
 1

Fragment Definition

Agents Identification

Version: 16 July 2008

Document Authors: M. Cossentino, V. Seidita

Index

1. Introduction ---2
2. Fragment Description --3

2.1. Portion of process --3
3. Deliverables ---5
4. Preconditions and concepts to be defined ---6
5. Relationship with MAS meta-model---5
6. Guideline --7
7. Composition Guideline --8
8. Aspects of Fragment ---8
9. Dependency Relationships with other fragments --8
10. Glossary---8

 2

1. Introduction
The PASSI process is composed of five different phases: System Requirements, Agent Society,
Agent Implementation, Code and Deployment.
Each phase produces a document that is usually composed aggregating the UML models and work
products of the work definitions that are inside each phase .

We will define a method fragment we call “Agent Identification”, extracted from PASSI
methodology whose process is completely represented in the following figure

Fig. 1 The complete PASSI process

 3

2. Fragment Description

The fragment here described is one of the peculiarities that distinguish the PASSI process from
other approaches. The designer skill in capturing system requirements has been capitalized in order
to produce an initial representation of the system functionalities (Domain Description Fragment)
and now this model is used to identify agents and designate their responsibilities in terms of
requirements to satisfy.

More in detail the System Requirements phase:

Fig.2 The System Requirements phase

Let us consider the “Agent Identification” sub-phase (the blue oval) .This fragment aims to identify
all the agents involved in the system to be developed.

2.1. Portion of process
The process that is to be performed in order to obtain the result is represented in fig. 3 as a SPEM
diagram

 4

Fig 3 Agents Identification description fragment-Procedural aspect

Activities description:

Activity Name Description Roles involved
Use Cases Clustering The System Analyst analyzes the use

case diagrams resulting from the
previous phase and attempts their
clustering in a set of packages

System Analyst
(perform)

Agents Naming After grouping the use cases in a
convenient set of packages, the last
activity of this phase consists in
identifying these packages with the
names that will distinguish the
different agents throughout all the
project

System Analyst
(perform)

System Analyst Role
In this fragment, he is responsible of performing all of the above described activities

 5

3. Relationship with MAS meta-model

Fig5. The MAS meta-model adopted in PASSI

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define the agent
element of it.

4. Deliverables
The resulting artefact of this phase is an use case diagram (Agent Identification diagram)
reporting the same use cases of the previous phase now clustered inside a set of packages, each
one representing one agent. As it is common, we represent external entities interacting with our
system (people, devices, conventional software systems) as actors.
Relationships between use cases of the same agent follow the usual UML syntax and
stereotypes, whereas relationships between use cases of different agents are stereotyped as
communication as described below.
Our assumptions about agent interaction and knowledge play an important role in the
understanding of this phase and they are as follows:

• An agent acts to achieve its objectives on the basis of its local knowledge and
capabilities;

 6

• Each agent can request help from other agents that are collaborative if this is not in
contrast with their own objectives;

• Interactions between agents and external actors consist of communication acts; this
implies that if some kind of include/extend relationship exists between two use cases
belonging to different agents, this stereotype is to be changed to communication since a
conversation is the unique interaction way for agents. This is a necessary extension of
the UML specifications that allow communication relationships only among use case
and actors. The direction of the relationships goes from the initiator of the conversation
to the participant. This stereotype change is, however, not in contrast with the spirit of
the definition of the communication relationship since an agent is a proactive entity that
could initiate an interaction just like an actor. An exception exists to this change in the
relationship stereotype: it is possible that an agent in requiring some collaboration from
another will not use a communication but instead will instantiate the other one; in this
case, that is however not frequent, we use an instantiate stereotype to distinguish this
situation from the others.

• An agent’s knowledge can increase through communication with other agents or
exploration of the real world.

Starting from an use case diagram, packages are used to group functionalities that will be
assigned to an agent (whose name is the name of the package).

Fig. 4 The Agent Identification Diagram

5. Preconditions and concepts to be defined

Input, output and element to be designed in the fragment are detailed in the following table.

As regards documents:

 7

Input Output
Use Case diagram from
the system requirements
elicitation (Domain
Description in PASSI)

Agent Identification
(UML diagram)

As regards MAS metamodel elements:
To Be Designed To be related To be quoted
Agent Agent-Requirement Requirement

The following figure describes the structure of the work product produced in this fragment:

Note that the symbol: represents an element of the MAS model.

The agent element is defined only by specifying its name and relationships with existing
requirements.

6. Guideline
This phase is usually performed by a system analyst whose work is described in the SPEM activity
diagram reported in Figure 3; the first activity consists in analyzing the use case diagrams resulting
from the previous phase and attempt their clustering in a set of packages. Not precise rules exist to
guide this operation but some guidelines could be drawn:

• It is better to group use cases that have inner logical commonalities because probably this
will bring to implementations that have several common elements

• Data flow could represent an important problem for intrinsically distributed systems like
MASs and therefore it could be useful to group together use case that will probably
exchange a significant amount of data

• This activity produces a sort of architectural decomposition of the future system (at least at
the functionality level but being each agent a consistent element of the implementation this
partition also guides some kind of structural decomposition for the following solution). This
suggests the observance of some common sense rules for agents identification:

 8

o When possible (and if evident at this stage), agents that could be deployed in special
devices (like PDA or cellular phones) should be fine grained in order to optimize
their performance.

o Human interaction functionalities could be assigned to specific agents in order to
prepare the option for a multi-device implementation (web-based, cell phone
interfaces, and so on) via different categories of agents implementing these
functionalities.

o In order to facilitate agents mobility, functionalities that strictly depend on hardware
devices or databases should that could not be accessed by everywhere should be
divided by the remaining part of the system eventually using a wrapping solution.

7. Composition Guideline
The fragment can be used after a functional-oriented requirements elicitation (performed with use
case diagrams) in order to identify a system decomposition into agents. It is not good for goal-
oriented approaches.

8. Aspects of Fragment
Behind this fragment there is only the basic assumption that the system is to be modelled in terms
of (functional) requirements.

9. Dependency Relationships with other fragments
None specific, obviously as already discussed in section 7 and 5, an use case diagram representing
system requirements is necessary as an input.

10. Glossary
Agent Identification Fragment uses this list of model elements:

Agent – an autonomous entity that is composed by roles and has a knowledge. An agent can be
seen from different level of abstraction. In this fragment agents are a logical aggregation of
functionalities (Use Case diagrams).
In general in PASSI, an agent is a significant software unit at both the abstract and concrete levels
of design. According to this view, an agent is an instance of an agent class. So it is the software
implementation of an autonomous entity capable of going after an objective through its autonomous
decisions, actions and social relationships. An agent may undertake several functional roles during
interactions with other agents to achieve its goals. A role is a collection of tasks performed by the
agent in pursuing a sub-goal. A task, in turn, is defined as a purposeful unit of individual or
interactive behaviour.
Requirement - A requirement represents a feature that the system to be must exhibit, it can be a
functional requirement that describes the interactions between the system and its environment
independent of its implementation, or a non-functional requirement such as a constraint on the
system (or a specific part of it) performance.

