu.au/~kdam/Questionnaire/Questionn
aire.html, 2002.

[6] S. A. DeLoach, M. F. Wood, C. H. Sparkman, "Multiagent
Systems Engineering", The Intl. Jour. of SE and KE, Vol. 11,
No. 3, June 2001.

[7] I. Graham, B. Hederson-Sellers, H. Younessi, “The OPEN
Process Specification” , Addison-Wesley, 1997.

[8] T. Juan, A. Pearce, L. Sterling, "ROADMAP: Extending the
GIA Methodology for Complex Open Systems", in Proc. of
AAMAS'02, pp. 3-10, July 2002.

[9] M. Kumar, “Contrast and comparison of five major Agent
Oriented Software Engineering (AOSE) methodologies” ,
http://students.jmc.ksu.edu/grad/madhukar/www/professional
/aosepaper.pdf, 2002.

[10] P. Moraitis, E. Petraki, N. I. Spanoudakis, “Engineering
JADE Agents with the Gaia Methodology “ , Proc. Int.
Workshop on Agents and Software Engineering, 2002.

[11] O. Shehory, A. Sturm, “Evaluation of modeling techniques
for agent-based systems” , Agents 2001, pp. 624-631, 2001.

[12] K.Siau and M. Rossi, "Evaluation of Information Modeling
Methods – A Review", in Proc. 31 Annual Hawaii
International Conference on System Science, pp. 314-322,
January 1998.

 67

[13] A. Sturm, D. Dori, O. Shehory, “Single-Model Method for
Specifying Multi-Agent Systems”, Proc. Of AAMAS’03,
2003.

[14] Q. N. Tran, G. Low, M. A. Williams, Software Engineering
Methodology for Developing Multi-Agent Systems - A
Survey,
http://129.94.244.146/personal/numi+tran/surveyq.nsf/surve
y, 2003.

[15] The Object Agency, “A Comparison of Object-Oriented
Development Methodologies” , Technical report,
http://www.toa.com/smnn?mcr.html, 1995.

[16] M. Winikoff, L. Padgham, and J. Harland, “Simplifying the
Development of Intelligent Agents” , Proc of the 14th

Australian Joint Conference on Artificial Intelligence
(AI'01), pages 557-568, 2001.

[17] M. Wooldridge, N. R. Jennings, D. Kinny, "The Gaia
Methodology for Agent-Oriented Analysis and Design",
Journal of Autonomous Agents and Multi Agent Systems,
Vol. 3, No. 3, pp. 285-312, March 2000.

[18] E. Yu, L.M. Cysneiros, "Agent-Oriented Methodologies –
Towards A Challenge Exemplar", 4th Intl. Workshop on
Agent-Oriented Information Systems (AOIS’02), May 2002.

[19] F. Zambonelli, N. Jennings, M. Wooldridge,
“Organizational Rules as an Abstraction for the Analysis and
Design of Multiagent Systems”, Intl. Jour. of SE and KE,
Vol. 11, No. 4, pp. 303-328, April 2001.

