
R. Kaschek et al. (Eds.): UNISCON 2008, LNBIP 5, pp. 1–12, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Standardizing Methodology Metamodelling and
Notation: An ISO Exemplar

Brian Henderson-Sellers1 and Cesar Gonzalez-Perez2

1 Faculty of Information Technology, University of Technology, Sydney, PO Box 123,
Broadway, NSW 2007, Australia

2 Instituto de Estudios Galegos Padre Sarmiento, Consejo Superior de Investigaciones
Científicas, San Roque, 2, 15704 Santiago de Compostela, Spain
brian@it.uts.edu.au, cesargon@verdewek.com

Abstract. Standardization within a discipline often reflects its maturity. Within
software engineering, standardization occurs in many areas – here we focus on a
recent ISO standard that has been developed for a methodology metamodel: the
Software Engineering Metamodel for Development Methodologies, ISO/IEC
24744. Since its publication as a pure metamodel (represented by several UML-
style class diagrams) in February 2007, a follow-on project has been established
to provide a complementary notation for all the methodological elements, both
within the method domain and the endeavour domain. Here, we discuss not only
the technical details but also the process by which standardization occurs.

Keywords: Metamodelling, methodology, notation, standards.

1 Introduction

Maturity in a discipline is often reflected when standardization occurs. The prime
international standardization body is the International Organization for Standardiza-
tion or ISO, headquartered in Geneva in Switzerland.

Standardization of methodological elements within software engineering assists de-
velopment teams in following the same approach leading to interoperability at all levels
and an increase in their efficiency and productivity. Often companies using an ISO
standard have a head start in obtaining contracts, particularly with government depart-
ments worldwide, since adherence to an ISO standard can be indicative of a quality-
focussed approach to software development. While there are many ISO standards
relevant to software engineering, here we will focus on just one of these: the Software
Engineering Metamodel for Development Methodologies, ISO/IEC 24744 [1].

All standards go through a rigorous development process. In ISO, software engi-
neering standards mostly fall under the purview of Subcommittee number 7 (SC7) of
the Joint Technical Committee 1 of ISO and IEC (International Electro-technical
Commission). Within SC7, each standardization project is attributed to one of the
several working groups for development. Development stages have a six-month dura-
tion during which work is undertaken to develop an initial, raw proposal into a stan-
dard acceptable to a very wide community. At each of these six-monthly stages, a
vote is taken by National Bodies before the embryonic international standard can

2 B. Henderson-Sellers and C. Gonzalez-Perez

proceed to the next stage, the voting community growing larger at each six month
milestone. Final approval for this particular standard (24744) occurred after the No-
vember 2006 meeting in Kyoto and the standard was published February 13 2007.

In this paper, we focus on the technical details of the ISO/IEC 24744 International
Standard. We first introduce metamodelling basics (Section 2) and then explain how
these are reflected in the International Standard itself (Section 3). In Section 4, we go
a little beyond the published standard to describe a notation that is currently the topic
of a New Work Item (NWI) within SC7. This, in due course, is aimed at created an
addendum to 24744 that will describe a recommended notation for describing meth-
ods and processes conformant to the metamodel in the existing standard.

2 Metamodelling Basics

Metamodelling is cognitively challenging and often ill understood (see examples in
[2]). A metamodel is a model of models [3,4] where a model is a statement about a
given subject under study (SUS), expressed in a given language [5]. The SUS that is
the focus of our current study is that of methodologies so we are concerned with
metamodels that are models of methodologies. These models provide the under-
pinning (quasi-formalism) for methodologies that exist in the real world e.g. the meth-
odology used by a particular company on their projects (or endeavours in the wider
sense). The relationship between a model and a metamodel is thus that the metamodel
elements represent the model elements [6]. Together, the elements in the metamodel
are the modelling language that can be used to describe such conformant models.

endeavour

method

metamodel
Activity

WorkUnit

Task Technique

* *

methodologies assessment quality tools

endeavourendeavour

methodmethod

metamodelmetamodel
Activity

WorkUnit

Task Technique

* *

methodologies assessment quality toolsmethodologiesmethodologies assessmentassessment qualityquality toolstools

Fig. 1. Three layer architecture of recent standards (after [7])

This suggests some sort of layering or multi-domain representation – the meta-
model domain, the methodology domain and, hinted at above, the endeavour domain.
The metamodel domain is usually composed of standardized conceptual constructs,
the method domain contains real-world methodology elements (methods, tools, cod-
ing standards) while the endeavour domain represents actual processes in use by the

 Standardizing Methodology Metamodelling and Notation: An ISO Exemplar 3

people on a particular project/endeavour (Figure 1). Typically, standardization occurs
in the metamodel domain.

3 An Exemplar – The ISO/IEC 24744 International Standard

ISO/IEC 24744 [1] is an International Standard that defines a metamodel for
development methodologies. Although it is geared towards software development
methodologies, there is nothing in it that prevents it from being applied to systems
development methodologies or even other areas. The standard exists in the metamodel
domain of Figure 1 and contains a number of elements that model entities in the
method domain plus a number of element that model entities in the endeavour do-
main. This is unlike other method/process-focussed standards that only model entities
in the method domain.

Fig. 2. Task/TaskKind powertype pattern in ISO/IEC 24744 (after [8])

Fig. 3. The “instantiation” of a powertype pattern. A regular object is instantiated from the
TaskKind class and a regular class is obtained by subtyping the Task class. Together these form
a clabject (depicted by the ellipse) (after [8]).

To accomplish this duality, as discussed in [8] in more detail, ISO/IEC 24744 es-
chews the strict metamodelling paradigm and the well-known instantiation-related,
multiple layering architecture of the Object Management Group and introduces the
powertype concept of Odell [9] as a core model element in the metamodel. Pairs of
concepts, one representing entities in the method domain and one representing entities
in the endeavour domain, are abstracted to form powertype patterns [10] (Figure 2).
The endeavour-focussed element (Task in Figure 2) represents elements (actual tasks)
in the endeavour domain, while the method-domain element is modelled, in the ex-
ample, by a conceptual class called TaskKind that represents all kinds of tasks that
could possibly exist in the method domain. In the method domain, an instance of

4 B. Henderson-Sellers and C. Gonzalez-Perez

TaskKind is also a subtype of Task (where TaskKind and Task are both in the meta-
model domain) (Figure 3). This means it has both class-like and object-like character-
istic. Such an entity has been called a “clabject” by Atkinson [11].

ISO/IEC 24744 makes wide usage of clabjects and powertype patterns. Its scope
includes work units, work products, producers, stages and model units (for details see
relevant subsection in Section 4). The overall architecture of ISO/IEC 24744 is shown
in Figure 4. Powertype patterns are used for subtypes of Template and Endeavour
elements, whilst regular instantiation semantics are sufficient for the subtypes of Re-
source. The differentiation between templates and resources is practical, with clear
semantics (see also [12]). Nevertheless, it is appropriate for both template and re-
source concepts to be implemented in the metamodel equally, as regular classes. It is
their usage that is different. Furthermore, we must emphasize that the instances of
resources and templates (collectively called methodology elements) reside in the
Method domain, in contrast to the instances of endeavour elements, which reside in
the Endeavour domain.

Fig. 4. Overall architecture of ISO/IEC 24744 (after [1])

4 Adding a Notation

While the published International Standard [1] does not contain any recommended
notation (but just an abstract syntax and semi-formal semantics), at the time of writ-
ing, a new project under Working Group 19 of the SC7 subcommittee of ISO, has
been commenced to standardize a notation especially designed to depict ISO/IEC
24744 concepts. Here is a summary of the progress to date on this soon-to-be-
standardized set of symbols.

The proposed notation is mainly graphical and supports most of the template con-
cepts found in 24744 (left-hand side of Figure 4).

 Standardizing Methodology Metamodelling and Notation: An ISO Exemplar 5

Although the metamodel of ISO/IEC 24744 contains classes that represent con-
cepts from the Method domain and classes that represent concepts from the Endeav-
our domain, the notation so far gives more support for the former. It has been
designed to depict concepts from the Method domain in order to help the methodolo-
gist or method engineer represent method fragments and complete methodologies.
The notation does not yet comprehensively cover the Endeavour domain, i.e. it is not
capable of depicting concepts pertaining to specific enactments of any methodology.
There is an exception to this, namely enactment diagrams. Enhancement of the nota-
tion presented here to cover Endeavour domain concepts is for future consideration in
the ISO standardization process.

The notation has been designed to be easy to draw by hand as well as using a draw-
ing package on a computer. Special care has been taken to follow semiotic principles, as
suggested in [13, 14] in choosing symbols that convey the underlying concept, at least
in most situations and to readers of most cultures and backgrounds. In addition, the
symbols adopted by the notation exhibit visual resemblance (based on shapes and col-
ours) to each other that mimic the structural relationships of the underlying concepts in
the metamodel, establishing common “visual themes” for closely related concepts. Col-
our is extensively used by this notation, since it helps identify symbols and symbol
patterns with ease when displayed on a computer display or a colour printout. However,
care has been taken to guarantee that greyscale and black and white versions of the same
symbols are perfectly readable and identifiable. In this regard, colour does enhance
diagram readability but can be avoided without great loss.

This notation introduces the novel concept of abstract symbols, i.e. symbols that de-
pict instances of abstract classes. In principle, most notations only include symbols to
depict instances of concrete classes, since abstract classes do not have direct instances.
However, it is suggested that in some scenarios it is convenient to represent an entity in
a diagram for which only the abstract type is known. For example, consider the case
where a work product kind representing a certain system must be depicted in a diagram.
A notation with only concrete symbols would force the designer to choose a specific
concrete type of work product (document, model, software item etc.) in order to depict
it. This notation thus includes an “abstract work product kind” symbol that allows the
designer to depict the above-mentioned system without specifying whether it is soft-
ware, hardware, composite etc. Abstract symbols usually consist of the simple shape
from which all the concrete symbols in a visual theme are generated.

4.1 Stages

A stage is a managed time frame within an endeavour. Stages are partitioned into
stage kinds by the StageKind class (Figure 4). In addition to the abstract StageWith-
DurationKind, three of its subtypes are covered by this notation: TimeCycleKind,
PhaseKind and BuildKind. These are represented by broad symbols that can contain
other elements. A rectilinear theme has been chosen. Colours, when used, for all these
symbols belong to the blue-purple range (Figure 5).

The symbol used to depict a time cycle kind is composed of two navy blue hori-
zontal brackets with their right-hand side end bent outwards, simulating a truncated
arrow head. These brackets delimit a quasi-rectangular area within which symbols for
other stage kinds can be shown. This symbol tries to convey the meaning that a time

6 B. Henderson-Sellers and C. Gonzalez-Perez

cycle kind comprises a collection of other stage kinds - hence the bracket analogy. A
similar argument underpins the shape for PhaseKind and the more iteratively focussed
BuildKind with its double point, resembling dual arrow heads. It too can serve as a
container for other elements, which can be shown inside it.

<Name> <Name>

Fig. 5. The “stage family” has six symbols representing StageWithDurationKind, TimeCycle-
Kind, PhaseKind, BuildKind, InstantaneousStageKind and MilestoneKind

In contrast, an instantaneous stage is a managed point in time within an endeavour.
InstantaneousStageKind is thus another abstract class, depicted by an abstract symbol
(a square). This symbol tries to convey the idea of a point in time, hence the similarity
with other stage-related symbols (overall rectangular shape) but a smaller area. Since
instantaneous stages are points in time rather than time spans, no other symbols need
to be shown inside this one.

The symbol used to depict a milestone kind is a small square rotated 45 degrees.
This symbol tries to convey the idea of an event-marking point in time, hence the
similarity with other stage-related symbols (points facing left and right) but a smaller
area. It also resembles the symbol used by Microsoft PowerPoint™ and other project
management software tools to depict milestones. Since milestones are points in time
rather than time spans, no other symbols will need to be shown inside this one.

Temporality is represented by the “pointed” nature of the left and/or right sides of
these symbols – other than the two symbols (rectangle and square) representing the
abstract supertypes (StageWithDurationKind and InstantaneousStageKind).

4.2 Work Units

A work unit is a job performed, or intended to be performed, within an endeavour.
Work units are partitioned into work unit kinds by the WorkUnitKind class according to
their purpose within the endeavour (Figure 4).Three subtypes of WorkUnitKind are
covered by this notation: ProcessKind, TaskKind and TechniqueKind. None of these
concepts are involved in whole/part relationships that may need nesting of symbols, so
the symbols chosen to depict them are basic curvilinear shapes and easily resizeable to
accommodate long names or abbreviations. However, since work unit symbols often
occur on the same diagram, as well as their contrasting shape outlines, an additional
colour coding can be added so that the user can readily discriminate between them in
process diagrams that support colour (see Figure 6).

 Standardizing Methodology Metamodelling and Notation: An ISO Exemplar 7

A process is a large-grained work unit that operates within a given area of expertise
within the endeavour. The symbol used to depict a process kind is a rounded rectangle
or “roundangle”. When colour is available, line colour is medium green and fill colour
is light green. In some contrast, a task is a small-grained work unit that focuses on
what must be done in order to achieve a given purpose within the endeavour. The
symbol used to depict a task kind is an ellipse with more intense shades of green than
ProcessKind. TechniqueKind, shown with similar colours to ProcessKind, details how
tasks are to be accomplished. The minimum capability level of work unit kinds is
optionally shown inside a circle toward the top or left as indicated (“n” in the figure).

<Name>

n

Fig. 6. The WorkUnitKind family of icon shapes and colours: ProcessKind, TaskKind and
TechniqueKind

4.3 Work Products

A work product is an artefact of interest for the endeavour. Work products are parti-
tioned into work product kinds by the WorkProductKind class according to the nature
of their contents and the intention behind their usage. Five subtypes of WorkProduct-
Kind are covered by this notation: DocumentKind, ModelKind, SoftwareItemKind,
HardwareItemKind and CompositeWorkProductKind. All of them are represented by
tall symbols with colours in the red-pink range. The former four correspond to “sim-
ple” work products, and therefore are represented by reasonably simple rectangular
shapes, but with different adornments. CompositeWorkProductKind, on the other
hand, uses a symbol that tries to convey a sensation of depth to represent multiplicity.

The most general is the abstract symbol for WorkProductKind itself. This is de-
picted by a vertically-oriented rectangle. Line colour is red and fill colour is pale
red/pink (Figure 7). This symbol captures the overall shape used for the other (con-
crete) types of work product kinds. A document is a durable depiction of a fragment
of reality. Documents are partitioned into document kinds by the DocumentKind class
according to their structure, type of content and purpose. The symbol used to depict a
document kind is a vertical rectangle with a dog-eared top right corner. This symbol
depicts a sheet of paper.

A model is an abstract representation of some subject that acts as the subject’s sur-
rogate for some well-defined purpose. Models are partitioned into model kinds by the
ModelKind class according to their focus, purpose and level of abstraction. The sym-
bol currently used to depict a model kind consists of a vertically-stacked pair of hori-
zontal rectangles linked by a short vertical line. This symbol is reminiscent of two
nodes and an arc in a model.

A software item is a piece of software of interest to the endeavour. Software items
are partitioned into software item kinds by the SoftwareItemKind class. The symbol

8 B. Henderson-Sellers and C. Gonzalez-Perez

currently used to depict a software item kind is a square with a bottom left chamfered
corner and a smaller rectangle adjacent to the bottom side. This symbol depicts a
floppy disk, commonly used to represent the concept of software

<Name> <Name>

<Name> <Name>

<Name>

Fig. 7. Symbols for WorkProductKind, DocumentKind, ModelKind, SoftwareItemKind, Hard-
wareItemKind and CompositeWorkProductKind, respectively

A hardware item is a piece of hardware of interest to the endeavour. Hardware
items are partitioned into hardware item kinds by the HardwareItemKind class ac-
cording to their mechanical and electronic characteristics, requirements and features.
The symbol currently used to depict a hardware item kind is a vertical rectangle with
a small rectangle nested in its upper half.

A composite work product is a work product composed of other work products.
Composite work products are partitioned into composite work product kinds by the
CompositeWorkProductKind class. The symbol used to depict a composite work
product kind is a pair of vertical rectangles “stacked” along the z-axis, simulating
perspective. This symbol tries to convey the idea of composition, i.e. a work product
made of multiple components.

4.4 Producers

A producer is an agent that has the responsibility for executing work units. Producers
are partitioned into producer kinds by the ProducerKind class according to their area
of expertise. Three subtypes of ProducerKind are covered by this notation: Team-
Kind, RoleKind and ToolKind. All of them are based on a schematic depiction of a
torso using half an ellipse with colours in the orange-yellow range (Figure 8).

Fig. 8. Symbols for ProducerKind, TeamKind, RoleKind and ToolKind, respectively

The most generic is the abstract symbol for the superclass, ProducerKind. The
symbol used to depict a work product kind is half an ellipse standing on its flat side.

A team is an organized set of producers that collectively focus on common work
units. Teams are partitioned into team kinds by the TeamKind class according to their
responsibilities. The symbol used to depict a team kind is a pair of half ellipses standing

 Standardizing Methodology Metamodelling and Notation: An ISO Exemplar 9

on their flat side and “stacked” along the z-axis, simulating perspective. This symbol
depicts multiple human torsos, and hence the team.

A role is a collection of responsibilities that a producer can take. Roles are parti-
tioned into role kinds by the RoleKind class according to the involved responsibilities.
The symbol used to depict a role kind is half an ellipse standing on its round tip – a
“mask” symbol, used to show a person who is playing a (theatrical) role.

A tool is an instrument that helps another producer to execute its responsibilities in
an automated way. Tools are partitioned into tool kinds by the ToolKind class. The
symbol used to depict a tool kind is a vertical half ellipse with its round tip pointing
leftwards and a square indentation in the centre of its flat side - depicting the head of
an open-end wrench or spanner, a prototypical tool.

4.5 Other Groups of Symbols

There are other supporting symbols proposed as part of the ISO/IEC 24744 notation,
including Actions and other similar relationships linking pairs of methodology ele-
ments. For example, an action is a usage event performed by a task upon a work
product. Actions are partitioned into action kinds by the ActionKind class according
to their cause (the specific task kind), their subject (the specific work product kind)
and their type of usage (such as creation, modification etc.). An action is depicted
(Figure 9) by an arc that goes from the symbol for the associated task kind to the
symbol for the associated work product kind. The arc is a plain line with a small circle
on the end of the work product kind. The type of usage is specified inside the small
circle using an abbreviation (“t” in the figure – there are various options not listed
here – see [15]). The role of the work product kind for this particular action kind, if
any, can be shown close to the work product end. The optionality of the action kind
can be shown using a deontic marker (“d” in the figure).

Fig. 9. Notation for actions

Similarly, a work performance is an assignment and responsibility association be-
tween a particular producer and a particular work unit. Work performances are parti-
tioned into work performance kinds by the WorkPerformanceKind class according to
the purpose of their inherent assignment and responsibility association. The symbol
used to depict a work performance kind is an arc that goes from the symbol for the asso-
ciated producer kind to the symbol for the associated work unit kind. A plain arc is used.
The recommended assignment of the work performance kind can also be shown using a
deontic marker.

4.6 Diagram Types

As with any kind of modelling using a graphical notation, various views of the total
model can be made. In each a different aspect of the system is stressed. With ISO/IEC
24744, we can identify the need for the following diagram types:

10 B. Henderson-Sellers and C. Gonzalez-Perez

• Lifecycle diagrams, which represent the overall structure of a method. They
can depict both the temporal aspects (reading them left to right as time
passes) and the content aspects (Figure 10).

OPEN/Metis Project

M0

Construction

Construction Build

Mc

Mf

Determination of Needs

Definition

Change

Change Build

Mu

Retirement

Needs Formalisation1

Needs Documentation1

Requirements Specification1

High-Level Modelling1

Technological Design1

Deployment Planning1

Construction Planning1

User Documentation Authoring1

Low-Level Modelling1

Coding1 Generation1

Packaging1

Synchronisation1

System Retirement1

Change Management2

High-Level Modelling1

Low-Level Modelling1

Coding1 Generation1

Packaging1

Synchronisation1

Fig. 10. A lifecycle diagram showing the content structure as well as the temporal structure of a
method. Notice how stage kinds can contain both nested stage kinds (such as “Construction
Build” inside “Construction”) and process kinds (“User Documentation Authoring”).

• Process diagrams, which describe the details of the processes used in a method.
These may include the relationships between process kinds, the links between
process kinds and task kinds, and the producer kinds assigned to the work unit
kinds by the appropriate work performance kinds. Process diagrams, therefore,
focus strongly on the “what” aspect of a method, being also able to show the
“who” (Figure 11).

• Action diagrams (Figure 12), which show the usage interactions between task
kinds and work product kinds. Action diagrams represent the usage that task
kinds make of work product kinds. These usages are basically modelled as
action kinds in ISO/IEC 24744. Action diagrams, therefore, serve to visualize
the bridge between the process and product sides of a method.

• Task-Technique diagrams, which some developers may find useful to formalize
which techniques are useful for which tasks and vice versa. Such diagrams
would provide an alternative to the more well-established textual descriptions
such as a deontic matrix [17].

The notation proposed so far for ISO/IEC 24744 focusses on representing the method
domain. In the endeavour domain, diagram types are also needed. The only one so far
tentatively proposed is the “enactment diagram”, which represent a specific enactment
of a method (or part of a method) and its relationship to the method specification.

 Standardizing Methodology Metamodelling and Notation: An ISO Exemplar 11

Require-
ments

+

Quality

Requirements
Engineering

1

Requirements
Quality Assurance

2

Metrics
Tool

Elicit
requirements1

Analyse
requirements1

Document
requirements1

Validate
requirements2

Verify
requirements2

Measure
requirements

quality
4

Fig. 11. A process diagram showing the details of the “Requirements Engineering” and “Re-
quirements Quality Assurance” processes

Fig. 12. An action diagram showing how requirements-related task kinds interact with require-
ments-related work products

5 To the Future

The ISO process for the notation to accompany the metamodel [1] will continue over
the next several years with a likely final publication in 2009/10. During that process,
elements of shape, topology, colour etc. may well change from those suggested
above. In addition, it is anticipated that diagram types will be suggested to support the
endeavour domain. At each six-monthly stage, international feedback is sought via the
National Bodies that each have voting rights on ISO/IEC standards under SC7. Best
practice is achieved by exposure to a wide-ranging audience, initially just software
engineering experts in each country worldwide and then over a wider ISO electorate.

12 B. Henderson-Sellers and C. Gonzalez-Perez

References

1. ISO/IEC: 24744: Software Engineering - Metamodel for Development Methodologies. In-
ternational Organization for Standardization/International Electrotechnical Commission,
Geneva (2007)

2. Henderson-Sellers, B.: On the Challenges of Correctly Using Metamodels in Method En-
gineering. In: Fujita, H., Pisanelli, D. (eds.) New Trends in Software Methodologies, Tools
and Techniques. Proceedings of the sixth SoMeT 2007, pp. 3–35. IOS Press, Amsterdam
(2007)

3. Flatscher, R.G.: Metamodeling in EIA/CDIF – Meta-metamodel and Metamodels. ACM
Trans. Modeling and Computer Simulation 12(4), 322–342 (2002)

4. OMG: MDA Guide Version 1.0.1. OMG document omg/03-06-01 (2003)
5. Gonzalez-Perez, C., Henderson-Sellers, B.: Modelling Software Development Method-

ologies: A Conceptual Foundation. J. Systems and Software 80(11), 1778–1796 (2007)
6. Seidewitz, E.: What do Models Mean? IEEE Software 20, 26–31 (2003)
7. Henderson-Sellers, B.: Method Engineering: Theory and Practice. In: Karagiannis, D.,

Mayr, H.C. (eds.) Information Systems Technology and its Applications. 5th International
Conference ISTA 2006, Gesellschaft für Informatik, Bonn. Lecture Notes in Informatics
(LNI), vol. P-84, pp. 13–23 (2006)

8. Gonzalez-Perez, C.: Supporting Situational Method Engineering with ISO/IEC 24744 and
the Work Product Pool Approach. In: Ralyté, J., Brinkkemper, S., Henderson-Sellers, B.
(eds.) Situational Method Engineering: Fundamentals and Experiences. Proceedings of the
IFIP WG 8.1 Working Conference, Geneva, Switzerland, September 12-14, 2007. IFIP Se-
ries, vol. 244, pp. 7–18. Springer, Berlin (2007)

9. Odell, J.: Power Types. Journal of Object-Oriented Programming 7(2), 8–12 (1994)
10. Henderson-Sellers, B., Gonzalez-Perez, C.: Connecting Powertypes and Stereotypes. J.

Object Technol. 4(7), 83–96 (2005)
11. Atkinson, C.: Metamodelling for Distributed Object Environments. In: First Int. Enterprise

Distributed Object Computing Workshop (EDOC 1997), Brisbane, Australia (1997)
12. Gonzalez-Perez, C., Henderson-Sellers, B.: Templates and Resources in Software Devel-

opment Methodologies. J. Obj. Technol. 4(4), 173–190 (2005)
13. Constantine, L.L., Henderson-Sellers, B.: Notation Matters: Part 1 - Framing the Issues.

Report on Object Analysis and Design 2(3), 25–29 (1995)
14. Constantine, L.L., Henderson-Sellers, B.: Notation Matters: Part 2 - Applying the Princi-

ples. Report on Object Analysis and Design 2(4), 20–23 (1995)
15. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineering. J.

Wiley & Sons, Chichester (2008)
16. Henderson-Sellers, B., Edwards, J.M.: BOOKTWO of Object-Oriented Knowledge: The

Working Object, p. 594. Prentice-Hall, Sydney, Australia (1994)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

