
Agile PASSI

Massimo Cossentino, Luca Sabatucci, Valeria Seidita
Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)

Consiglio Nazionale delle Ricerche(CNR)
Viale delle Scienze, 90128 -Palermo- Italy

cossentino@pa.icar.cnr.it,
sabatucci@csai.unipa.it
seidita@csai.unipa.it

Antonio Chella
University of Palermo

Dipartimento di
Ingegneria Informatica (DINFO)

Viale delle Scienze, 90128 -Palermo- Italy
chella@unipa.it

June 22, 2004

1 The Agile PASSI Skeleton

In the past, we developed a large amount of systems by using PASSI, results
were interesting[4] and the quality of design-related software attributes was re-
markably high but the paradigm was not so fast and flexible as some developers
would like to. One of the main critics we registered was related to some kind
of anxiety that was induced in stakeholders involved in the process while pro-
ducing the diagrams of the first iteration; they rather would like to have a more
direct way to experiment some code-level aspects of the application (for example
they usually aimed at soon implementing new algorithms characterizing their
application). In order to encompass these limits, we decided to produce an agile
version of PASSI (Agile PASSI [3]). In this work, our primary requirement is
related to not distracting developers from their main goal (tuning some kind of
new algorithm) with a long design process. This does not mean that we could
accept a straight coding approach since: (i) our applications rapidly grow up
in dimension and (ii) we have a specific concern about documenting the know-
how reached in our laboratory in order to deliver it to new students that will
collaborate in our future researches. Another wish is related to the possibility
of quickly reusing contributions coming from other projects in order to restrict
the effort related to the development of a new application to the solution of its

1



novelty aspects. We think that all of these issues could be satisfied by using
an agile process that supports a light (manual) design phase while encourages
the reuse of existing contributions in form of patterns and (automatically) pro-
duces a consistent documentation at different level of abstractions. We decided
to take advantage of our experiences with PASSI by reusing a couple of its
features that we consider very successful: (i) the identification of agents as a
set of functionalities expressed in form of use cases, and (ii) the central role of
ontology description in analyzing the agent solution.

Our choices have been also conditioned by some of the fundamental strate-
gies of the Agile Manifesto[5]: (i) Individuals and interactions over processes
and tools, (ii) Working software over comprehensive documentation, (iii) Cus-
tomer collaboration over contract negotiation, (iv) Responding to change over
following a plan. All of these arguments brought us to identify the parts of
PASSI that could be reused (or even adapted for the new methodology); after
a detailed analysis we concluded that mainly five PASSI activities should be se-
lected: Domain Requirements Description (DRD), Agent Identification (AId),
Domain Ontology Description (DOD), Code Reuse (CR), Testing. In order to
accept the principles of the Agile Manifesto, one of the most important phase is
the code production; this phase, considering the original PASSI methodology,
arrives quite soon in the process, and it is largely supported by a tool (Agent
Factory) for automatic compilation of agent structures, patterns reuse, that is
a new evolution of the already presented Agent Factory, and automatic code
generation. The main features of this tool are:

• Automatic completion from diagrams: the tool analyzes the Agent Iden-
tification and Domain Ontology diagram and generates a first skeleton of
the agent classes required for the implementation.

• Pattern Reuse: patterns may be introduced in the current project from a
repository so enhancing the functionalities of one or more agents in a very
low time and obtaining very affordable solutions.

• Automatic code generation: the results of the previous steps are weaved
and the tool generates the code for the multi-agent system. This code
consists in a skeleton of the agent and their task classes; this skeleton
is completed by methods body coming from the reused patterns. Some
experiments have shown a percentage of code reuse that is about 50-60%.
Remaining parts of the code have to be added manually by the program-
mer.

The Testing phase plays a fundamental role in all the agile processes be-
cause it represents the only way of controlling the correctness of the system and
its adherence to requisites. A test suite developed specifically for agent verifica-
tion completes our development scenario[2]. Test plans are prepared before the
coding phase in according with specifications and the AgentFactory tool is also
able of generating driver and stub agents for speeding up the test of a specific
agent.

2



Figure 1: The Agile PASSI process

2 Agile PASSI description

Starting from the method fragments identified in the previous subsection and
considering the requirements for the new methodology, we assembled the new
Agile PASSI process [3] described in Figure 1 with a SPEM (the Software Process
Engineering Meta-model specification by OMG)[1] activity diagram. There we
can distinguish four models:

• Requirements, a model of the system requirements that is composed of
two steps (Planning and Sub-Domain Requirement Description),

• Agent Society, a view of the agents involved in the solution, their inter-
actions and their knowledge about the world. It is composed of two steps

3



(Domain Ontology Description and Agent Identification).

• Code, a solution domain model at code level

• Testing, planned before the code phase and performed soon after it

According to the UML profile proposed by the SPEM specification, in Figure
1 we used three different icons to represent activities to be done in the pro-
cess (WorkDefinition in SPEM) and artifacts to be produced (UML models
or text documents); specifically, a WorkDefinition (like the one used to model
”‘Planning”’) is represented by a couple of hexagons connected with a line, an
UML model (like ”‘Aid. Diagram”’) is represented by an icon with four small
squares and a text document (like ”‘Code”’) is represented by a typed sheet;
the remaining symbols belong to normal UML activity diagrams notation.

2.1 Requirements model

It is composed of two workdefinitions: planning and sub-domain requirements
description. During the first phase the development team decides which ac-
tivities have to be performed and the order they should be done; the result is
a division of the problem in several sub-problems faced in sequential iterations
(as prescribed to be in agile methodologies). The resulting iterativity and incre-
mentality are represented in the model by the two main cycles. In the second,
common UML use case diagram(s) are used to represent a functional description
of the system. The term sub refers, as previously said, to the chance of dividing
the whole problem in sub-problems.

2.2 Agent Society Model

Developing this model involves two work definition: Agent Identification and
Domain Ontology description. The first starts from the already produced use
case diagrams; according to our definition of agent, it is possible to see an agent
as a use case or a package of use cases and starting from a sufficiently detailed
diagram of the system functionalities, we group one or more use cases into
stereotyped packages so as to form a new diagram, in so doing, each package
defines the functionalities of a specific agent; for instance in Figure we can see
a portion of A.Id. diagram.

2.3 Code Model

This model includes two work definitions: Pattern Reuse and Coding. In the
first we try to reuse patterns of agents and we obtain pieces of reusable code that
is documented with a structural view and a behavioral one. This is done with aid
of a tool that we already adopted in conventional PASSI: Agent Factory[6]. Since
we need a good documentation of the design phase, we specifically produced an
add-in for the MetaEdit+ tool that we use to design our systems. This module,
starting from the information stored in the Agent Identification diagram and in

4



the structural and behavioral models generated by Agent Factory, automatically
produces four documents:

• COD - a class diagram representing agents, their communications and
related parameters (content language, agent interaction protocol and re-
ferred ontology)

• (M)ASD - a class diagram where we represent the whole system at the
social, multi-agent level of abstraction. It represents each agent with one
class and agent’s tasks as methods of the class.

• (M)ABD - an activity diagram representing the flow of control and com-
munications between all the agents.

• SASD - a different class diagram for each agent in order to represent its
internal structure and all its task in the most detailed way

In the coding step we complete the code previously produced by putting in
practice all the rules of extreme programming.

2.4 Test

The testing phase, in this process, envelopes the coding phase, that is it occurs
before and after than coding. This feature came out from the agile manifesto
principles. The agile processes, as the eXtreme Programming (XP), rule that
testing must be a continuous activity during the developing process. The test-
ing phase have to start before programming a component (or an agent in this
context); in this phase the programmer have to prepare one or more tests that
the component must satisfy after the coding phase. This represents a way to
take under control the programming work, in fact if almost a test fails the com-
ponent will be subject to a refinement and a refactoring; this until all the test
are satisfied. When the test phase terminates successfully then a working ver-
sion of the agent is released. This may be not entire according what requisites
were included in the test, but it is perfectly running, and it may be used as a
prototype to use for a demonstration for the client.

References

[1] Software process engineering metamodel. version 1.0. OMG Document, Nov
2002. http://www.omg.org/technology/documents/formal/ spem.htm.

[2] G. Caire, M. Cossentino, A. Negri, A. Poggi, and P. Turci. Multi-agent
systems implementation and testing. In Fourth International Symposium:
From Agent Theory to Agent Implementation, Vienna, Austria (EU), April
14-16 2004.

[3] A. Chella, M. Cossentino, L. Sabatucci, and V. Seidita. From passi to agile
passi: tailoring a design process to meet new needs. In IEEE/WIC/ACM

5



Conference on Intelligent Agent Technology (IAT 2004), Beijing - China,
20-24 September 2004.

[4] M. Cossentino, L. Sabatucci, and A. Chella. A possible approach to the
development of robotic multi-agent systems. In IEEE/WIC IAT’03 Confer-
ence, Halifax - Canada, 13-17 October 2003.

[5] Agile Manifesto. http://http//agilemanifesto.org.

[6] M.Cossentino, L.Sabatucci, S.Sorace, and A.Chella. Pattern reuse in the
passi methodology. In ESAW’03, Imperial College London, UK (EU), 29-31
October 2003.

6


