ADELFE’s Fragments 1/16

This document presents a very preliminary work concerning the fragments of the ADELFE
methodology.

The web site describing the ADELFE methodology is http://www.irit.fr/ADELFE but
ADELFE process is also briefly described in this document.

In a first step, we have chosen to develop five fragments that are linked to three activities
of the ADELFE process because these activities are specifically related to the kind of
problems and agents which ADELFE deals with. We think that they are more
representative than other ones.

The resulting fragments are numbered depending on the activity they are coming from.

IRIT/SMAC Feb. 2004

ADELFE’s Fragments 2/16

1.

ADELFE’s FRAGMENTS - V1
Fragment Definition (FIPA)

A fragment is a portion of the development process, composed as follows:

1.
2.

9.

It

A portion of process (what is to be done, in what order), defined with a SPEM diagram

One or more deliverables (artifacts like (A)UML/UML diagrams, text documents and so on).
The result of the work could also be some kind of product/artifact that is not be delivered to
anyone outside the development process. It includes a reference to a recommended
notation/language/structure to be used to represent AUML/UML/other diagrams if they are part
of the deliverables (as it is common)

Some preconditions (they are a kind of constraint because it is not possible to start the process
specified in the fragment without the required input data or without verifying the required guard
condition)

A list of concepts (related to the MAS meta-model) to be defined (designed) or refined during
the specified process fragment.

Guideline(s) that illustrates how to apply the fragment and best practices related to that

A glossary of terms used in the fragment (in order to avoid misunderstandings if the fragment is
reused in a context that is different from the original one)

Composition guidelines — A description of the context/ problem that is behind the methodology
from which the specific fragment is extracted.

Aspects of fragment. Textual description of specific issues like for example: platform to be
used, application area...

Dependency relationships useful to assemble fragments

should be noted that not all of these elements are mandatory. Some of them (for instance,

notation, guideline or inputs) could be not applicable or not necessary for some specific fragment.

The fragment refers to a MAS meta-model and its aim is to contribute in increasing the definition of
the instance of this meta-model that will solve the problem the designer is facing.

IRIT/SMAC Feb. 2004

ADELFE’s Fragments 3/16
2. ADELFE Process

2.1. Preliminary requirements

- Activity 1: Define User Requirements. Its objective is to produce a preliminary version of a
document in which requirements are expressed, named Requirements Set.

- Activity 2: Validate User Requirements. This activity aims to validate, by the End User, the
last document.

- Activity 3: Define Consensual Requirements. This activity aims to regroup in the
Requirements Set document the requirements expressed by both the End User and the

*: Client *: End User * - Requirement Analyst

w

Define Lar Reguite me rits T

A

[End uger not QK] -
:Requirerngrits EE[\.__
[relirminary] "'-,_‘
0

o

)

"‘-\ ‘alidate Pequirements
[Enc e OK]

=Y
[Fesuiretnprits analya not O]

Requirements Sgt falidated] T Tmeeol

Define Conzznaual Reguirements

~——
.

[Recurrigrésar et OK]

. L,
T
.

:Fequirements Set - .

[conzenaual] “ﬁ —\

Establizh Kewoord Set

eyntd Set final]

N

N

Edract Lirrits.and Caonztraints

iy <

:Fequiremnents Set
finall

Figure 1. Preliminary Requirements Work Definition

IRIT/'SMAC Feb. 2004

ADELFE’s Fragments
Analyst.

4/16

- Activity 4: Establish the Keyword Set. From the Requirements Set document, the Analyst
can extract keywords and list them in the Keyword Set document.

- Activity 5: Extract Limits and Constraints. The Analyst has to define limits for the system to
be, in terms of operating system, languages, technology and so on. These constraints are
added to the Requirements Set document.

* - Ervvironment Analyst

:Prelimina ry Requirements
lilfarkgy rochuct

v

)

Characterize Brwirontmerit

:Eronmert Definition

fiuith cooperation failures idertfied]

v

Detemine Lke &A

...

‘Bvaironmert Definition
[Cornplete]

* - Ul Designer

Elahorate LI Protobpes «

f\

fralidatipn not QK]

i

*: End User

)

)

]
Laliddtion CK]

:

]

]

v

Ul prototwe
final]

Walidate LI Prototypes

IRIT/'SMAC

Figure 2. Final Requirements Work Definition

Feb. 2004

ADELFE’s Fragments
2.2. Final requirements

5/16

- Activity 6: Characterize the Environment. It consists in reasoning about the nature of the
environment. The analyst has to characterize the environment by using a specific vocabulary
and to check the input or output interfaces of the system-to-be in which cooperation failure
may appear, according to the AMAS theory. This activity produces an initial Environment

Definition document.

- Activity 7: Determine Use Cases. This activity, by using the use case UML notation, aims to
clarify the functionalities the system-to-be has to provide. It results on the production of the

* - Domain Analyst

Pralyze the Dormin
i

[reguire nerldecormp ostion]

-
bl
‘‘‘‘‘
-
-—
-~

* - Agent Analyst

< Softwmre Archite cture
[preliving rd

s
K

[decomposition achieved]\"',

AMAS Adequacy Swthesis
final]

Ernironrment Definition
[cormplete] .,

Study Interaction s betuee n Entties 5
I" - -
l’“ >
RS oy i,
BErvironment Definttion -Sofhwere Aechite chure
Final] [armlete]

8

....
K

Mendfy Auents .’.". 12

Software Aechitectre
o= [ncluding agents]

Figure 3. Analysis Work Definition

IRIT/'SMAC

Feb. 2004

ADELFE’s Fragments

6/16

Functional Description model that is added to the Environment Description document.

- Activity 8: Elaborate Ul Prototypes. This classical software engineering activity produces Ul
prototypes for each previously defined use cases.

- Activity 9: Validate UI Prototypes. This activity aims to validate the last work product by the

End User.

2.3. Analysis

* - Object Designer

<Saftmare Archite ure
[cormkete]

|

Sudythe mhiledh =

andthe WA bode|

*: Agent Designer

Detailed Arghite cture

Detailed Architecturs
[including agert rmodel]

Complete Deggn Dm

Study Interaction Language s

¢

-hteraction Languages
[initial]

I PU—

De sign Agents

/L\
Detailed Pechitecture

‘hteraction Languages
firat] \ L / [cratft]

Fazt Protobyping

‘l’ [radequate behavior]

[adequate hehavior] < >

-hteraction Languages

finial]

ifed Architecturs

final]

IRIT/'SMAC

Figure 4. Design Work Definition

Feb. 2004

ADELFE’s Fragments 7/16

Activity 10: Analyze the Domain. In order to model a static view of the system, by using
actors and classes, the Domain Analyst has to index identified entities in the Software
Architecture document.

Activity 11: Verify the AMAS Adequacy. During this activity, the Agent Analyst has to use
the AMAS Adequacy Tool to decide if the AMAS technology is necessary to design the
system-to-be. This tool may also guide the Agent Analyst to detect a possible recursive
decomposition of the system. The results of this analysis appeared in the AMAS Adequacy
Synthesis document.

Activity 12: Identify Agents. The Agent Analyst has to examine previously identified
entities—during Activity 6—in their context, use case or sequence diagrams, to decide if
some of them may be represented as cooperative agents in the system—in the sense of the
AMAS theory—in terms of their interactions or the possibility to be in interaction with
cooperation failures. This activity enhances the Software Architecture document.

Activity 13: Study Interaction between Entities. The Domain Analyst has to reason on
relations between active and passive entities, between active entities, and between agents.
This activity produces models: sequence diagrams and AIP protocol diagrams. It aims to
finalize the Software Architecture and the Environment Description documents.

2.4. Design

Activity 14: Study the detailed Architecture and the Multi-Agent Model. The aim of this
activity is to define the different components (packages, classes, etc.) that appear in the
system, and to possibly re-use pre-existing components (i.e. design-patterns) in order to
design the architecture of the system and to produce the Detailed Architecture document.

Activity 15: Study Interaction Languages. Agents generally interact by using specific
protocols. This activity aims to define the different interaction protocols agents may use by
using AIP model. This notation has been integrated to the OpenTool software. This activity
produces an initial Interaction Languages document, and its models.

Activity 16: Design Agents. For each previously identified agent, the Agent Designer has to
specify its architecture, i.e. specify its skills, its aptitudes, its interaction language(s), its
world representations and its non-cooperative situations. So, the Detailed Architecture and
Interaction Languages documents are enhanced and then completed.

Activity 17: Fast Prototyping. This activity enables the Agent Designer to test the agents’
behaviours by simulating instances of agents in the OpenTool platform. During this activity,
the Agent Designer may modify agents’ components by backtracking to the previous activity
while agents’ behaviours are not correct.

Activity 18: Enhance Design Models. This last design activity aims to complete previous
specifications models to close the design work definition and to design dynamical behaviours
of the different entities appearing in the system by using state-chart diagrams.

IRIT/SMAC Feb. 2004

ADELFE’s Fragments 8/16
3. MAS Meta-model for ADELFE
Incomprehension |
Representation Communication AlP
Ambiguity L
1 1
Perception
NCS Cooperative Interaction
Incompetence 1.~ ! agent ! g
1’ 1 Q1 Action
Concurrency |—| 1 * .
Aptitude Skill Characteristic
Conflict e o
Uselessness

Figure 5. MAS Meta-model for ADELFE

4. ADELFE’s Fragments

Based on a SPEM description, a fragment could be a phase or a work definition, an activity or a
step.

In ADELFE, we think that a work definition is a too general point of view and a too complex one to
become a step. Furthermore, the unit of decomposition that has been chosen in the ADELFE’s
process is the activity which can be decomposed into steps.

Therefore, the degree of cohesion and dependency between the different steps composing an
activity must be studied in order to determine the fragment granularity.

Steps belonging to a same activity will be considered as separate fragments if they are loosely
related to one another and could be applied independently. For instance, in the activity 13, the study
of relationships between entities and between agents can be separately done and then each step will
be viewed as a fragment. On the contrary, the steps of the activity 11 have no meaning if they are
separated because this activity is purely linked to ADELFE and therefore couldn’t be separately
reused in another methodology.

A fragment could be then:
e A simple activity,

e A complex activity in which steps are so strongly dependent that thay cannot be separated and
must be applied in a given predefined order,

e A step belonging to an activity which will not then appear as a fragment.
4.1. Fragment 11 - Verify the AMAS Adequacy

4 .1.1. Portion of Process

This fragment corresponds to the portion numbered 11 on the “Analysis Work Definition SPEM
specification” shown in figure 3.

IRIT/SMAC Feb. 2004

ADELFE’s Fragments 9/16

This fragment is an activity composed of two steps that cannot be dissociated. The Agent Analyst
has to answer several given questions concerning first, the global level of the system he has to
design and second, the local level i.e. the entity level.

4.1.2. Deliverables

This fragment produces a textual deliverable called “AMAS Adequacy Synthesis”. This text is
made of the different answers given by the analyst when using the AMAS Adequacy tool as well as
the results given by this tool.

4.1.3. Preconditions

This fragment is intended to define if an adaptive system is necessary to build the multi-agent
system suited to the needs of the designer. It can be used to define which kind of MAS is useful.

In order to apply it, requirements have to be done. More especially, the analyst has characterized the
environment and he produced a textual functional description that has been enclosed in the
“Environment Definition” document. The domain analyst has identified the entities of the system in
the “Software Architecture” document.

Input - Precondition To be designed Output

AMAS Adequacy Synthesis

Environment definition (text) Answers to questions (text)

Software Architecture (UML) - -

4.1.4. Relationships with the MAS Meta-model

None.

4.1.5. Guideline(s)

Sometimes, AMAS programming is completely useless. For example, if the algorithm required to
solve a task is already known, if the task is not complex or if the system is closed and nothing
unexpected can occur, having an adaptive system is useless.

So, in this fragment, the adequacy of AMAS must be studied at two levels: at the global level to
answer to the question "is an AMAS required to implement the system?" and at the local one to try
to determine if some agents are needed to be implemented like AMAS i.e. if a certain kind of
decomposition is required during the building of the system.

The AMAS Adequacy graphical tool will be a help to answer to these two points. Firstly, a certain
number of questions regarding the global level must be answered. Then other questions concerning
the local level will be added. In the end, the two areas at the bottom of the graphical tool window
will show the answers of ADELFE regarding the global level and the local one; by clicking on
those areas, an interpretation for these results can be obtained.

4.1.6. Glossary

e Agent — An agent is a physical or virtual entity which can act in an environment, which can
communicate directly or not with other agents, which is driven by a set of tendencies, which
possesses resources of its own, which is capable of perceiving its environment, which has only a
partial representation of this environment, which possesses skills and can offer services, whose
behavior tends towards satisfying its objective, taking account of the resources and skills
available to it and depending of its perception, its representation and the communication it
receives. [Ferber 99]. Furthermore, the main properties of agents in AMAS are their autonomy
and the fact that they are cooperative. A cooperative agent has a social attitude: it always tries to

IRIT/SMAC Feb. 2004

ADELFE’s Fragments 10/16

act cooperatively. It must be able to detect when it is not cooperative and act to come back in a
state it judges being cooperative from its own point of view.

e AMAS — An adaptive multi-agent system is a multi-agent system which is able to autonomously
change its behaviour while running. It does this to adjust its behaviour to its dynamic
environment in order to be functionally adequate. Such a system is characterised by the
following points: (1) it is plunged into an environment, (2) it has a function to achieve and (3) it
is composed of interacting agents.

e Entity — An entity is an actor in the UML sense. It is a set of coherent roles which the users of
use cases play when they interact with use cases. In ADELFE, two types of entities will be used:
“active” entities which may behave autonomously and “passive” ones which can be considered
as resources by the system.

e Environment — The environment of an agent refers to all that is external to the agent. One can
distinguish the social environment (the agents it knows) from the physical environment (the
material resources that can be perceived by the agent or by its own effectors). In ADELFE,
environment is characterized using terms provided in [Russel 95], it can then be accessible or
inaccessible, continuous or discrete, deterministic or not and dynamic or static.

4.1.7. Composition Guidelines

ADELFE, the methodology from which this fragment is taken, is devoted to the design of AMAS
(Adaptive MAS). The related AMAS theory says that for all functionally adequate system (realizing
the desired function) there is at least a system having a cooperative internal medium which realizes
an equivalent function. In other words, to design a system realizing the desired function, having a
system formed by cooperative agents is sufficient; this cooperation directs the social attitude of
these agents.

Applications concerned by this kind of programming are open and complex ones, applications for
which there is no algorithm a priori known (for example, flood forecast, electronic commerce, ants
simulation...).

4.1.8. Aspects of Fragment
The AMAS adequacy tool (provided with ADELFE methodology) must be used in this fragment.

4.1.9. Dependency relationships with other fragments

None.
4.2. Fragment 12: Identify Agents

4.2.1. Portion of process

This fragment corresponds to the portion numbered 12 on the “Analysis Work Definition SPEM
specification” shown in figure 3.

This fragment is an activity composed of three steps that cannot be dissociated and consists in
determining the entities (already identified during previous activities) that must be viewed as agents
more especially as cooperative agents. These entities must be examined in their context (use case or
sequence diagrams) to decide if some of them may be represented as cooperative agents in the
system in terms of their interactions or the possibility to be in interaction with cooperation failures.

4.2.2. Deliverables

This activity refines the Domain Model which belongs to the “Software Architecture” document by
determine classes that will be tagged with the “Cooperative Agent” stereotype.

IRIT/SMAC Feb. 2004

ADELFE’s Fragments 11/16
4.2.3. Preconditions

Entities must be known and indexed (active, passive) before establishing if they are agents or not.
This fragment then needs a preliminary Domain Model built during previous activities of the
methodology.

The aim of this fragment is to identify cooperative agents, this kind of agents must be then useful
and the system built must be an AMAS. So the result given by the AMAS Adequacy activity must
be positive.

Characteristics of cooperative agents must be known to be studied.

4.2.4. Relationships with the MAS Meta-model

Final results are identification of the Cooperative Agents (see figure 5). These Cooperative Agents
are composed of different concepts that do not intervene in this fragment.

4.2.5. Guideline(s)

The first step of this fragment consists in studying entities in the domain context. For each entity
already defined, the Agent Analyst has to decide if it is autonomous, it has a local goal to pursue, it
has to interact with some other entities and if it has a partial view of the environment or has some
abilities of negotiation.

When interacting with other entities or with the environment, an entity can encounter failure to
respect the protocol or failure in the content of the interaction (misunderstanding...). These failures
can be the consequences of a dynamic environment, the openness of the system... These situations
are called “Non Cooperative Situations”.

The second step has then to identify the potentially cooperative entities. For each entity coming
from the previous step, the Agent Analyst has to determine if it has to move in a dynamic
environment, has to face up to cooperation failures, has to treat Non Cooperative Situations.

In the end, entities coming from these two previous steps can be considered as agents.

4.2.6. Glossary

e Agent — An agent is a physical or virtual entity which can act in an environment, which can
communicate directly or not with other agents, which is driven by a set of tendencies, which
possesses resources of its own, which is capable of perceiving its environment, which has only a
partial representation of this environment, which possesses skills and can offer services, whose
behavior tends towards satisfying its objective, taking account of the resources and skills
available to it and depending of its perception, its representation and the communication it
receives. [Ferber 99]. Furthermore, the main properties of agents in AMAS are their autonomy
and the fact that they are cooperative. A cooperative agent has a social attitude: it always tries to
act cooperatively. It must be able to detect when it is not cooperative and act to come back in a
state it judges being cooperative from its own point of view.

e AMAS — An adaptive multi-agent system is a multi-agent system which is able to autonomously
change its behaviour while running. It does this to adjust its behaviour to its dynamic
environment in order to be functionally adequate. Such a system is characterised by the
following points: (1) it is plunged into an environment, (2) it has a function to achieve and (3) it
is composed of interacting agents.

e Entity — An entity is an actor in the UML sense. It is a set of coherent roles which the users of
use cases play when they interact with use cases. In ADELFE, two types of entities will be used:
“active” entities which may behave autonomously and “passive” ones which can be considered
as resources by the system.

IRIT/SMAC Feb. 2004

ADELFE’s Fragments 12/16

e Autonomy — The autonomy of an agent can be expressed as following: An agent has its own
life, independently of the existence of other agents, an agent is able to survive in dynamic
environments without an external control and an agent takes internal decisions about its
behaviour only considering the perceptions, knowledge and representations it possesses.

e Cooperation failure — A cooperation failure corresponds to the detection of a Non Cooperative
Situation. Such a failure can be viewed as a cooperation protocol which is not obeyed or "bad"
interactions that may occur between the system and its environment.

e “Cooperative Agent” stereotype — A cooperative agent is an agent that possesses a cooperative
social attitude. As an object, a cooperative agent must have a run method which simulates its
lifecycle which consists in having perceptions, taking decisions and then doing actions
(perceive-decide-act). To ensure that this method does exist, an agent inherits from a super-class
called CooperativeAgent.

e Dynamic environment — The environment of an agent refers to all that is external to the agent.
One can distinguish the social environment (the agents its knows) from the physical
environment (the material resources that can be perceived by the agent or by its own effectors).
The state of a dynamic environment depends upon actions of the system that is within this
environment but is also dependent on the actions of some other processes. So, changes cannot
be predicted by system. For example, the Internet is a highly dynamic environment.

e (Goal — A goal is a set of states of the world that an agent is committed to achieve/maintain.
Therefore a goal is a situation, but not all situations are goals. A set of states of the world is
generally not a goal unless there is an agent committed to achieve/maintain this set of states
[Eurecom 00].

e Non Cooperative Situations — When the environment is unpredictable, or when the system is
open, classical algorithms fail because the designer is unable to find an algorithm which is able
to list all the existing possibilities. The aim of the AMAS technology is to design systems that
do their best when a difficulty is encountered. In classical programs, these unexpected events
can be processed as exceptions. In the AMAS theory context, these "exceptions" - expressing
unusual situations that an agent may be faced with - are called "Non Cooperative Situations"
(NCS). Different kinds of NCS exist, such as: incomprehension, ambiguity, incompetence,
concurrency, conflict, uselessness.

4.2.7. Composition Guidelines

ADELFE, the methodology from which this fragment is taken, is devoted to the design of AMAS
(Adaptive MAS). The related AMAS theory says that for all functionally adequate system (realizing
the desired function) there is at least a system having a cooperative internal medium which realizes
an equivalent function. In other words, to design a system realizing the desired function, having a
system formed by cooperative agents is sufficient; this cooperation directs the social attitude of
these agents.

Furthermore, in ADELFE, agents are not a priori known. They must be identified among the
different entities composing the system. This is the aim of this fragment, to determine if some
entities will stay ‘simple’ objects or become agents depending on cooperative agents’
characteristics.

Applications concerned by this kind of programming are open and complex ones, applications for
which there is no algorithm a priori known (for example, flood forecast, electronic commerce, ants
simulation...).

4.2.8. Aspects of Fragment

This fragment is linked to a specific agent architecture: cooperative agents.

IRIT/SMAC Feb. 2004

ADELFE’s Fragments 13/16
4.2.9. Dependency Relationships with Other Fragments

This fragment depends on the fragment that tells the analyst is the AMAS technology is useful to
him: AMAS Adequacy fragment (that corresponds to the activity #11 of ADELFE).
4.3. Fragment 13-A: Study Interactions between Active and Passive Entities

In the activity #13 of ADELFE, the Domain Analyst has to reason on relations between active and
passive entities, between active entities, and between agents.

The analyst may want to study these three kinds of relations independently so, each step of this
activity can be viewed as a fragment to be reused in another methodology than ADELFE.
4.3.1. Portion of Process

This fragment provides from the Analysis Work Definition of ADELFE (see figure 3) and
represents the first step of the activity #13.

Interactions between active and passive entities of the system must be expressed as scenarios.

4.3.2. Deliverables

This fragment produces scenarios showing how active and passive entities may interact. These
scenarios are described using UML diagrams such as sequence diagrams or collaboration diagrams.
This study can also change the software architecture if new entities are identified or if some may be
refined or decomposed.

If these documents already exist, these deliverables will be used to refine the “Environment
Definition” and “Software Architecture” documents coming from previous activities.
4.3.3. Preconditions

Entities have to be identified and indexed as being passive or active ones. In fact, most of the
requirements have to be done.

4.3.4. Relationships with the MAS Meta-model
None. Active or passive entities do not appear in the ADELFE MAS meta-model.

4.3.5. Guideline(s)

In this fragment, the Domain Analyst has to express relations between active and passive entities
using sequence diagrams or collaboration diagrams.

4.3.6. Glossary

e Collaboration diagram — A collaboration diagram describes interactions among objects in terms
of sequenced messages. Collaboration diagrams represent a combination of information taken
from class, sequence, and use case diagrams describing both the static structure and dynamic
behaviour of a system.

e Entity — An entity is an actor in the UML sense. It is a set of coherent roles which the users of
use cases play when they interact with use cases. In ADELFE, two types of entities will be used:
“active” entities which may behave autonomously and “passive” ones which can be considered
as resources by the system.

e Sequence diagram — A sequence diagram is a means to illustrate a use case by representing the
collaborations between entities from a temporal point of view.

IRIT/SMAC Feb. 2004

ADELFE’s Fragments 14/16
4.3.7. Composition Guidelines

In ADELFE, the methodology from which this fragment is taken, agents are not a priori known.
Every entity in the system must then be studied to determine if it will be considered as an agent or
as a ‘simple’ object. That is why during the requirements and domain analysis, entities must be
identified and indexed as being passive or active depending on their degree of autonomy.

4.3.8. Aspects of Fragment

Scenarios are expressed using UML diagrams.

4.3.9. Dependency Relationships with Other Fragments

None.

4.4. Fragment 13-B: Study Interaction between Active Entities

In the activity #13 of ADELFE, the Domain Analyst has to reason on relations between active and
passive entities, between active entities, and between agents.

The analyst may want to study these three kinds of relations independently so, each step of this
activity can be viewed as a fragment to be reused in another methodology than ADELFE.
4.4.1. Portion of process

This fragment represents the second step of the activity #13 of ADELFE, situated in the Analysis
Work Definition (see figure 3).

In this fragment, scenarios of interactions between active entities must be identified and expressed.

4.4 2. Deliverables

This fragment produces scenarios showing how active entities may interact. These scenarios are
described using UML sequence diagrams that will enrich the “Environment Definition” document if
it exist (that depends on the methodology built so far).

New active entities may appear and will be added to the “Software Architecture” document coming
from previous activities, if it already exists.
4.4.3. Preconditions

Active entities have to be identified.

4.4.4. Relationships with the MAS Meta-model

None. Active entities do not belong to the ADELFE MAS meta-model except if they become
agents. It is then in the fragment concerning the study of interactions between agents that a relation
with the MAS meta-model will be found.

4.4.5. Guideline(s)

During this fragment, the Domain Analyst identifies relations between active entities and expresses
them using UML sequence diagrams.

4.4.6. Glossary

e Entity — An entity is an actor in the UML sense. It is a set of coherent roles which the users of
use cases play when they interact with use cases. In ADELFE, two types of entities will be used:
“active” entities which may behave autonomously and “passive” ones which can be considered
as resources by the system.

IRIT/SMAC Feb. 2004

ADELFE’s Fragments 15/16

e Sequence diagram — A sequence diagram is a means to illustrate a use case by representing the
collaborations between entities from a temporal point of view.
4.4.7. Composition Guidelines

In ADELFE, the methodology from which this fragment is taken, agents are not a priori known.
Every entity in the system must then be studied to determine if it will be considered as an agent or
as a ‘simple’ object. That is why during the requirements and domain analysis, entities must be
identified and indexed as being passive or active depending on their degree of autonomy.

4.4.8. Aspects of Fragment

Scenarios are expressed using UML diagrams.

4.4.9. Dependency Relationships with Other Fragments

None.

4.5. Fragment 13-C: Study Interaction between Agents

In the activity #13 of ADELFE, the Domain Analyst has to reason on relations between active and
passive entities, between active entities, and between agents.

The analyst may want to study these three kinds of relations independently so, each step of this
activity can be viewed as a fragment to be reused in another methodology than ADELFE.
4.5.1. Portion of Process

This fragment corresponds to the last step in the activity #13 of ADELFE which belongs to the
Analysis Work Definition (see figure 3).

Its aim is to identify and express relations between all the agents that are composing the system to
build scenarios.

4.5.2. Deliverables

Scenarios enabling interactions between agents are expressed using (AUML) protocol diagrams that
could enrich the “Environment Definition” document if it already exists.

4.5.3. Preconditions

Agents must have been identified.

4.5.4. Relationships with the MAS Meta-model

This fragment is related to the MAS meta-model of ADELFE, it concerns the Interaction part.
Interactions enable an agent to communicate with others. In case of a direct communication through
message exchanges, AIPs elaborated during this fragment can be used to express this kind of
communication.

4.5.5. Guideline(s)

In this fragment, the Domain Analyst expresses relations between agents using (AUML) protocol
diagrams. Relations between all the previously identified agents must be expressed. If agents seem
to be too coarse-grained, if the algorithm of communication is then too complex, it is possible to
refine the study of agents and come back to apply this fragment later.

IRIT/SMAC Feb. 2004

ADELFE’s Fragments 16/16
4.5.6. Glossary

Agent — An agent is a physical or virtual entity which can act in an environment, which can
communicate directly or not with other agents, which is driven by a set of tendencies, which
possesses resources of its own, which is capable of perceiving its environment, which has only a
partial representation of this environment, which possesses skills and can offer services, whose
behavior tends towards satisfying its objective, taking account of the resources and skills
available to it and depending of its perception, its representation and the communication it
receives. [Ferber 99]. Furthermore, the main properties of agents in AMAS are their autonomy
and the fact that they are cooperative. A cooperative agent has a social attitude: it always tries to
act cooperatively. It must be able to detect when it is not cooperative and act to come back in a
state it judges being cooperative from its own point of view.

Protocol diagram — An agent interaction protocol describes a communication pattern as an
allowed sequence of messages between agents and the constraints on content of those messages
[Odell 01].

4.5.7. Composition Guidelines

None.

4.5.8. Aspects of Fragment

Protocol diagrams are expressed using AUML.

These protocols could be designed using the OpenTool graphical tool linked with the ADELFE
methodology.

4.5.9. Dependency Relationships with Other Fragments

None.

IRIT/SMAC Feb. 2004

