
Published on dev2dev (http://dev2dev.bea.com/)
 http://dev2dev.bea.com/pub/a/2004/12/ebXML.html
 See this if you're having trouble printing code examples

Introduction to ebXML

by Blake Dournaee
12/06/2004

Abstract

This article will provide the reader with a general introduction to ebXML, including an overview of
the main goals of the specification set and a conceptual outline of why ebXML exists. In addition to
the conceptual overview, the reader will be given an introduction to some of the details regarding the
messaging layer, registry, business policies, and the relationship of ebXML to XML Web services.

Introduction to ebXML

Why do we need another XML language? It seems like every day a new XML standard is being
developed or ratified. It is like a giant XML steamroller is pressing language after language on both
industry and the public alike. This relentless condition causes a certain type of scrambling, wherein
technologists must try to ascertain the value of moving from whatever legacy format they used in the
past to the new, glorified XML version. This must all be done, of course, while maintaining sanity
and security.

This never-ending flow of XML languages is partly due to the simplicity of XML itself. XML
cannot accomplish much on its own, and in some ways it is too simple. Specification upon
specification must be developed to mold XML into something useful. At times, it appears that new
XML languages are developed just for fun, as if there is a constant need to "XMLify" every possible
computing format or interaction.

The main goal in this introduction is to convince the reader that ebXML is not just a blind format
change from non-XML EDI (Electronic Data Interchange) based business interactions. While it may
seem as though ebXML has joined the ranks of "just another XML language," in fact it has important
conceptual benefits for business, mainly due to its ad hoc vision.

The Vision of Ad Hoc Business

One of the most powerful features of ebXML is its ability to achieve ad hoc business interactions. At
first glance, the term ad hoc may conjure up negative images of unplanned disasters and unexpected
events, but it is precisely this feature of ebXML that makes it especially powerful for conducting
electronic business.

To use a simple analogy, consider buying groceries at the local supermarket. Suppose you always
buy groceries on a regular basis from supermarket A. Over time, you develop a business relationship
with the supermarket based on the goods provided and the process undertaken to purchase items,
such as interacting with the clerks and using your ATM card to make purchases. While you have a
long relationship with supermarket A, your relationship is ad hoc and impromptu.

Consider now a new store, supermarket B, that opens with lower prices for the same goods. It is in
your best interest, of course, to begin a new business relationship with supermarket B, and you can
do so because the business processes and interactions are expected to be the same, that is, you'll
speak in English and probably use your ATM card to make the transactions happen. Here, the ad hoc

Pagina 1 di 10dev2dev: Introduction to ebXML

17/05/2006http://dev2dev.bea.com/lpt/a/9

nature of the business relationships is what makes the free market economy work; you can easily
abandon your previous relationship with supermarket A and quickly make a new relationship with
supermarket B.

Electronic business over the Internet, however, has infrastructure costs that factor in to the overall
price of doing business. For example, if two businesses arrange to trade electronically, they must pay
the price of arranging the infrastructure and software, as well as formalize the business interactions
and policies, including adequate security policies.

Over time, if new businesses emerge that offer lower prices for goods and services, the mode of
interaction and the technologies required become an economic barrier. In other words, if the cost of
doing business involves hefty infrastructure and process modification costs, then there is no reason
to switch to a lower price of goods if it isn't going to matter in the end.

For example, suppose supermarket B offers slightly lower prices, but the clerks all speak a different
language, and they only accept currency in two-dollar bills. In this case, the extra costs required to
do business, such as learning the language and having the correct currency in hand, may outweigh
the price difference.

One of the core values of ebXML is its vision of ubiquity from a technology perspective. It is built
around XML, SOAP, HTTP, and SMTP, all open standards with low barriers to entry. In theory, the
focus on technological ubiquity should allow electronic businesses to approach the ad hoc free
market concept that we all experience when we shop at the supermarket.

What About XML Web Services?

It may seem as though I have committed a crime of sorts, mentioning SOAP and XML without
alluding to XML Web services or service-oriented architectures. It turns out, however, that the
ebXML architecture predates many of the general XML Web services standards but stays true to
most of the concepts. One simple way of understanding the breadth of both XML Web services and
ebXML architectural concepts is to rally around three terms: wire, description, and discovery.

The first term represents technologies for message transport. For both XML Web services and
ebXML this is SOAP, but the similarities don't go much further than that. XML Web services has a
loosely coupled wire stack that consists of separate specifications for reliable transport (WS-
Reliability) and security (WS-Security) while ebXML rolls all this functionality into its messaging
standard, ebMS, using a mix of technologies.

For the description and discovery stacks, XML Web services uses the Web Services Description
Language (WSDL) and UDDI, respectively. For ebXML, these description and discovery
mechanisms are part of the ebXML registry; further, ebXML includes additional specifications for
business process and collaboration.

In short, ebXML is a self-contained set of specifications that is internally consistent and doesn't rely
on emerging standards and specifications.

ebXML Overview

To achieve the ad hoc vision just discussed, ebXML provides a complete framework for business
interactions, all delivered as a set of vendor-neutral specifications. This complete framework is
designed to answer a number of holistic business questions. The perspective for these questions is
framed with respect to a given trading partner:

� How do I describe my business process and specific interfaces?

Pagina 2 di 10dev2dev: Introduction to ebXML

17/05/2006http://dev2dev.bea.com/lpt/a/9

� How do I share my business process with other partners?
� How do I find out which business processes my partner supports?
� How do I describe the business messages for a particular transaction?
� How do I describe the security policy and technical configuration to be used?

In theory, if a trading partner can describe itself in these terms, it can move one step closer to
involving itself in an impromptu, electronic free market. Many of these questions can be answered
by implementing a shared registry of information where business agreements and processes can be
centralized. This central point repository is known as the ebXML registry. Along with the registry,
there are specifications for the actual wire level messaging layer as well as for business process
specifications and collaboration information. The set of concrete ebXML specifications maps to
these concepts as follows:

� Centralized Shared Registry: Registry Information Model, Registry Services Specification
(ebRIM, ebRS)

� Business Processes & Collaboration: Business Process Specification Schema, Collaboration-
Protocol Profile and Agreement Specification (ebBPSS, ebCPPA)

� Messaging: Message Services Specification (ebMS)

ebXML Registry

A vital part of an ebXML implementation is the ebXML registry. The registry itself is quite versatile
and capable of representing a large range of data objects including XML schemas, business process
descriptions, ebXML Core Components, UML models, generic trading partner information, and
software components. In order to support such a wide variety of data, the ebXML registry is
designed more like a database, with a well-defined information model rather than a directory. This
point is important because there is a prevailing belief that the ebXML registry is in competition with
registry services for XML Web services such as UDDI. In fact, the two have different purposes
entirely: one might find a published ebXML registry endpoint in a UDDI directory, but UDDI isn't
designed to handle the complex classification relationships possible with the ebXML registry.

There are two ways to look at the ebXML registry: from the outside looking in, or from the
information model looking outward. The former view provides more of a simple overview because it
is from the viewpoint of a client looking to access one of the two interfaces provided by the ebXML
registry. These two interfaces include the Lifecycle Management Interface and the Query
Management Interface. The LifeCycle Management Interface is used to manage the lifecycle of the
objects (also called repository items) in the registry, and the Query Management Interface is used to
make queries against a registry. In order to grasp how the interfaces work, we must take a brief look
at how information is logically stored within the registry itself.

ebXML Registry Information Model

The core information model used by the ebXML registry is a tree-based classification scheme, which
means that information about industries or business partners is arranged in a hierarchy. One major
difference between the ebXML registry information model and a simple hierarchy is its ability to
convey more complex relationships. For example, consider the following tree-based hierarchy
presented in the ebRIM specification:

Pagina 3 di 10dev2dev: Introduction to ebXML

17/05/2006http://dev2dev.bea.com/lpt/a/9

Figure 1. ebXML Registry Information Model (ebRIM)

In Figure 1 the reader should note that a portion of the hierarchy is shaded. The shaded portion refers
to the actual registry objects, while the unshaded portions are called classifications. In many ways,
the classification scheme used by the ebXML registry behaves more like an ontology or structure of
knowledge. Notice that arbitrary leaves in the tree can participate in additional classification
relationships.

ebXML Registry Interfaces

The ebXML Registry Architecture is defined in terms of the registry service and the registry client.
The registry service has two main interfaces for managing objects in the information model: lifecycle
management and query management. The lifecycle management interface has abstract methods such
as submitObjects, updateObjects, removeObjects, and deprecatedObjects, which are used to

submit objects or classifications to the information model. Similarly, the query management
interface has interfaces such as submitAdhocQuery, getRegistryObject, and
getRepositoryItem, which are used to query the registry itself.

The abstract registry service interfaces are defined using a Web Services Description Language
(WSDL) file, available from the OASIS ebXML Registry Technical Committee. There are three
concrete bindings to the two interfaces: SOAP over HTTP, ebMS, and straight HTTP. This diversity
with binding choices means that ebXML clients will come in the form of both thin clients and fat
clients. The thin clients are likely to be browser-based, read-only interfaces, and the fat clients are
used for making changes or additions to a running registry.

To summarize then, there are five important ebXML specifications: ebRIM, ebRS, ebBPSS, ebCPP,
and ebMS. The ebMS specification defines the ebXML Message Service Protocol and is designed to
enable the secure and reliable exchange of business messages between trading partners. While the
actual business messages sent as part of a business transaction are indeed important, the messaging
portion of ebXML is just a small part of the overall ebXML architecture, which is defined in terms
of many different components and specifications. An important high-level picture of how an ebXML
interaction occurs can be framed in terms of ebXML functional phases.

ebXML Functional Phases

The act of arranging for a new business relationship means accessing the shared ebXML registry,
which is generally governed by the current functional phase. Three functional phases are defined by
the ebXML technical architecture. These include the implementation phase, discovery and retrieval
phase, and runtime phase. Each phase carries with it its own security requirements and processes.

Pagina 4 di 10dev2dev: Introduction to ebXML

17/05/2006http://dev2dev.bea.com/lpt/a/9

The next three subsections give a quick overview of each phase. In general terms, the first two
phases of implementation and retrieval represent a handshake of sorts, while the final runtime phase
represents the actual units of business.

Implementation Phase

The implementation phase of ebXML is considered the time when a trading partner is making an
active decision to do business using the ebXML framework. As shown in Figure 2, in this phase the
trading partner will analyze its business processes in terms of the generalizations provided by
ebXML and will publish its business processes to a registry. During this phase, an actual ebXML
implementation must be produced, either built in-house from the core ebXML specifications or
obtained from a third-party vendor. The result of the implementation phase is a working ebXML
framework including a set of published business processes and interfaces. The Collaboration
Protocol Profile (CPP) is also published at this time.

Figure 2. Implementation phase

Discovery and Retrieval Phase

The discovery and retrieval phase of ebXML involves trading partners using the registry to discover
business processes and interfaces published by other trading partners. Typically, the CPP for a
specific partner or set of partners is exchanged at this time. The CPP describes specific business
processes and technology details, including security, transport, and reliability details. The specific
details denoted in the CPP are used as a basis for messages exchanged during the runtime phase.
Figure 3 shows two trading partners discovering each other's Collaboration Protocol Profile
documents.

Figure 3. Discovery and retrieval phase

Pagina 5 di 10dev2dev: Introduction to ebXML

17/05/2006http://dev2dev.bea.com/lpt/a/9

Runtime Phase

The runtime phase is concerned with the actual business transactions and choreography of messages
exchanged between partners. Typically, there is no runtime access to the registry during the runtime
phase. The CPP instances published by each participating trading partner are narrowed to form the
Collaboration Protocol Agreement (CPA). The CPA is a special business agreement tied to a specific
transactional conversation and makes explicit requirements derived from the intersection of the
various CPP instances published by each of the trading partners. As shown in Figure 3, each trading
partner derives the CPA by performing an intersection between each of the partner's CPP instances.
Before actual ebMS messages are exchanged, each trading partner should compare CPA instances to
ensure consistency between the two. The CPA instances should match on both ends before the
transaction occurs.

Figure 4 can be summarized in three simple steps. In step 1 each trading partner is responsible for
obtaining the necessary CPP document for the business partner it would like to engage. In most cases
the CPP will be retrieved from an ebXML registry. In step 2, each partner derives the Collaboration
Profile Agreement (CPA), which makes explicit the range of choices offered in the CPP. Finally, in
step 3, the partners can begin business transactions under the governance of the CPA. In this sense
there is a policy relation between the ebMS messages and the derived CPA.

Figure 4. Runtime phase

Collaboration Protocol Profile and Collaboration Protocol Agreement

As described earlier, one of the key components of ebXML is an artifact known as the CPP or
Collaboration Protocol Profile. The CPP contains specific technology implementation details in
support of a particular business process. The CPP is published to the ebXML registry and outlines
supported technology binding details. The main purpose of the CPP is to ensure interoperability
between trading partners relying on the ebXML framework from possibly disparate vendors.

The CPP is important from a security perspective because it houses security policy information along
with specific message exchange details, all represented in XML. In the context of a security gateway
or firewall, this policy information can be used to configure the security proxy to handle the
appropriate message-level security operations.

Pagina 6 di 10dev2dev: Introduction to ebXML

17/05/2006http://dev2dev.bea.com/lpt/a/9

Some of the message exchange details defined by the CPP include specifics such as transport
protocol mechanisms, message reliability mechanisms, transport security mechanisms, trust artifacts
such as X.509 certificates, and message-level security policy information. In addition to
implementation details, the CPP also refers to the set of supported business collaborations that define
the supported business transactions.

A CPP alone doesn't enforce specific choices for a message exchange. Only the intersection of at
least two CPP documents produces a CPA capable of enforcing specific message-level security and
reliability mechanisms. The organization of the CPA is nearly identical to the CPP, and for the
purposes of declarative security policy, the elements and descriptions that appear in the CPP are
shared by the CPA. In the end, the reader should think of the CPA as the final governing security
policy statement for a set of ebMS message exchanges.

CPP Structure

The CPP describes the set of message exchange capabilities and business collaborations supported
by a trading partner. Message exchange capabilities are the implementation details and policies for
the runtime phase, and business collaborations are specific business transactions, which are
described by process specification documents. Figure 5 is a pictorial view of the CPP.

Figure 5. CPP concepts

The most important point regarding Figure 4 [JS: should this be Figure 5, not 4?] is the fact that the
CPP represents a list of choices that will be narrowed down when the CPA is generated. The CPA is
generally tied to a single process specification document used by both trading partners. The process
specification document represents the unit of business being conducted and is largely out of scope
for this article. More information regarding the process specification document can be found in the
ebXML Business Process Specification Schema.

Pagina 7 di 10dev2dev: Introduction to ebXML

17/05/2006http://dev2dev.bea.com/lpt/a/9

CPP Data Model

The concrete CPP instance is defined by five direct child elements, shown in Listing 1. A simple
BNF grammar is used to describe the cardinality of the elements. A "+" means one or more, a "?"
means zero or one, and a "*" means zero or more. The absence of an indicator means exactly one.

Listing 1. The Collaboration Protocol Profile (CPP) XML structure

<CollaborationProtocolProfile>

 (<PartyInfo>) +

 (<SimplePart>) +

 (<Packaging>) +

 (<Signature>) ?

 (<Comment>) *

</CollaborationProtocolProfile>

Each element is described as follows:

� <PartyInfo>

This element identifies the organization (or its parts) whose capabilities are described by the
CPP.

� <SimplePart>

This element describes the components used to make up composite messages.

� <Packaging>

This element is used to describe how the message header and payload are packaged for
transmission.

� <Signature>

This element contains an XML Signature used to sign the actual CPP document.

� <Comment>

This element is used for comments.

Each of the child elements of the <CollaborationProtocolProfile> contains many more nested

children. The CPP itself is quite complex, and an entire article could be devoted to examining the
structure. For now we will stop at the outermost layer to give the reader a high-level overview.

If we were to move away from the concepts and go a level deeper to the concrete implementation,
we could look at each of the functional phases in more detail.

Implementation, Discovery, and Retrieval Phase Details

From the developer viewpoint, these phases would entail interaction with an ebXML registry for
publishing and retrieval of business documents and processes. For the implementation phase, the
ebXML registry lifecycle management service would be used, and for the discovery phase the query
management interface would be used. To actually access these interfaces, the developer has a choice
of three concrete bindings against the published WSDL. The WSDL in this case is part of the
ebXML Registry Service specification and will differ depending on the version of the specification.
The available bindings include SOAP over HTTP, ebMS, and straight HTTP.

The first binding would represent a fat client where the developer builds an actual client using a
WSDL description for managing the state of objects in the registry. In this case, the client behaves

Pagina 8 di 10dev2dev: Introduction to ebXML

17/05/2006http://dev2dev.bea.com/lpt/a/9

like a pure Web services client. The second binding is very similar to the first, but the wire format
uses ebMS (which is built around SOAP). The third option is an HTTP interface, which is the most
lightweight of the three. In principle, it could be implemented with an XML-aware browser. Using
this binding the developer may be accessing the registry through a Web application native to the
registry itself. It must be stressed here that there are no business transactions at this stage; we are
simply managing the registry by providing the necessary information for other partners engaged in
business transactions.

Runtime Phase

Once the business handshaking has occurred in the first two phases, the actual messages transmitted
are governed by the ebMS specification. The ebMS specification uses SOAP with Attachments to
package business data. The main SOAP payload contains signed header information using XML
Signature, including a manifest or list of the actual payloads. The actual business message is
conveyed as one or more MIME parts and is not represented in the SOAP body. While ebMS is
based around SOAP, it uses SOAP as a convenient packaging mechanism rather than a full fledged
Web services transport.

The schema definition for ebMS is defined in terms of SOAP v1.1 extension points. In particular, a
BNF grammar style view of the element structure is shown in Listing 2. Compared to SOAP, the
ebMS specification adds a <MessageHeader> in the SOAP header and a <Manifest> element in the

SOAP body. This structure uses standard cardinality symbols where "*" means zero or more, "?"
means zero or one, "+" means one or more, and the absence of a symbol means exactly one.
Namespaces have been omitted for clarity.

Listing 2. SOAP/ebMS element structure

<Envelope>

 <Header>

 <MessageHeader>

 <From>

 <To>

 <CPAId>

 <ConversationId>

 <Service>

 <Action>

 <MessageData>

 (<DuplicateElimination>) ?

 (<Description>) *

 </MessageHeader>

 <Header>

 <Body>

 (<Manifest>

 (<Reference> +

 (<Schema>) *

 (<Description>) *

 </Reference) +

 </Manifest>) ?

 <Body>

</Envelope>

The actual business payload is domain-specific and would be found as a MIME attachment after the
first main SOAP payload.

Conclusion

This article introduced ebXML and its vision of ad hoc business. At this point the reader should have

Pagina 9 di 10dev2dev: Introduction to ebXML

17/05/2006http://dev2dev.bea.com/lpt/a/9

a good conceptual view of ebXML, including an overview of the constituent standards. In addition,
the reader should have a grasp of the purpose of the Collaboration Protocol Profile (CPP) and how it
differs from the Collaboration Protocol Agreement (CPA), as well as some insight into the ebXML
functional phases.

Resources

� ebXML.org
� S/MIME Specification
� PGP/MIME
� W3C XML Signature
� W3C XML Encryption
� W3C Web Services Activity
� SOAP/XML Protocol
� SOAP Messages with Attachments
� OASIS WS-Security

Blake Dournaee is a senior architect at Sarvega, Inc, based in Oakbrook Terrace, IL.

Return to dev2dev.

Pagina 10 di 10dev2dev: Introduction to ebXML

17/05/2006http://dev2dev.bea.com/lpt/a/9

