
International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

The Metamodel: a Starting Point for Design Processes Construction

VALERIA SEIDITA

Dipartimento di Ingegneria Informatica - Università degli Studi di Palermo, Palermo, Italy
seidita@dinfo.unipa.it

MASSIMO COSSENTINO

Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche, Palermo, Italy
Systems and Transport Laboratory (SeT), Belfort, France

cossentino@pa.icar.cnr.it

VINCENT HILAIRE, NICOLAS GAUD, STEPHANE GALLAND, ABDER KOUKAM

Systems and Transport Laboratory (SeT), Belfort, France

vincent.hilaire@utbm.fr

nicolas.gaud@utbm.fr
stephane.galland@utbm.fr

abder.koukam@utbm.fr

SALVATORE GAGLIO

Dipartimento di Ingegneria Informatica- Università degli Studi di Palermo, Palermo, Italy

Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche, Palermo, Italy

gaglio@dinfo.unipa.it

Received (Day Month Year)

Revised (Day Month Year)
Accepted (Day Month Year)

The construction of ad-hoc design processes following the Situational Method Engineer-

ing (SME) paradigm is currently carried out by adopting a set of phases for which, until
now, no well defined techniques and guidelines had been established. The consequence

is that organizations are very dependent on method designers’ skills. In this paper we
propose an approach based on SME for constructing customized agent oriented design

processes. Our approach adopts the metamodel as the most important factor leading to

the selection and assembly of method fragments and an algorithm for establishing the
instantiation order of metamodel elements. The algorithm makes the proposed approach

repeatable and usable even by not very skilled personnel thus proposing an improvement

to the actual situation. The proposed approach and the algorithm are also experimented
through the construction of a design process (ASPECS) for developing dynamic hierar-

chical societies of agents. The approach we created is general enough to be applied in

other development contexts (not only agent-oriented).

Keywords: Metamodel; Design Process; Multi-agent system; Situational Method Engi-

neering.

1



2 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

1. Introduction

Nowadays most researchers agree that it does not exist a one-size-fit-all design pro-
cess [3][37][42] and this situation has been reported in a lot of application contexts.
In the last years a great effort was spent by organizations for learning and reusing
existing design processes and for customizing them for specific situations; the prob-
lem is that organizations generally are used to develop systems for one or at least
few application domains.
Besides organizations are often composed of a limited number of people, with spe-
cific skills and competencies; hence, these organizations cannot use all kinds of
design processes without spending too much time in personnel formation; all of
that let the cost of producing a system increasing more and more.
A solution to this kind of problems can be to have ad-hoc created design processes
for each situation and organization.
In this field, Situational Method Engineering (SME) [30][41], provides means for
constructing ad-hoc Software Engineering Processes (SEP) following an approach
based on the reuse of portions of existing design processes (often called method
fragments).
Method Fragment is the core concept of SME; different well known approaches
[3][27][31][16] present different definitions and descriptions of method fragment but
all of them start from the assumption that whatever design process can be decom-
posed into (or it is composed of, if we use a bottom-up point of view) self contained
components.
In order to create the new design process, the method designer needs to have access
to a repository of components (or method fragments or simply fragments), proba-
bly coming from several existing design processes; from this repository he/she can
retrieve and assemble the fragments in order to obtain the new SEP.
Note that although we are aware of the different definitions that can be found in
literature according to personal point of views of researchers working in the field,
in order to avoid entering in this debate, we will assume that the term Software
Engineering Process (SEP) is synonym of: methodology, design process or simply
process, and we will use all these words indifferently.

Today several approaches to Situational Method Engineering exist, each of them
is based on the assumption that the knowledge on existing design processes has to
be reused and they are mainly composed of three main phases: process require-
ments analysis, fragments selection and fragments assembly ; none of these phases
have been totally defined and described in these approaches; an interesting attempt
to a generalization had been made in [40].
The difficulty to establish guidelines for the retrieval of method fragments from
the repository and for assembling them is one of the most important problems,
researchers in the field met in these years.
This is a relevant issue, because its solution is highly dependent from the particu-
lar adopted approach, the definition of fragment, and consequently from how the



The Metamodel: a Starting Point for Design Processes Construction 3

repository is constructed. An optimal and general solution has not still been reached
although some approaches are quite advanced on that [25][26].
The second important problem is that each approach is today too linked and too
dependent from the skills and the knowledge of the method engineer that is con-
structing a specific design process; in fact the method engineer should deeply know
the fragments stored in the repository, their inner activities, their deliverables, and
he/she often selects and assemblies them on the basis of his/her own skills.
This situation causes the organization to be too bound to and dependent on the
method engineer.
We can summary these arguments in two fundamental issues: (i) the lack of well
defined techniques and guidelines for SME phases, and (consequently) (ii) the great
dependency on the method engineer skills for properly enacting each phase. An
approach including general or (even partially) automated techniques and guidelines
would be highly desirable in order to encompass these problems. This is exactly the
issues we worked on, and the solution we propose in this paper is based on the use
of the metamodel as the central element for selecting and assembling fragments.
Our work is principally grounded on SME rationale and because our target is about
multi-agent systems, this approach needs to be adapted /specialized. As a conse-
quence, some differences exist between classical SME approaches and ours; the most
significant one consists in the fact that we use the Multi Agent System (MAS) meta-
model for defining the structure of the system we will build by adopting the new
SEP.
Basing on MAS metamodel we establish a starting point also for the construction
of the new SEP: the metamodel is used as the leading element for selecting and
assembling fragments; more specifically, once a metamodel is constructed, an algo-
rithm is adopted for choosing the order that should be used for instantiating the
MAS metamodel elements in the process, in this way a first set of fragments can be
retrieved from the repository.
Once these fragments are chosen, the same algorithm is used for assembling them
thus producing a first prototype of the SEP under construction.
In other words, in our approach, the definition of a MAS metamodel entails the
underlying design process thus becoming the key factor for the success of a new
design process construction activity.

From the methodological point of view, our approach starts from the identifi-
cation of the new process requirements in terms of development context, problem
type and organization capabilities/existing processes maturity.
These requirements are used for defining an initial core version of the MAS meta-
model. The elements of this metamodel are then ordered in a precedence list (with
the already cited algorithm) and in this order we will retrieve the corresponding
method fragments from the repository and assemble them in the new process.
If necessary, the core metamodel can eventually be extended with new elements
(thus adopting an incremental/iterative approach towards the completion of the
new design process) and the new corresponding method fragments can be included



4 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

in the process.
In this paper an experiment of creation of a new process (called ASPECS) is

reported; this is not a classical toy problem but rather it deals with the construction
of a full-size process for the design of agent-oriented systems. The scope of this
process will be the design of dynamic hierarchical societies of agents; we aim at using
the process and the related implementation platform (Janus [20]) for realizing open,
dynamic holonic systems and solving complex problems requiring a huge number
of agents.

The paper is organized as follows: section 2 provides a theoretical background on
the issues the paper deals with (Situational Method Engineering, PASSI and CRIO
metamodels); in section 3 the proposed approach is illustrated mostly detailing the
construction of the core metamodel and the algorithm for selecting and assembling
fragments. The case study on the construction of the ASPECS process is shown in
section 4. Finally in Section 5 some discussions and conclusions are drawn.

2. Theorical Background

This section introduces the main concepts our work is based on. As regard the
construction of the new design we refer to the SME approach that is discussed in
subsection 2.1; whereas in the experiment described in this paper (the construction
of ASPECS process) we largely reused elements from the PASSI and CRIO processes
that are briefly introduced in subsections 2.2 and 2.3.

2.1. Situational Method Engineering

Several different approaches has been proposed from the beginning of the Situational
Method Engineering discipline, each of them is based on different techniques and
basic concepts [40].
All the existing approaches to Situational Method Engineering are mainly based on
the reuse of portions of existing design processes (often called Method Fragments,
Method Components or simply Fragments)[37]; these portions are usually stored in
a repository called Method Base. Most of the reuse approaches are mainly composed
of three phases [23]: the requirements specification of a project specific process, the
selection of method fragments from a repository basing on the results of the previous
phase and the assembly of the selected fragments.
The concept and definition of Method Fragment was firstly coined by Kumar and
Harmsen [30] and by Brinkkemper [7]; during these latest years a lot of researchers
based their work on this concept, sometimes with some differences but all of them,
beyond the differences in the used terminology, shared the same fundamental aim:
constructing a customized design process following an approach based on reuse of
components of existing processes.

In [19][26] a huge repository of fragments is used for the composition of a new
design process; the followed process is quite similar to that proposed in this paper in
section 3 and is based on the so called deontic matrices. Deontic matrices contains



The Metamodel: a Starting Point for Design Processes Construction 5

a set of values that gives indication for linking fragments in pairs.
The method designer has to elicit a set of requirements for the process under con-
struction and then he has to identify the main activities composing the process
development lifecycle; each activity can be linked through deontic matrices to tasks
and then to techniques and work products thus obtaining a set of composable frag-
ments.
Though the used repository contains a very large number of fragment this approach
is mainly based on the experience a designer has about it and its content.

Another well known approach is proposed by Ralyté at al. in [33][34][31], here the
formalism of maps with the triplet « source intention, target intention, strategy» is
used to match the elicited process requirements to the method chunks stored in the
method base. When the set of chunks that best fit the requirements is selected, the
process designer can compose the new process following two strategies: integration
and/or association, the first is used when the assembling chunks have similar aims,
in this case modifications in the chunks are required after identifying the common
elements whereas in the second case no overlapping in the chunks are present and
one of them serves as an input of the second one.
These two assembly strategies can be also found in the proposed approach, we also
can simply associate two fragments putting in sequence their work parts and joining
the resulting work products or we can need some modifications thus making some
kind of integration among fragments; this situation in the proposed approach is
however discovered at a low level of work, looking at the MAS metamodel elements
and their definition whereas in Ralyté et al. approach the smallest part of work that
is considered is the chunk.

Finally, the first approach for applying SME is that proposed in [7][5][24] where
the method engineer selects a set of method fragments that he considers as the best
for fitting a particular situation and then modifies, adapts or takes from them the
most reusable part basing on his own experience; from the assembly point of view
this latest work is the most based on the designer skills.

What we propose in this paper, instead, aims at being as free as possible from
the designer skills providing a set of reusable guidelines for fragments selection and
assembly. In the case study proposed in section 4, we will reuse fragments coming
from the PASSI and CRIO design processes; because of the particularities of the
proposed reuse approach the importance of the multi-agent system (MAS) meta-
model adopted in these processes is very relevant for our purposes and therefore, in
the next subsections we will report a brief descriptions of these metamodels.

2.2. PASSI

Model driven engineering (MDE) [38] emphasizes the importance of artifacts in the
development of software and after the standardization of the MDA architecture by
OMG [1] it achieved a great diffusion among both researchers and practitioners.
This approach proposes the use of some subsequent transformations for obtaining



6 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

Fig. 1. The PASSI MAS meta-model

the system code. The first step of an MDA-based design approach, usually, consists
in modelling the Problem domain thus producing the Platform Independent Model
(PIM). This model is later transformed to the Platform Definition Model (PDM)
that incorporates the constructs coming from the chosen implementation platforms
and finally the Platform Specific Model (PSM) is generated as an executable solution
for the studied problem.

As it is obvious, the availability of a good model of the Problem domain is one
of the key success factors of transformational approaches.

The quality of this model is drastically influenced by the metamodel from which
it is instantiated. A metamodel can be defined as a model of the model when looking
at it from a purely structural point of view. This definition is probably too simplistic;
a more interesting definition may probably be considered in order to introduce the
perspective adopted in this paper: a metamodel defines the constructs and rules used
to build a model. This definition emphasizes the semantic aspect of the metamodel
(someone talks about ontological metamodelling [36][8] and it probably better fits
the spread of the adoption of metamodels in the agent community in the last years.



The Metamodel: a Starting Point for Design Processes Construction 7

When dealing with agent systems, metamodels are usually referred as Multi-Agent
System (MAS) metamodels and they are very significant in this field since usually,
different design processes underpin very different structures of the system to be.

In this and in the next subsection two MAS metamodels will be presented; the
first is related to the PASSI process and the second to the CRIO approach.

The PASSI MAS meta-model [12] addresses three logical areas: (i) the Problem
domain, (ii) the Agency domain and (iii) the Solution domain.
The Problem domain includes components coming from the world where the soft-
ware is going to operate: these are directly related to the requirements analysis
phase of the PASSI process.
Agency domain components are used to define an agent-based solution for the prob-
lem. Following this approach, we implicitly look at the agent paradigm as a problem
decomposition and analysis instrument rather than a technological infrastructure
for systems implementation.
Finally, in the PASSI MMM solution domain, agency-level components are mapped
to the adopted FIPA-compliant implementation platform elements (we suppose the
platform supports at least the concepts of agent and task); this represents the code-
level part of the solution and it is the last refinement step. We will now only detail
the Problem Domain as the other domains are not used in the case study presented
in this paper.

The PASSI Problem Domain portion of the MAS metamodel (see Figure 1),
deals with the user’s problem in terms of scenarios, requirements, ontology and re-
sources. Scenarios describe a sequence of interactions among actors and the system;
they are used to identify the requirements that the system must fulfill. Require-
ments are represented with conventional UML use case diagrams. There is a strong
point behind these choices: a lot of designers, already skilled with such an approach,
are already present in different companies and can be more easily converted to the
use of an agent-oriented methodology if they are already confident with some of the
key concepts (and particularly the initial ones) used within it.
The ontological description of the domain is composed of concepts (categories of
the domain), actions (performed in the domain and effecting the status of concepts)
and predicates (asserting something about a portion of the domain, i.e. the status
of concepts). Resources are the last element of the Problem domain. They can be
accessed/shared/manipulated by agents. A resource could be a repository of data
(like a relational database), an image/video or also a good to be sold/bought.

2.3. CRIO

CRIO is an organizational metamodel dedicated to model complex systems. It is
based on the merge and the extension of two existing metamodels. The first, RIO
[29], was conceived for the organizational and formal modelling of non-hierarchic
multiagent systems, and the second is the generic framework for the modelling



8 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

Fig. 2. The CRIO MAS meta-model

of holonic multiagent systems proposed by [35]. By considering organizations as
blueprints that can be used to define a solution to a problem, we believe that an
organizational approach encourages a the reusability of models.
CRIO is based on four main concepts: capacity, role, interaction and organization
(see Figure 2). An Organization is defined by a set of roles, their interactions and
a common context. These latter define a specific pattern of interaction. A Role is
the abstraction of a behavior in a certain context and confers a status within the
organization. The Role gives the playing entities the right to exercise its capacities.
Roles may interact with other roles defined in the same organization. The role play-
ing relationship between roles and agents is dynamic. In other terms, at any given
time agents may request to play new roles and leave roles that they are currently
performing. Roles may interact with other roles defined in the same organization.
An Interaction is composed of the event produced by a first role, perceived by a
second one, and the reaction(s) produced by the second role.

To obtain a generic model of organization, we need then to define a role without
making any assumptions on the architecture of the holon which will play this role.
Basing the description of these behaviors (Roles) on capacities, enables a modular
and reusable modeling of holonic MAS. Indeed, capacities describe what the holon
is capable of doing (Abstract Level), independently of how it does it (Concrete
Level).
A role defines a behaviour based on what the agent/holon is capable of doing (i.e.
the holon’s capacities). Thus, a role requires that the role player has specific capaci-
ties. A holon/agent has to possess all capacities required by a role to play that role.
On the other hand, a role confers to its player a certain status in the organization
and the right to perform its capacities. A role thus confers holon the authorization
to wield some of its capacities in the context defined by the organization.
At the Concrete Level we assign roles to agents. In this context, an agent is only
specified as an active communicative entity which plays roles. An agent/holon
may instantiate one or more roles and a role may be instantiated by one or more



The Metamodel: a Starting Point for Design Processes Construction 9

agents/holons.
A holon is a whole-part construct that is composed of other holons, but it is,

at the same time, a component of a higher level holon. In order to maintain the
generality of the metamodel, it is necessary to distinguish between two aspects that
overlap in a holon. The first is directly related to the holonic character of the entity,
i.e. a holon (super-holon) is composed of other holons (sub-holons or members).
This aspect is common to all the holons, thus it is often named the holonic aspect.
This aspect considers how members organize and manage the super-holon, and it
is modelled with a particular organization called Holonic Organization. This latter
represents a moderated group [21] in terms of roles and their interactions.
The second aspect, is related to the problem the members are trying to solve; it
is therefore specific to the application or domain of application, and often named
production aspect. This aspect is modelled by using a set of production organiza-
tions. A holon may thus be composed of groups. A super-holon contains at least
the holonic group and possibly a set of production groups, instances of production
organizations.

3. The Proposed Approach for the Construction of a New Design
Process

Several techniques and tools had been proposed in these latest years for the con-
struction of new ad-hoc processes [19][6][4][30]. Each of them can usually be applied
to a specific field (OO, IS, etc.); we adopted the principles of SME and created a
process for defining new design processes (SEP) that are specific for the construc-
tion of ad-hoc agent-oriented systems.
The process we created is general enough to be applied to every kind of problem, we
tested it upon the agent context because from years we work in this area but the ob-
tained results can be easily generalized and the main contribution we propose (the
adoption of the system metamodel as a guideline for selecting and assembling frag-
ments) is valid also for non agent-oriented design processes. We called the proposed
approach PRoDe (PRocess for the Design of Design PRocesses).

PRoDe is based on the classic situational method engineering main phases (see
2.1), on a specific definition of method fragment, that we call Process Fragment [11]
and on what we consider a key point for the construction of a new process: the
metamodel. The metamodel constitutes the pivot we adopted for applying SME
principles; the focus on this element is one of the most important factors that
makes our approach different from all the others proposed in literature.
PRoDe is organized in three main phases (see Figure 3):

• Process Analysis: where the process to be developed is analyzed and its
requirements are elicited. The idea that requirements can be elicited for
a design process is not new and directly descends from positions like the
one proposed by Osterweil in [32]. Process Requirements Analysis, in the
proposed approach, produces a set of elements, mainly a portion of the



10 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

system metamodel, deeply affecting the following phases.
• Process Design: during this phase the method engineer selects and retrieves,

from a previously constructed repository, a set of reusable fragments that he
assembles in the new process. In so doing he usually follows a set of guide-
lines based on the structure of the metamodel resulting from the previous
phase.

• Process Deployment : here the new design process is enacted and used to
solve a specific problem; it is evaluated in order to verify the achievement
of the expected results and to gather further requirements (if any); if nec-
essary, it is also possible to repeat the whole construction process in an
incremental/iterative way.

All these phases are supposed to be performed under the assistance of specific
tools: i) the process requirements analysis and process design is assisted by a Com-
puter Aided Process Engineering (CAPE) tool that supports the method engineer
in all the phases he performs during the process creation [14][15]; ii) the selection
and retrieval of fragments from the repository is made with the aid of a Computer
Aided Method Engineering (CAME) tool providing an interface for querying the
fragments repository, a first prototype of CAME is already part of PRoDe [39]; fi-
nally (iii) a Computer Aided Software Engineering (CASE) tool is used during the
process enactment phase. This latter is conceived as an instance of the CAPE tool
that supports the designer during system design activities performed according to
the specific new process.

In this section we describe how the new process is constructed. This process
aims at supporting a method engineer who wants to construct a design process for
developing multi-agent systems that solve a particular problem. It is reasonable to
suppose that the first thing he does is to check if some kind of process is already
existing in the organization and how the involved stakeholders use it.
The most common situation is that a kind of process is already in use, sometimes
it is well documented and it only needs improvements, sometimes it needs to be
created almost from scratch. In any case the method engineer has to analyze the
organization development context, and the problem types faced within that, in order
to gather the set of requirements new process has to fulfill. Further details about
this activity will be provided in the next subsection.

3.1. Process Analysis

The main aim of this phase is to define the process lifecycle that gives a structure
to the process to be built thus providing a guide for assembling fragments and to
define the system metamodel; this phase is composed by the following activities (see
Figure 3):

• Process Requirements Analysis. It has inputs coming from the matu-
rity level of the organization, the development context (tools, languages,



The Metamodel: a Starting Point for Design Processes Construction 11

Fig. 3. The proposed Situational Method Engineering Process

available skills, etc.) and the type of problem to be solved. From these in-
puts the method engineer achieves the necessary information for identifying
some fundamental requirements about the new design process.
These requirements define the domain of interest that the new process
should take into account. For example, if the problem type deals with trans-
portation of human beings and if someone in the development group has
formal methods practice then some safety properties of the system may be
proved.



12 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

• Core Metamodel Creation. The elicited requirements are useful for cre-
ating the system metamodel whose elements are used for selecting the
proper fragments from the repository and for assembling them. Process
requirements are also useful for describing the main process elements, for
identifying the work that has to be done in order to produce a specific out-
put and which stakeholder has to perform it.

• Process Lifecycle Definition A design process specifies when and how
someone does something in order to reach a specific objective, so the process
requirements analysis also affects the Process Life Cycle Definition activity:
it is concerned with the decision about the process model (or life-cycle) to be
adopted; this decision is influenced by several factors (for instance contract
constraints imposed by the customer/commissioner on that). According
to some studies it seems that the process life-cycle is not affected by the
adoption of the agent paradigm and therefore classical life-cycles (waterfall,
spiral, iterative/incremental, etc.) can be used for designing agents too [9].

The inputs of the Process Analysis phase are:

• Process Capability. It is the concept designed in the SEI Process Capability
Maturity Model Integration (CMMI) for Development: “Software process
capability describes the range of expected results that can be achieved
by following a software process”. The software process capability of an
organization provides means for predicting the most likely outcomes to be
expected from the next software project the organization undertakes. In
this way it is well defined how to work for achieving fixed objectives. In
our work the identification of these activities results in a well defined set of
requirements on method fragments to be selected or on specific stakeholders
to be involved in the process.

• Problem Type. The new process has to be tuned for a specific solution strat-
egy to a class of problems. It is possible that, in a big company, different
groups produce software for totally different areas (for instance business ad-
ministration, and biological systems simulation). In this situation it should
be expected that each of these groups adopts a different design process giv-
ing the right importance to the aspects that are more sensible in its target
implementation domain.

• Development Context. It is a description of the available resources (both
human and non human) and competencies that are available in the process
enactment group. The development context is usually a sensitive aspect to
be considered also because if the group is composed of people skilled with
some specific approach or standard practice (for instance the use of UML in
modelling the system), it is highly desirable to capitalize such an experience
in order to lower training costs that always follow the introduction of a
new design process. In the development context we also enumerate possible



The Metamodel: a Starting Point for Design Processes Construction 13

constraints that could come from available developing tools.

The main outputs of the Process Requirements Analysis phase are:

• the core metamodel. It contains all the concepts that can be used to design
and describe the system to be: it defines domain-specific concepts, solution
concepts and all the concepts that specifically address the characteristic of
the particular system a designer is developing, together with all of their
relationships. For instance in the case of a MAS (Multi Agent System),
a metamodel provides concepts such as agent, role, communication, agent
task, and so on. Each concept of the metamodel must be designed/defined
(that means instantiated) at least in one fragment of the process (whereas
it can be cited in several other fragments).

• Process Elements. It is a list of elements composing the new design pro-
cess. These elements can be activities (the work to be done), process roles
(particular stakeholder performing the work) and work products (artefacts
resulting from some activities) and they too can be used for the retrieval
of method fragments [11][39].

Metamodel elements and process elements greatly affect the following phase
since they are the main inputs for the selection of fragments from the repository. In
fact, in the next phase (Process Design phase), the designer will use these inputs
for building the new process. This can be done by firstly defining an ordered list of
MAS metamodel elements and then using this list for retrieving the fragments from
the repository.
At this stage it is likely that some fragments will need modifications and the initial
metamodel some extensions. These operations will be performed in an incremen-
tal/iterative way until the new process is fully defined; further details about these
activities are provided in the next section.

3.1.1. Specific Issues with the Creation of the Core MAS Metamodel

According to our previous experiences, we regard the construction of a metamodel
as an iterative process. In this work, as well as in a previous one [13], we composed
the new metamodel on the basis of portions of metamodels coming from other design
processes (as prescribed by the results of the process requirements analysis activity
reported in Table 2).

In so doing we are aware that defining the core MAS metamodel means defining
a relevant part of the ’philosophy’ that will be behind the new design process and
for this reason we performed this activity during several meetings often involving
stakeholders that would be employed in the usage of the new design process.

While defining the new MAS metamodel by starting from parts of metamodels
coming from other processes, we can incur in three different situations:

(1) The different metamodels contribute to the new one with parts that are to-



14 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

tally disjointed (this happens when the selected metamodel elements combine
together without overlapping each other). In this case a harmonization of con-
cept definitions coming from different sources is probably advisable but it is not
strictly required. An example of this situation can be the case when the resulting
core metamodel includes the concept of agent coming from one design process
and the concept of role coming from another; they are related in the resulting
model but it is not strictly necessary to change their definitions, sometimes they
are already congruent (a detailed check is anyway highly advisable).

(2) The different metamodels contribute to the new one with parts that overlap each
other and overlapping elements have the same (or similar) definitions bounded
to elements with different names. In this case a definition-oriented identification
of concepts for the new metamodel assembly is advisable. This means that
concepts should be addressed on the basis of their definitions and a partial
or even global renaming activity is required in order to have a well composed
metamodel with concept names and definitions put in harmony each other.

(3) The different metamodels contribute to the new one with parts that overlap
each other and overlapping concepts have the same names bounded to elements
with different definitions. This is the worst case since coherence of definitions
of the new metamodel elements is not easily reached. Elements coming from
different metamodels, when assembled in a new one, can originate non-sense
situations that can only be solved by modifying the definition of the elements,
in order to define a meaningful structure.

We already discussed a case study mainly belonging to the above described point
3 in [13]; in this paper we will mainly discuss the first case since parts coming from
different metamodels will not significantly overlap. Of course, it is also possible that
the above-discussed cases are all together present in a specific experiment.

3.2. Process Design

The aim of this phase, such as the aim of architectural design phase during software
development, is to identify the main elements of the SEP and the general schema
of their interactions; in our case these elements are the process fragments that have
to be selected/retrieved from the repository and then assembled in the new SEP.
Process design phase is composed of five activities: Metamodel Elements Prioritiza-
tion, Reusable Fragments Selection, New Fragments Creation, Fragments Assembly,
Metamodel Extension and New Design Process Enactment.

• Metamodel Elements Prioritization. During this activity the method en-
gineer identifies the order in which the MAS metamodel elements have to be
instantiated during the development of the new SEP. This order constitutes the
principal guide for the selection of fragment and their assembly.
The metamodel is the main input of this activity; the method engineer ana-



The Metamodel: a Starting Point for Design Processes Construction 15

lyzes its structure in order to establish the level of priority of each element. The
output is a list used in the following activity.

• Fragments Selection and New Fragments Creation. The process frag-
ment is the building block of process design; it is extracted from existing design
processes, or created from scratch, and stored in a repository, called method
base from which it is selected basing on the results of requirements analysis. A
process fragment can be extracted from existing design processes or created/-
modified to meet a specific requirement of the new process.
The configuration of our actual fragments repository and how to use imt for
selecting the fragments have been already discussed in [39].

• Fragments Assembly. This activity is still one of the most important unre-
solved points in the SME field and some proposal have been done in [33][25][26].
It is a very complex work where the method designer has to collate all the ele-
ments gathered in the previous activities and to merge them using his experience
and skills.
We think that in some cases a set of fragments can be directly associated each
other, in other cases they need modifications of one (or more) constituting ele-
ments.
For instance if two fragments adopt different semantics for the produced work
products, it is necessary to change (or adapt) the elements of one work product
kind to the other to allow a right assembly, or if the process part of two different
method fragments overlap then one, or both of them, must be modified in order
to create a unique consistent process.

• Metamodel Extension. This activity is carried out if after a first assembly
activity there should be the necessity of extending the core metamodel. In fact
it may happen that one or more of the selected fragments present elements
(inputs and/or outputs) that do not belong to the core metamodel; in this case
in order to use them an extension and a further analysis of the core MMM is
needed.

• New Design Process Enactment. When no core MMM extension is needed
then the new SEP is enacted and can be used by one or more system designer
for developing a multi-agent system.

3.2.1. The algorithm for selecting and assembling fragments

In the proposed approach, the metamodel is supposed to be used for the selection
and the assembly of fragments; the question at this point is: which is the start-
ing point? Assuming that each element of the core metamodel has to be defined
(instantiated) in at least one fragment, it is obvious to consider that the order of
instantiation is relevant because of the elements’ mutual dependencies.
This is exactly what happens, for instance, for the order of compilation of the files
composing a complex software. We argue that the order itself should therefore de-
scend from the structure of the metamodel and for this reason; in this subsection



16 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

we propose a prioritization algorithm.
According to this argument, once the core metamodel has been defined, the next
step consists in the MAS metamodel elements (MMMEs) prioritization.

The order we will find is strictly related to the features the process will exhibit.
For instance, a process with an early identification of roles and a late binding of
these roles to the agents that will play them (like it happens in GAIA [44]) will obey
to a philosophical design approach that is different from that of another process
where agents are identified before roles (like it happens in PASSI [18]). It is worth
to remember that, in our approach, the goal of the process design phase consists
in selecting and assembling all the fragments defining the elements of the MMM
according to a well established order.

The work can be represented as a cycle composed of three subphases: (i) prior-
itization of MMMEs; (ii) identification and assembly of process fragments defining
the MMMEs; (ii) extension of the metamodel until the complete process is defined.
The algorithm we adopted in performing this activity is reported in Table 1.

This algorithm is based on the following assumptions:

• MAS metamodel elements are organized in three domains: problem, agency, solu-
tion. In the first domain we put elements belonging to the model of the problem
in terms or requirements, in the agency domain we collect elements defining an
agent-based solution to the problem defined in the previous domain, in the so-
lution domain we list elements related to the implementation of the solution in
one or more available platforms (like JADE, JANUS, JACK and so on).

• The extension of the core MAS metamodel towards its completion (and the com-
pletion of the process obtained by composing fragments) is a crucial activity that
should be strongly affected by the awareness of the new process requirements and
the relationships among requirements and MMMEs. Despite this is the most im-
portant rule for completing the MAS metamodel (and its application strongly
depends on the specific problem) another criterion should be considered as well:

• The opportunity of reusing some existing fragments leads to the introduction
in the metamodel of all the MMMEs managed by them. The definition of new
MMMEs that do not belong to the core metamodel is one of the most common
consequences of that. This is a kind of bottom-up criterion that privileges the
reuse of best known and tested fragments. Of course the acceptance of such
new elements in the metamodel should be subjected to their participation in
achieving the process requirements, otherwise a modification of the fragment (or
the selection of another one) should be pursued.

Looking into the details of the proposed algorithm we can see that it starts with
the selection of one of the three MMM domains (problem, agency, solution); after
that three lists are initialized:

• The first list (List elements1 ) is used for storing all the elements that can be
defined by reusing fragments from the repository; a priority p is associated to



The Metamodel: a Starting Point for Design Processes Construction 17

Table 1. The algorithm proposed for defining the instantiation priority of MAS metamodel elements

1. Select a metamodel domain (consider the resulting metamodel as a graph with nodes
(MMMEs) and edges (relationships))

2. Define List elements1 as a list of MMMEs that can be defined by reusing fragments from the
repository, and the associated priority p: List elements1 (MMME, p), p=1;

3. Define List elements2 as a list of MMMEs that cannot be defined by reusing fragments from
the repository;

4. Define List elements3 as a list of elements that are not in the core MMM;
5. While the core MMM is not empty

(a) select the leaves Li (i=1,. . . ,n) that: (i) can be instantiated by fragments of the repository
and (ii) have less relationships with other elements

i. Insert Li (i=1,. . . ,n) in List elements1;
ii. Remove elements Li (i=1,. . . ,n) from the core MMM;
iii. p = p+1;

6. While the core MMM is not empty

(a) select the leaves Li (i=1,. . . ,m) that can not be instantiated by fragments of the repository;

i. Insert Li (i=1,. . . ,m) in List elements2;
ii. Remove Li (i=1,. . . ,m) from the core MMM;

7. For each element E1i of List elements1 select an instantiating fragment from the repository
(verify the correspondence among fragment rationale and the process requirements/strate-
gies)

(a) If one fragment corresponds to process requirements and strategies then:

i. insert the fragment in the new process composition diagram
ii. analyze inputs Ii (i=0,. . . ,n) and outputs Oj (j=0,. . . ,m) of the fragment

A. If some Ii or Oj does not belong to the core MMM then add it to List elements3;
mark the fragment as “To be modified”

B. remove E1i from List elements1;

iii. For each element E2i in List elements2 analyze if there is a similarity with the elements
defined in this fragment

A. if yes delete E2i from List elements2 and Ii/Oi from List elements3

(b) else (if no fragment correspond to requirements and strategies) then

i. remove E1i from List elements1 and insert it in List elements2

8. For each E2i (i=0..m) in List elements2

(a) Define a new fragment for instantiating E2i

(b) Insert the fragment in the new process composition diagram
(c) Remove E2i from List elements2

9. For each E3i (i=0..m) in List elements3

(a) Introduce elements E3i (i=0..q) from List elements3 in the core MMM
(b) Repeat from 2. (consider only the new elements)

10. If the process is not completed (i.e. not all design activities from requirements elicitation to
coding, testing and deployment have been defined)

(a) Repeat from 1.

each element thus defining the prioritization order.
• The second list (List elements2 ) is used for storing all the core MMMEs for the

instantiation of whom we have no fragments in the repository; in this case it is
not necessary to assign a level of priority to them as it will be discussed later.

• Finally, the third list (List elements3 ) is used for storing the elements that are
defined by the reused fragments but are not present in the core metamodel; this



18 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

list is used for establishing if the fragment introducing a specific MMME has to
be modified or if it is better to extend the core MMM with this new element. For
instance let us suppose a fragment for defining the MMME x has been reused;
the same fragment could have another output MMME (suppose this is y) that
does not belong to the core MMM; in this case two possibilities are available: (i)
the core metamodel has to be extended by inserting y in it; (ii) the definition of
element y could be similar to that of an element stored in List element2 (one for
which no fragments are available in the repository). In any of these cases some
modifications in the selected fragment are needed (the case study in subsection
4.3 will later show an example of that).

After the creation of these lists (step 5 of the algorithm) we start analyzing
the core metamodel. The list of elements with priority p=1 let us identify the first
element of the core metamodel to be instantiated in the new SEP thus giving us a
base for selecting the first fragments from the repository.
These fragments have to be chosen among all those satisfying the process require-
ments and their associated strategies. A strategy is a set of actions, decisions, as-
sumptions that are adopted in order to fulfill one of the process requirements. Table
2 will later report some of the strategies associated to the ASPECS process require-
ments.

A process component diagram (see the following subsection 4.4) is drawn in
order to keep trace of all the selected fragments, their inputs, outputs and in order
to facilitate their positioning in the previously selected life-cycle.

As it can be seen the algorithm entails some iterations, in fact it could be pos-
sible that after a first assembly an extension of the metamodel is needed; more
specifically, this happens when the List elements3 is not empty (this is the list in-
cluding the elements that are inputs or outputs of the adopted fragments).
Another opportunity for iterations occurs when the MAS metamodel alone does not
lead to the completion of the process. This is something we have not directly expe-
rienced but we cannot exclude that the proposed approach ensures the definition of
a complete process; it is possible to imagine that after some iterations the process
is not definitive and it still needs some fragments in order to introduce activities or
artefacts that are related to the process requirements but have not been connected
to any MMME.

In the next subsection we will discuss the final phase of the new process con-
struction approach presented in Figure 3.

3.3. Process Deployment

Once the new SEP has been created and enacted the method engineer evaluates it
during the work of a system designer that adopts, during the System Design activ-
ity, the new process with the aid of a CASE tool for solving a specific problem.
After that the designed system is used and experimented; a results evaluation ac-
tivity occurs (during Process Evaluation) in order to measure and evaluate the new



The Metamodel: a Starting Point for Design Processes Construction 19

process, also according to the CMMI model. Gathered information can be used as
new process requirements for a next iteration (if necessary).

In the following section we move from the presentation of the theoretical descrip-
tion of our approach to the experiment we used to prove that. We will present (some
of) the requirements under which the ASPECS design process has been developed
and the resulting process itself.

4. The ASPECS Process: From Initial Requirements to the Result

The ASPECS design process has been created to deal with the construction of large
multi-agent systems used in problems where an hierarchical decomposition could be
advisable. We also tried to reuse the six years of experiences done with the PASSI
design process [10] and the social aspects of the CRIO approach [14].

In the following subsections we detail the identified requirements for the AS-
PECS process, the created core metamodel, the definition of the precedence order
for the instantiation of metamodel elements, the selection/assembly of method frag-
ments and the extension of the metamodel with the consequent selection of new
fragments in an iterative process. This process is the instantiation of the general
process described in section 3 and complements the theoretical part of this paper
with the experiment we did in composing ASPECS.

4.1. Requirements for the construction of ASPECS

The design of the ASPECS methodology has been constrained by a set of require-
ments that according to the inputs of the process requirements analysis phase pre-
sented in subsection 3.1, can be classified as follows:

(1) Problem Type: the scope of the new design process was defined to be the
development of very large MASs for the solution of problems suitable for an
hierarchical decomposition. This requirement was inspired by previous expe-
riences of some project members with holonic social structures.

(2) Development context: the development of the ASPECS methodology can be
seen as a joint work of people coming from two different experiences: people
working at the SET laboratory who had a strong background in the design
and implementation of holonic systems with a strong accent on the organi-
zational aspect of the system (CRIO process) and one new lab member who
was the main author of a process (PASSI) for the design of MASs where
agents are mostly peers and important features were: the use of ontologies,
a requirements-driven agent identification, the adoption of patterns and tools
for supporting the design/coding activities.
Participants to this project soon agreed to maintain the key elements of their
background and skills in order to allow an easier adoption of the new design
process. This implied reusing distinguishing elements from PASSI and CRIO.
As regards agents implementation, in the SET lab, the development of a new



20 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

implementation platform (Janus) was undergoing and its adoption in the new
design process was, of course, highly desirable.

(3) Organization maturity: several experiments for the development of holonic
systems have been previously performed in the lab but each single project
adopted a different implementation solution or design strategy so that a unique
consolidated design process was not available.
Conversely, as regards the experiences coming from PASSI people, a complete
documentation of the process was available, a large number of projects have
been already developed and a large experience of usage of the process and the
related guidelines/tools was available.
From previous PASSI design experiences, authors gained the conviction that
an early adoption of an ontological description of the Problem domain could
help in improving problem understanding and design quality.

These requirements concurred to the definition of the core metamodel we de-
scribe in the next subsection.

4.2. The ASPECS core metamodel

From the above described process requirements, we obtained the elements that com-
pose the core metamodel.
A detailed description of the techniques and guidelines for relating process require-
ments with some MMMEs is out of the scope of this paper but we can briefly say
that we adopted the following process: initially we identified one or more possible
strategies for fulfilling each process requirement and after we selected the MMMEs
that best fit these strategies. This latter selection, for the scope of this paper, can
be considered the result of the method engineer experience.

In the specific case study this means that we selected the elements that were
directly related to the adopted strategy according to our knowledge of the fragments
in our repository as well as the structure of other well known design processes.

Table 2 reports the list of process requirements for the ASPECS process (column
1), the strategy (sometimes more than one) we selected for fulfilling this require-
ment (column 2) and finally the consequences of the selected strategy (columns
3-5 of the Table). Consequences are expressed in terms of MAS MetaModel Ele-
ments (MMMEs) coming from both the PASSI (column 3) and CRIO (column 4)
metamodels or finally they can be specific guidelines to be adopted in building the
process (column 5).

Just to consider a few example from Table 2, we can note the effect of the first
ASPECS requirement on the final result. In order to face the development of very
large MASs for the solution of hierarchically decomposable problems we decided to
adopt a holonic decomposition of the problem. Holonic societies were part of the
background of people working with CRIO and therefore it was a logical choice to
adopt them for such an objective.
Moreover, holons perfectly fit this kind of problems and they allow the construction



The Metamodel: a Starting Point for Design Processes Construction 21

Table 2. ASPECS process requirements, fulfillment strategies and related MAS MetaModel Ele-

ments (MMMEs), partial list.

Consequence
ASPECS Pro-
cess Require-
ment

Strategy MMME from
PASSI

MMME from
CRIO

Other

Development of
very large MASs
for hierarchi-
cally decompos-
able problems

Adoption of holonic
decomposition of
problems

Capacity, Orga-
nization, Role,
Interaction,
Holon

Organizations,
not
agents should be
the center of the
process

Reuse of experi-
ences done with
PASSI

Support for func-
tional requirements

Scenario, (Func-
tional) Require-
ment

Early identification
of agents on the ba-
sis of requirements

Link agent-
requirement

Agents should
be replaced by
organizations

Transformational
approach

3 domains in the
MMM

An ontology should
be used to model
agent’s knowledge

Ontology
(including Con-
cepts, Actions,
Predicates)

FIPA-compliance at
least at the commu-
nication level

Communica-
tion, Message,
Interaction Pro-
tocol, Ontology,
Role

Input of the process:
text scenarios

Text Scenario is
an input of the
process

Reuse of experi-
ences done with
CRIO

Adoption of Capac-
ity for abstracting
agent’s behaviour
and enabling service
exchanges

Service Capacity

Adoption of role as a
primitive concept

Role

Organization
maturity

Enabling the adop-
tion of design tools
supporting the in-
troduction of design
patterns and auto-
matic code genera-
tion

Supporting
tools should be
built ensuring
pattern
reuse and code
production

Early adoption of
ontological descrip-
tion of problem do-
main

Ontology is de-
fined early in
the process

of very large MAS because during holon design it is sufficient to look at one specific
abstraction level at a time thus lowering the complexity of this activity.
The consequences of this strategy are: (i) the adoption of the key elements of the
CRIO metamodel supporting the holonic structure, and the decision to put the
concept of organization at the center of the design process philosophy (in some way,
this moved a little apart the importance of Agent concept).

The reuse of experiences done with PASSI and CRIO was another important
requirement for the new process. This requirement generated several strategies; for



22 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

instance the decision to maintain the semantic structure of PASSI communications
(that are FIPA-compliant) implied the adoption of concepts like Communication,
Message, Interaction Protocol, Ontology.
Another strategy related to that implied the adoption of Role as a primitive concept;
this introduced a great change in the philosophy of the new process. Agents were
no more the basic composition elements of the new application, they were replaced
by Roles (as it was in the CRIO approach).

Finally, an interesting discussion arose from the assessment we made of our
design experiences in order to evaluate the maturity of our organization and the
needed improvement: PASSI designers found interesting their experience in adopt-
ing an ontological description of the problems for modeling agents’ knowledge and
communication contents.
We concluded that this experience, although positive, had a limit in the fact that it
did not explicitly used the ontological model for improving problem understanding
and requirements capturing. For this reason we decided to perform an early mod-
eling of Problem domain in form of an ontology that could be reused in several
different aspects of the design.

From the methodological point of view an interesting point concerned the deci-
sion of adopting a transformational approach inspired by PASSI but coherent with
the MDE [38] theories. This suggested the idea of organizing the metamodel in 3
domains: problem, agency and solution, each one corresponding to a different level
of abstraction and design refinement from problem requirements capture to the final
solution delivery.

Resuming the results of this part of the work, in Table 2 it is possible to see that
the following MMMEs have been identified as parts of the new core metamodel:

• For the Problem Domain: Scenario, (Functional) Requirement, Organization,
Role, Ontology (composed of Concept, Predicate, Action), Interaction, Capac-
ity.

• For the Agency Domain: Message, Interaction Protocol, Communication,
Holon, Service.

It is worth to note that we here report only a part of the overall set of ASPECS
process requirements and corresponding consequences. For this reason, for instance,
we are not dealing at all with the elements belonging to the Solution domain MAS
metamodel. In the following we will only focus on the Problem domain part of the
metamodel.

From this list of elements we initially defined a core metamodel whose Problem
domain portion can be seen in Figure 4. Relationships among elements largely come
from the original metamodels (PASSI and CRIO) but some interesting issues raised
in the composition of these elements in the new core metamodel:

• Elements coming from CRIO have been integrated in the new model with only
minor changes in their definitions (that is what happened to the Organization



The Metamodel: a Starting Point for Design Processes Construction 23

Fig. 4. The ASPECS Problem domain core metamodel.

and Interaction relationships with other elements)
• Two different concepts (Role in PASSI and CRIO) had the same name but

different definitions. Essentially, as it is easy to see, the CRIO Role concept is
an analysis level concept while the PASSI Role one is mostly a design abstrac-
tion. This is an example of the situation described in point 3 on the previously
reported subsection on the core MAS metamodel composition (elements with
same names and different definitions).
In this specific occurrence we found an easy solution of the problem, by posi-
tioning each of the two elements in the domain it belonged to in its original
approach, and introducing a relationship between them (i.e. the CRIO Role is
transformed in the PASSI Role when moving from the Problem to the Agency
domain).

• PASSI Requirement is usually related to the agent concept. This represents
the fact that in PASSI agents are responsible for satisfying requirements. In
the ASPECS process this responsibility is given to organizations as it comes
from the CRIO process and the choices reported in Table 2. As a consequence
the two concepts (Requirement and Organization) have been related and their
definitions have been consequently modified.

• While in PASSI Roles participate to Scenarios, in the new model this situation
has been replaced by the more detailed integration of the CRIO and PASSI
contributions: Role interact each other (Interaction is an attribute class of the
Role self-relationship) within Scenarios.

• Ontology has the same structure as in PASSI but it is now positioned in
the Problem domain. This is the consequence of a precise choice: adopting
ontological exploration of the Problem domain as a tool for deepening the
understanding of the problem to be solved.



24 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

• Capacity has been introduced as a Problem domain abstraction for represent-
ing what each role is capable to do (it does not describe how to achieve the
objective, for instance the adopted algorithm, it only describes what can be
done).

• A new relationship has been introduced between Interaction and Ontology El-
ement (an abstract class that generalizes the ontology components for purely
commodity purposes). This relationship enriches the description of the infor-
mation exchanged in interactions thus fully exploiting the possibilities offered
by an early modeling of problem ontology.

• The original CRIO definition of Organization has been enriched by the adop-
tion of an ontological description of the organizational context (again a con-
sequence of the early availability of an ontology model).

From these and other similar considerations we built the core metamodel for the
ASPECS process. It has not been an easy and short activity but rather it has
been performed during several meetings, it involved debates with other people not
directly belonging to the team of ASPECS developers but skilled in the usage of
agent-oriented methodologies and related platforms.

In the next subsection we discuss the prioritization of the MMMEs that repre-
sents the order, we expect to adopt, for instantiating these elements in the fragments
that will compose the new design process.

4.3. Prioritization of MAS metamodel elements

The priority order of the MMMEs has been defined by applying the already dis-
cussed algorithm (see Table 1).
In steps 1-4 we select the Problem domain part of the core MMM (shown in Figure
4), and we create the three lists.
In step 4, by analyzing the core MMM we see thatCapacity complies to condition
5.a of the algorithm and it has only one relationship with the other elements; there-
fore we assign p=1 to Capacity, we introduce it in the first list (List element1 =
(Capacity, 1)), we remove this element from the core MMM and finally we incre-
ment p.
Since the metamodel is not empty, we continue the loop reported at step 5 and
we find that the following elements have only two relationships with the remaining
part of the metamodel and they also satisfies the condition at step 5.a: Functional
Requirement,Concept, Predicate and Action (that are specializations of the abstract
conceptOntology Element), and Scenario. As already done for Capacity, these ele-
ments are now introduced in the first list, removed from the core metamodel and
the priority p is incremented.

At the end of the core MMM analysis and the application of steps 5 and 6, we
have the following situation:

• List elements1 = (Capacity, 1), (Func. Req., 2), (Concept, 2), (Predicate, 2),



The Metamodel: a Starting Point for Design Processes Construction 25

(Action, 2), (Scenario, 2), (Ontology,3), (Role, 4)
• List elements2 =(Organization),(Interaction)
• List elements3 =NULL.

As regard List elements2, we introduced Organization and Iteration in it since
we have not available fragments in our repository for instantiating them; in the
following subsection it will be explained how they are managed. List elements1 and
List elements2 cover all the elements of the Problem domain and the choice done
reflects the ASPECS design process requirements.
Similarly we obtained a priority order list for the MMMEs of the following domains
(Agency and Solution). This part of the case study application is omitted because
of space concerns.

After these steps, it is possible to start the selection of fragments (step 7) from
the repository or the construction of new ones in order to define the elements accord-
ing to the prescribed order. This process will be discussed in the next subsection.

4.4. Definition of an initial draft of the process

In this subsection it will be explained how a first prototype of the new SEP is drawn
following the second part of the algorithm presented in Table 1 (from step7).

In performing the fragments selection activity, we refer to our repository of
fragments [39] that includes fragments extracted from PASSI[10], Agile PASSI [17],
TROPOS [22], Adelfe [2] and some others coming from CRIO. Since several of the
MMMEs required by this novel approach (for instance holon) are not present in the
repository, we expect to produce several new process fragments, hoping of reusing
and modifying some existing ones when possible.

According to what prescribed at step 7.a.i, the first process fragment to be
considered for the construction of the new process is devoted to the definition of
Capacity.

In order to draw the initial sketch of the process we adopt what we call a process
component diagram. Two examples, at different levels of refinement, of this diagram
are reported in Figure 5. In this diagram, each process fragment is reported as a
component with some input and output MMMEs. If a component defines an element
that is an input for another one, than a dashed line is drawn in order to show this
dependency. Inputs of the process are here reported too (this is the case of the
Text Scenario element that is an input of the Domain Requirements Description
fragment reported in Figure 5.b).

In executing step 7.a.ii we consider the input/output MMMEs of the Capacity
Identification fragment and we find that they all belong to the core MMM so that
this fragment can be reused as it is and therefore marked as “Reused” (besides we
fill it in green). The resulting process component diagram is reported in Figure 5.

During the second iteration of the loop reported at step 7 we deal with the
second element of List elements1 (Functional Requirements) and we select (step
7.a) the PASSI Domain Requirements Description fragment to instantiate that. A



26 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

Fig. 5. The first and the second step of process component diagram construction

detailed list of the operations performed on that is now reported:

• Step 7.a.i.: the PASSI Domain Requirements Description fragment is intro-
duced in the process component diagram, see Figure 5.b.

• Step 7.a.ii.: this fragment has an input (Text Scenario) that does not belong
to the core MMM but it is considered as an input for the whole process and
therefore we can avoid inserting it in List elements3 (no fragment will be
necessary to define that).

• Step 7.a.iii.: no similarity with the elements of List elements2 is found.

The fragment has two outputs: the (obvious) Functional Requirement, and Actor ;
this latter element is not, actually, present in the core MMM and therefore it is to
be inserted in List elements3. The fragment is then marked as To be Modified and
the Actor element is red coloured in the diagram.

By iterating the process again for two times, we obtain the process component
diagram reported in Figure 6. About this result, it is interesting to note that:

• the third element (Problem Ontology Description) can be totally reused form
PASSI as it descends from already done considerations.

• the fourth fragment,(Scenario Description), presents some elements to be in-
serted in the List elements3, they are: Actor, Agent and Message.

• for the Message element, by following the step 7.a.iii, we find that the defi-
nition of Message is quite similar to that of Interaction and therefore we can
remove that respectively from List elements2 and List elements3. Interaction
and Message will be considered as the same element from now on (the name
Interaction will be used for both).

Now in List elements2 only the element “Organization” remains; by analyz-



The Metamodel: a Starting Point for Design Processes Construction 27

ing it (step 8), we see that the fragment that should define it aims at creating a
relationship between each organization and the requirements it is responsible to
accomplish. This is very near to the work done in the PASSI Agent Identification
fragment that can therefore be easily adapted to cope with this new situation (the
resulting fragment will be labelled Organization Identification).

Fig. 6. The process component diagram obtained by the core MAS metamodel

In a similar way, the remaining part of the process has been defined but the
corresponding description has been omitted because of space concerns. In the next
section we discuss some examples of extension of the initial core MAS meta-model
done in order to refine the initial sketch of the process.

4.5. Completion of the process and extension of the core

metamodel

The construction of a new design process can be regarded as an iterative-incremental
activity that can be decomposed in the following steps:

(1) Construction of a process stub (including several fragments, for instance up to
reach the phase size);

(2) Evaluation of results;
(3) Next iteration planning (in terms of new process requirements to be addressed,

changes to be done in the existing process stub, new parts of the metamodel to
be included in the process).

In the previous sections we discussed the construction of the new process stub as
reported at the beginning of the previous list. In the case of the ASPECS methodol-



28 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

ogy, we performed the first significant results on evaluation activity after completing
the System Requirements phase.

This test, in our case, consisted in using the new process stub for designing a
couple of simple applications. This allowed us familiarizing with the process and
appreciating its qualities. Because of the high number of reused fragments and the
good level of coherence and cohesion exposed by the process stub we only proposed
a few changes. The first was the explicit introduction of non functional requirements
in the early stages of the process. This has been done by introducing the Non Func-
tional Requirement element in the MAS metamodel (directly related to the existing
functional Requirement element) and then modifying the Domain Requirements De-
scription fragment in order to complement the adopted use-case based description of
requirements with a textual description of non functional requirements constraining
the designed use cases.

Another change regarded the Actor element that is an output of the same Do-
main Requirements Description fragment, but it was not in the core MMM (it can
be found in List elements3 ). This is an element that could reasonably be considered
as a part of the metamodel although not explicitly deducted from requirements. For
this reason, it has been decided to include it in the final metamodel.

Whereas the above-described changes regarded the introduction of new elements
in the metamodel, other modifications have been done in other aspects of the pro-
cess. For instance, it has been decided to fully exploit the advantages of an on-
tological modelling of the Problem domain by using that for the identification of
organizations. For this reason the Ontology input has been introduced in the Orga-
nization Identification fragment (it was not an input in the original PASSI Agent
Identification fragment).

Finally, a totally new fragment has been introduced in this part of the process
because of a simple consideration: the Scenarios Description fragment reports a dy-
namic view of scenarios as they are enacted by organization roles; it was considered
convenient to introduce a structural view of these roles in order to facilitate the
management of these elements; the Interactions and Roles Identification fragment
was therefore introduced, its aim is to produce a class diagram reporting Roles as
classes and Interactions as relationships among them. Finally, the elements detailing
role plans (and the corresponding fragment) have been introduced. At this stage
the first phase of the process (the one regarding the Problem domain) is completed.

The order in which the fragments are listed in the process is the consequence
of their dependencies reported in the process component diagram (Figure 6 depicts
the realization of the core metamodel without the above reported extensions of it).
The final Problem domain metamodel of the ASPECS process is reported in Figure
7, whereas resulting ordered list of fragments is:

• Domain Requirements Description;
• Problem Ontology Description;
• Organization Identification;



The Metamodel: a Starting Point for Design Processes Construction 29

• Interactions and Roles Identification;
• Scenarios Description;
• Role Plan;
• Capacity Identification.

After that, according to the 3-steps iterative process discussed at the beginning
of this subsection, we designed a new portion of the metamodel, more specifically,
the core part of the Agency domain metamodel. We are not now going to detail the
work done for building the remaining phases of ASPECS since it is essentially the
same done for the first phase.

Fig. 7. A part of the ASPECS Problem domain core metamodel.

5. Discussion and Conclusions

In this paper an approach for the construction of customized agent-oriented design
processes on the basis of the well known Situational Method Engineering paradigm
has been presented; this approach is named PRoDe meaning Process for the Design
of Design Processes).

PRoDe is composed of three phases: (i) Process Analysis, devoted to the process
requirements elicitation; this phase starts from the maturity level of the organiza-
tion, the problem type and the development context; it produces a set of elements
useful for the construction of the core metamodel and the structure (the process
model) to be adopted by the under construction process; (ii) Process Design, whose
aim is to establish which process fragments have to be selected from the repository
and how they can be assembled; (iii) Process Deployment where the new design
process is used and evaluated. The construction process is iterated, if necessary.

Each PRoDe phase is composed of a set of activities (see Figure 3); in this paper
we only gave a brief description of some of them, while we detailed the following:
Core Metamodel Creation, Reusable Fragments Selection and Fragments Assembly.



30 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

This choice descends from the specific focus of this paper (the exploitation of the
system metamodel in the new process construction). Our aim was, in fact, to explore
how the core metamodel underpinned by the new process and its elements are used
for the selection and assembly of fragments after its construction. In this sense we
invert the classical point of view according to which the system metamodel is a
consequence of the process and we adopt a MDE perspective where the metamodel
is the focus of the development process.

One of the most relevant problems we face is to find a criterion for establishing
the starting point for process fragments assembly. This starting point is expressed
in terms of elements of the MAS metamodel. In our approach, each metamodel ele-
ment is strongly connected to a process fragment since each fragment is devoted to
produce a deliverable where, usually, at least one metamodel element is instantiated
or related to one or more other elements. This assumption let us identify a list where
metamodel elements are ordered according to a priority; this priority is a measure
of the mutual dependency of MAS metamodel elements (number of relationships
among them). In this way, for each element we can establish the order of instantia-
tion during the process fragments selection phase. MAS metamodel elements with
less relationships with the others are selected at first and corresponding process
fragments (that instantiate them) are the first to be introduced in the new process.
At this aim, we created the presented algorithm that constitutes a useful guide for
method engineers during the construction of a new process. It is worth to note that
the fact that a specific fragment is the first to be selected does not necessarily mean
that this fragment will be positioned at the beginning of the process. This position
is determined by considering mutual dependencies among fragments as described
in Figure 6.

The proposed approach has been adopted in the construction of a new design
process devoted to the development of holonic multi agent systems (ASPECS); in
this paper we illustrated the work we did for that and namely: the construction
of the core metamodel, the use of the prioritization algorithm, the selection and
assembly of fragments.

We regard the use we did of the system metamodel, and the prioritization algo-
rithm we proposed, as the first steps towards a solution to the problem of the lack
of guidelines for some SME activities and for reducing the great dependency on the
method designer personal skills. Another approach in literature faces the selection
and assembly of fragments in a kind of formal way: this is based on the deontic
matrices proposed in [27] and [25]; it provides the possibility to link fragments in
pairs thus facilitating their assembly. This approach, although useful, is anyway
directed to people skilled in using the OPF framework; this because the structure
of deontic matrix itself, still requires a deep knowledge of the used repository; in
this sense, we think our solution offers a viable opportunity to organizations where
a not very experienced method engineer is available.

Our approach is surely to be refined and improved, it is still linked to the method



The Metamodel: a Starting Point for Design Processes Construction 31

designers skills in the step 7 (of the algorithm), when the designer has to check if
the selected fragment corresponds to process requirements and strategy; this point
needs further guidelines and for now it could not be automated, whereas all the
other steps offer the advantages of being a well defined guide also for not skilled
people; it is only necessary to have a well documented repository of fragments.

This approach was at first conceived for being used in the agent-oriented software
engineering context, but the use of system metamodel as the basis of it, allows us to
affirm that it can be considered general, since it can be used in all the contexts where
a system metamodel is defined (this actually means all the approaches based on the
MDE paradigm). We found some similarities and some possibilities of interrelation,
with the approach shown in [43] where a process-data diagram is used to relate
activities of the process under construction with the elements (data) they produce;
data is then used by the method designer for choosing, on the basis of his/her
knowledge, which fragment has to be used.

This approach is quite similar to the one we proposed in this paper, it is not
focussed on the metamodel but it can be easily brought back to that thus strength-
ening our conviction about the generality of our work.

As a future work we are planning to extend the algorithm, best detailing the
procedure for matching selected fragments to the process requirements and also
we aim at studying the best way for representing and realizing the modifications
required from fragments during assembly.

Acknowledgements

Part of this work makes use of results produced by the PI2S2 Project managed by
the Consorzio COMETA, a project co-funded by the Italian Ministry of University
and Research (MIUR) within the Piano Operativo Nazionale “Ricerca Scientifica,
Sviluppo Tecnologico, Alta Formazione” (PON 2000-2006).

References

[1] The Model Driven Architecture. http://www.omg.org/mda/.
[2] Carol Bernon, Valérie Camps, Marie-Pierre Gleizes, and Gauthier Picard. Engineering

adaptive multi-agent systems: the adelfe methodology. In Agent Oriented Methodolo-
gies, chapter VII, pages 172–202. Idea Group Publishing, 2005.

[3] S. Brinkkemper. Method engineering: engineering the information systems develop-
ment methods and tools. Information and Software Technology, 37(11), 1996.

[4] S. Brinkkemper, K. Lyytinen, and R. Welke. Method engineering: Principles of
method construction and tool support. International Federational for Information
Processing 65, 65:336, 1996.

[5] S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-modelling based assembly tech-
niques for situational method engineering. Information Systems, Vol. 24, 24, 1999.

[6] S. Brinkkemper, M. Saeki, and F. Harmsen. A Method Engineering Language for the
Description of Systems Development Methods. Proceedings of the 13th International
Conference on Advanced Information Systems Engineering, pages 473–476, 2001.



32 V.Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam and S. Gaglio

[7] S. Brinkkemper, R.J. Welke, and K. Lyytinen. Method Engineering: Principles of
Method Construction and Tool Support. Springer, 1996.

[8] Atkinson C. and Kuhne T. Model-driven development: A metamodeling foundation.
IEEE Software, 20(5):36–41, September/October 2003.

[9] L. Cernuzzi, M. Cossentino, and F. Zambonelli. Process models for agent-based de-
velopment. Engineering Applications of Artificial Intelligence, 18(2):205–222, 2005.

[10] M. Cossentino. From requirements to code with the PASSI methodology. In Agent
Oriented Methodologies [28], chapter IV, pages 79–106.

[11] M. Cossentino, S. Gaglio, A. Garro, and V. Seidita. Method fragments for agent de-
sign methodologies: from standardisation to research. International Journal of Agent-
Oriented Software Engineering (IJAOSE), 1(1):91–121, 2007.

[12] M. Cossentino, S. Gaglio, L. Sabatucci, and V. Seidita. The passi and agile passi
mas meta-models compared with a unifying proposal. In In proc. of the CEEMAS’05
Conference, pages 183–192, Budapest, Hungary, Sept. 2005.

[13] M. Cossentino, S. Gaglio, and Seidita V. Adapting passi to support a goal oriented
approach: a situational method engineering experiment. In Proc. of the Fifth European
workshop on Multi-Agent Systems (EUMAS’07), 2007.

[14] M. Cossentino, L. Sabatucci, V. Seidita, and Gaglio S. An agent oriented tool for
new design processes. In Proceedings of the Fourth European Workshop on Multi-
Agent Systems (EUMAS’06), 2006.

[15] M. Cossentino, L. Sabatucci, V. Seidita, and Gaglio S. An expert system for the de-
sign of agents. In Proceedings of International Workshop on Agent Supported Cooper-
ative Work at the IEEE The Second International Conference on Digital Information
Management (ICDIM’07), 2007.

[16] M. Cossentino and V. Seidita. Composition of a New Process to Meet Agile Needs
Using Method Engineering. Software Engineering for Large Multi-Agent Systems,
3:36–51, 2004.

[17] M. Cossentino and V. Seidita. Composition of a New Process to Meet Agile Needs
Using Method Engineering. Software Engineering for Large Multi-Agent Systems,
3:36–51, 2004.

[18] Massimo Cossentino. From requirements to code with the PASSI methodology. In
Agent Oriented Methodologies [28], chapter IV, pages 79–106.

[19] D.G. Firesmith and B. Henderson-Sellers. The OPEN Process Framework: An Intro-
duction. Addison-Wesley, 2002.

[20] N. Gaud, S. Galland, V. Hilaire, and Koukam A. An organisational platform for
holonic and multiagent systems. In In Proceedings of Programming Multi-Agent Sys-
tems (PROMAS) workshop, 2008.

[21] C. Gerber, J.H. Siekmann, and G. Vierke. Holonic multi-agent systems. Technical
Report DFKI-RR-99-03, DFKI - GmbH, 1999.

[22] P. Giorgini, J. Mylopoulos, and R. Sebastiani. Goal-oriented requirements analysis
and reasoning in the Tropos methodology. Engineering Applications of Artificial In-
telligence, 18(2):159–171, 2005.

[23] D. Gupta and N. Prakash. Engineering Methods from Method Requirements Speci-
fications. Requirements Engineering, 6(3):135–160, 2001.

[24] A.F. Harmsen, M. Ernst, and U. Twente. Situational Method Engineering. Moret
Ernst & Young Management Consultants, 1997.

[25] B. Henderson-Sellers. Process Metamodelling and Process Construction: Exam-
ples Using the OPEN Process Framework (OPF). Annals of Software Engineering,
14(1):341–362, 2002.

[26] B. Henderson-Sellers. Creating a comprehensive agent-oriented methodology-using



The Metamodel: a Starting Point for Design Processes Construction 33

method engineering and the OPEN metamodel. Agent-Oriented Methodologies, pages
368–397, 2005.

[27] B. Henderson-Sellers. Method engineering: Theory and practice. In D. Karagiannis
and editors Mayr, H. C., editors, Information Systems Technology and its Applica-
tions., pages 13–23, 2006.

[28] Brian Henderson-Sellers and Paolo Giorgini. Agent Oriented Methodologies. Idea
Group Publishing, Hershey, PA, USA, June 2005.

[29] V. Hilaire, A. Koukam, P. Gruer, and J.P. Müller. Formal specification and proto-
typing of multi-agent systems. In ESAW, number 1972 in LNAI, 2000.

[30] K. Kumar and R.J. Welke. Methodology engineering: a proposal for situation-specific
methodology construction. Challenges and Strategies for Research in Systems Devel-
opment, pages 257–269, 1992.

[31] I. Mirbel and J. Ralyté. Situational method engineering: combining assembly-based
and roadmap-driven approaches. Requirements Engineering, 11(1):58–78, 2006.

[32] L. Osterweil. Software processes are software too. In Proceedings of the 9th interna-
tional conference on Software Engineering, pages 2–13, 1987.

[33] J. Ralyté. Towards situational methods for information systems development: en-
gineering reusable method chunks. Procs. 13th Int. Conf. on Information Systems
Development. Advances in Theory, Practice and Education, pages 271–282, 2004.

[34] J. Ralyté and C. Rolland. An Approach for Method Reengineering. Conceptual
Modeling-ER 2001: 20th International Conference on Conceptual Modeling, Yoko-
hama, Japan, November 2001: Proceedings, 2001.

[35] S. Rodriguez, V. Hilaire, and K. Koukam. Formal specification of holonic multi-agent
system framework. In Intelligent Agents in Computing Systems, ICCS(3), number
3516 in LNCS, pages 719–726, 2005.

[36] Shavrin S. Ontological multilevel modeling language. International Journal Informa-
tion Theories & Applications, 14, 2007.

[37] M. Saeki. Software specification & design methods and method engineering. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 1994.

[38] Douglas C. Schmidt. Model-driven engineering. Computer, 39(2):25–31, Feb. 2006.
[39] V. Seidita, M. Cossentino, and S. Gaglio. A repository of fragments for agent systems

design. Proc. Of the Workshop on Objects and Agents (WOA06), 2006.
[40] V. Seidita, J. Ralyté, B. Henderson-Sellers, M. Cossentino, and N. Arni-Bloch. A

comparison of deontic matrices, maps and activity diagrams for the construction of
situational methods. In CAiSE’07 Forum, Proceedings of the CAiSE’07 Forum at the
19th International Conference on Advanced Information Systems Engineering., pages
85–88, Trondheim, Norway, 11-15 June 2007.

[41] ter Hofstede A.H.M. and Verhoef T.F. On the feasibility of situational method engi-
neering. Information Systems., 22(6/7):401–422, 1997.

[42] Juha-Pekka Tolvanen. Incremental method engineering with modeling tools: Theo-
retical principles and empirical evidence (ph.d. thesis). Jyvskyl Studies in Computer
Science, page 301, 1998.

[43] van de Weerd I., Brinkkemper S., Souer J., and Versendaal J. A situational imple-
mentation method for web-based content management system-applications: Method
engineering and validation in practice. In Software Process: Improvement and Prac-
tice, John Wiley & Sons, Ltd., 2006.

[44] Franco Zambonelli, Nicholas Jennings, and Michael Wooldridge. Multiagent systems
as computational organizations: the gaia methodology. In Agent Oriented Methodolo-
gies [28], chapter VI, pages 136–171.


