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Intuitively, autonomous agents are hard to test. Their autonomy and their flexible, context-aware behaviour
implies unpredictability, and their social ability intuitively leads to unpredictable emergent behaviour. On
the other hand, software agents are programs just like those designed and developed in an object-oriented,
procedural fashion, or under any other approach, and just because something is intuitive does not mean it
is necessarily correct.

In their separate respective groups, the authors of this position paper have been examining exactly why
agents may be harder to test than the kinds of software we would expect to be developed without an agent-
oriented approach, quantifying this difficulty, and/or proposing means to address it. This position paper
summarises and expands on our groups’ work for the purposes of discussion. While we are aware that
there are other relevant approaches to tackling agent testing by other groups (including some presented at
the Agent-Oriented Software Engineering workshop series), we do not attempt to give a state of the art
survey here, but instead refer to a forthcoming survey of this area by Nguyen et al. [12].

1 Why agent testing is hard
Following common definitions, agents can be characterised as being autonomous, social, reactive, and
pro-active [21]. They are also often goal-oriented, deliberative and reactive, interleaving deliberation and
plan enactment with processing percepts from their environment. We discuss below why some of these
characteristics mean that agents are hard to test. In doing so, we will take procedural, object-oriented
program testing as a point of comparison, i.e. giving us a way of clarifying what ‘hard’ means, and use
agent program examples written in a rough approximation of AgentSpeak(L) [14], as it exhibits many of
the characteristics listed above.

Figure 1 shows an illustrative agent program. It comprises six plans. Each plan starts with a triggering

event, which is the addition of a goal (+!predicate), addition of a belief (+predicate), or removal
of a belief (-predicate). The next section shows the plan’s context, i.e. what the agent must believe for
the plan to be applicable at this time. The final section is the enactment of the plan, i.e. subgoals added
(+!predicate) or removed (-!predicate) or actions performed (predicate). The first three plans
give ways to achieve the goal of reaching the ground floor of a building, either by lift, stairs (one level at a
time), or by already being on the ground, depending on context. The next two plans specify how the agent
reacts to a fire alarm turning on or off, i.e. by escaping or by abandoning the escape. The final plan states
that if the agent wishes to achieve the goal of having escaped, they need to get to the ground floor then exit.
We now analyse why an agent is hard to test from a variety of angles.

Assumptions and Architecture Agent programs execute within an architecure which assumes and al-
lows the characteristics of agents listed above. For example, it is assumed that the agent may be internally
initiated with certain goals, i.e. it is pro-active. In our illustration, the agent may begin with the goal
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1: +!onGround() 2: +!onGround() 3: +!onGround()

------------------ -------------------- -------------

not onGround() not onGround() onGround()

not fireAlarm()

electricityOn()

------------------ -------------------- -------------

takeLiftToFloor(0) takeStairsDown()

+!onGround()

------------------ -------------------- -------------

4: +fireAlarm() 5: -fireAlarm() 6: +!escaped()

------------------ ------------------- --------------

------------------ ------------------- --------------

+!escaped() -!escaped() +!onGround()

exitBuilding()

------------------ ------------------- --------------

Figure 1: Example agent program for illustration

!onGround() and pro-actively pursue it. Similarly, it is assumed that the architecture will handle in-
terleaving processing of incoming events (fireAlarm()) with acting towards existing goals. Finally,
the architecture may handle removing sub-goals when their parent goal is removed, e.g. removing the goal
of reaching the ground floor when the goal of trying to escape is removed. From an object-oriented per-
spective, this is equivalent to using an underlying framework which makes particular functionality easy to
realise in a compact form, e.g. consider the functionality provided by an Enterprise JavaBeans container.
As a side effect, the architecture makes the actual steps of execution rather opaque, as they depend on a
complex mix of the architecture, the plans, and the environment (triggering events). In our example, the
agent may only perform the action takeStairsDown() from the combined effect of an external event
(fireAlarm()), the (possibly disparate) plans on how to handle this event and the !escaped() goal,
and the fact way that the architecture processes goals taking the current context (not onGround()) into
account. Establishing test cases is thus made more difficult, as it is hard to distinguish the behaviour which
needs testing.

Frequently Branching Context-Based Behaviour If we considered an agent execution as a tree, we
would see that choices between paths are made at very regular intervals (compared to that expected in
a normal procedural program) to possibly extensive depths. This is because a goal or event can be
pursued/handled by one of multiple plans, each applicable in a different context, and each plan can it-
self invoke subgoals. For example, if the agent has goal !onGround() and initially believes not
electricityOn(), then it will take the stairs. At each level, it will reconsider its goal, including
checking whether it has reached the ground. If during the journey, electricityOn() becomes true,
the agent may take advantage of this and take the lift. Therefore, the agent program execution faces a series
of somewhat interdependent choices. In recent work, Winikoff and Cranefield [20] quantified the number
of possible paths in a typical agent program.

Reactivity and Concurrency Due to the reactivity of the agent, new threads of operation could be added
to the agent’s activity at regular points, caused by new inputs from the environment, e.g. fireAlarm().
This means that the choice of next action(s) made by an agent at every step depends not only on the plans
applicable to the current goal/intention/event pursued, but also on the new inputs. Moreover, all threads
followed (e.g. each intention held) generally share all of the same state, i.e. the agent’s knowledge/belief
base. This can be seen as equivalent complexity to that of concurrent OO programs with shared state.
While the agent program execution may be entirely deterministic, i.e. we could in principle determine
how actions would be interleaved for a given test input, the complexity of handling new events along with
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existing intentions pursued in context-dependent ways means that it is effectively for a human test designer.
For example, it is not apparent from the plan triggered by +fireAlarm() that the agent’s choice of stairs
or lift may be affected, nor does -fireAlarm() necessarily mean that the agent will cease to aim for
the ground floor, as it may have been pursuing goal !onGround() before the fire alarm started. An
arbitrarily interleaved or actually concurrent program is harder to test than a purely serial one.

Goal-Oriented Specifications Agent goals are comparable to OO method calls, in that both declare what
should be done/achieved, while leaving it to a separate part of the code to actually perform the necessary
steps. However, with a method call it is generally clear which part of code (the method implementation)
will be executed on invocation, whereas a goal may trigger any of multiple different plans depending on
context. This is reflected in the way in which they are respectively expressed. In an OO program, a call
is most commonly expressed as a request to act, e.g. compress to execute a file compression method.
On the other hand, a goal is often a state of the world which you want reached by whatever means are
appropriate, e.g. compressed. Achieving a desired state of the world can be done in a wide range
of ways, and may require no action (if the state already holds), or a number of actions. This makes it
inherently harder for the debugging developer, and so for a developer to construct an appropriate test if
starting from existing code. For example, to achieve !onGround(), the agent may start to head to the
ground floor, but equally it may find it is already there and do nothing. A goal explicitly abstracts from
what activity takes place, and so it can be harder to know what to test for in terms of unwanted side-effects
of that activity.

Context-Dependent Failure Handling As with any form of interactive software, failures can occur in
agents, and these need to be handled. For example, if the electricity fails while our agent is in the lift, it
will need to find an alternative way to the ground floor. As this failure is handled by the agent, the handling
is itself context-dependent, goal-oriented, potentially concurrent with other activity etc. Therefore, testing
the possible branches an agent may follow in handling failures amplifies the testing problem. As well as
showing that the number of test cases was large, Winikoff and Cranefield [20] demonstrated the dramatic
increase due to consideration of such failure handling.

2 What can be done about it
Due to complexity described above, it is apparent that basic means of testing are inadequate for agent
programs operating in environments exhibiting a relatively wide range of possible cases. For some appli-
cations, it may be possible to use domain expertise to limit the possible failures to a manageable subset
of those which an arbitrary environment could present. For others, this is simply not enough, and other
approaches must be considered.

First, we note that it could be possible to verify the abstract specification of the software in all or a
bounded subset of cases, e.g. using model checking. Verification by itself does not provide assurance of
the implementation’s correctness, as the implementation may not follow the specification. We could guide
verification by starting from tests on the implementation, and step-by-step, move to a more complete proof
of correctness on a subset of the abstract specification, with assurance that the implementation tests and
verification proofs provide the same results along the way. This idea is described in Section 2.1.

However, enumerating the appropriate test cases is itself not always possible. The complexity of the
problem and size of the space of test cases means that determining what subtle fault may cause an agent
program to fail is often non-trivial. In such cases, we realistically have to employ automatic search methods
to discover those tests which will expose the agent’s ability to achieve goals. In Section 2.2, we describe
an evolution-based approach to testing autonomous agents whose goals are expressable as search-guiding
quality functions.

2.1 Combined formal verification and testing
Formal verification and testing each have strengths and weaknesses [6], and so a natural question is whether
they can be combined. The challenge is to find a way of using testing and formal verification together such
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Figure 2: Approaches to Assurance: A two-dimensional taxonomy

that each compensates for the other’s weaknesses, whilst retaining its strengths.
Abstractly, the idea of combining different techniques to obtain assurance of a system can be seen as

a form of safety cases [1], where it has been argued that the assurance of a system should be done by
providing direct evidence linking a system with the required properties, expressed in terms of the “real
world” [8, 16]. There have been others who have argued for the combination of testing and proving (e.g.
[10, 15, 5, 23, 13]). Space precludes a detailed discussion of these approaches, but we note that none
provide a detailed and clear way of combining testing and proving in the way that is required.

In the remainder of this section, we sketch an approach for combining testing and formal verification.
The key idea of the approach is that in order to link testing and formal verification we build a “bridge” using
intermediate approaches. The “bridge” consists of a number of “steps” where we apply two approaches
that differ in only one aspect. For example, given two different models (e.g. an abstract model and an
implementation), we would subject them to the same assurance approach, in order to look for differences
between the models. Since we use the same assurance approach, we can conclude that any difference
found is actually due to the differences between the models. Alternatively, given the same model, we
might subject it to two different assurance techniques.

In order for this approach to work, we need to define a number of assurance techniques that are “inter-
mediate”, i.e. are between formal verification and testing. Furthermore, these approaches need to provide
a one-step-at-a-time “staircase” that links formal verification and testing.

We define these intermediate techniques using a two-dimensional taxonomy (see Figure 2, ignore the
arrows for now). The first dimension is abstraction: we distinguish between executable models (“con-
crete”) and non-executable (“abstract”) models. The second dimension is the coverage of the method:
is it covering only particular selected points in the space of inputs/behaviours? (“individual test cases”);
all points within a sub-space? (“incomplete systematic exploration”); or the entire space? (“complete
systematic exploration”).

An example of how we might use these intermediate assurance techniques to build a stepwise bridge
between testing and formal verification is the following (the numbers correspond to the numbered arrows
in Figure 2):

➊ We subject the implementation to testing (with selected test cases) and systematic enumeration (of a
subset of the input or behaviour space), i.e. same model, different techniques. If we find the same
issues with both approaches, then this gives us some confidence that the selected test cases provide
good coverage. If the systematic enumeration finds additional issues, then this is evidence that the
test cases are insufficient. On the other hand, if the selected tests cases find errors that the systematic
enumeration misses then this is evidence that the scope within which enumeration is performed is
too limited.

➋ We apply the same technique (systematic generation of test cases within a limited scope) with two
different models (concrete and abstract). Finding the same issues in both cases gives us some confi-
dence that the models are equivalent.

➌ We apply systematic generation within a limited scope and formal verification (complete systematic
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exploration) to the same (usually abstract) model. If the same issues are found by both techniques,
this provides evidence that the limited-scope systematic enumeration did not miss anything.

Taken together, these steps build a bridge that links proving and testing. At each step along the way we
change only one thing which allows for conclusions to be drawn from differences, or lack thereof.

A more detailed discussion of this approach, along with a small case study, can be found in [17]. It does
need to be noted that the approach is still immature and further development is needed. A key question is
how to quantify the level of confidence that can be gained from a given step (e.g. doing both individual
tests and systematic exploration on the same model).

2.2 Evolutionary and search-based testing
For agent-based programs operating within complex environments, the size of possible test cases can be
too large to feasibly cover every distinct possible input sequence. Due to the complexity described in
Section 1, it is often difficult to discern which test cases thoroughly test an agent. To be confident of the
agent’s reliability, we therefore require a procedure that caters for a wide range of test case contexts, and
that can search for the most demanding of these test cases, even when they are not apparent to the agents’
developers.

We (Nguyen et al.) addressed this problem in a prior publication [11] by introducing and evaluat-
ing an approach to testing autonomous agents that uses evolutionary optimisation to generate demanding
test cases. We argue that quality functions derived from requirements can be used to evaluate autonomous
agents as a means of building confidence in their behaviour, because meeting such requirements contributes
to agent dependability. Because it is automated, the use of evolutionary algorithms can result in more thor-
ough testing at comparatively lower cost than other forms of testing, such as manual test case generation,
which is tiresome, error-prone and expensive. That is, large numbers of challenging circumstances, gen-
erated by evolution, can be used to test agents, with each test case seeking to expose any possible faulty
behaviour.

The evolutionary testing methodology consists of the following top level steps. First, relevant soft goals
that can be used to evaluate agent autonomy are transformed into evaluation criteria, i.e. quality functions.
This transformation is domain specific and depends on the nature of the soft goal. Then, in order to generate
varied tests with increasing level of difficulty, we advocate the use of meta-heuristic search algorithms that
have been used in other work on search based software engineering [7], and, more specifically, we advocate
the use of evolutionary algorithms. Such algorithms are typically well suited to complex multi-objective
optimisation. The quality functions of interest are used as objective functions to guide the search towards
generating more challenging test cases.

As an example of an applicable domain, Figure 3 illustrates the goals of a specific stakeholder in an air-
port organization, namely the building manager, who decides to assign her goal of keeping the airport clean
to cleaner agents. In this example, the agents must operate autonomously, so that no human intervention is
required. The agents must be robust and efficient as stated by the two stakeholder soft-goals, depicted as
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two cloud shapes. Applying the proposed approach, these two soft-goals can be used as criteria to evaluate
the quality of the cleaner agents: the agents can be built with a given level of autonomy. Robustness and
efficiency are two key quality criteria to evaluate them. If cleaner agents can perform tasks autonomously,
but are not robust, e.g. they crash, they cannot gain the trust necessary to be deployed.

Test cases are encodings of the environments as strings comprising multiple ‘chromosomes’. An initial
test case population is generated, the tests are executed to determine their difficulty (the agent’s lack of
ability to achieve its goals), the fitness value of each test case compared, and the more successful (harder)
test cases reproduced and randomly mutated. Ultimately, this automatically leads towards a rich set of
challenging test cases which the human developers may not have considered. If the agent under test is
deemed from these tests to be inadequate, it can then be improved to better meet the test cases and the
evolutionary testing applied again.

2.3 Other Approaches
The above approaches can be seen as complementary, in that a subtle (failed) test case found through
evolution could then be transformed to reach a proof that the abstract model of the (repaired) agent under
test will not fail that case or a family of cases in which it is included.

Another way to approach the problem is to try to mitigate the need for testing in advance. We should aim
to use notations and design/implementation approaches that make certain classes of errors impossible to
make. An analogy is the use of automated garbage collection, rather than manual memory management. In
the context of multi-agent systems, one place where we currently use ‘manual’ methods is developing agent
interaction in terms of sending and receiving (asynchronous) messages. This can be argued to be analogous
to using a ‘goto’ statement (but, even worse, involves concurrency), and is error-prone [3]. Instead, we
could work to develop design and programming constructs for agent interaction that work at a higher level
(such as social commitments [22, 9, 19], or some form of shared goals [2]). A key property is that we aim
to make certain errors impossible to make. For example, under certain conditions interactions designed in
terms of social commitments are robust to agents perceiving messages having arrived in different orders
[18, 19, 4].
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