
Features as Loosely Defined Method Fragments

Kuldar Taveter
Department of Informatics, Tallinn University of Technology, Tallinn, 12618, Estonia

(+372) 6202 313
kuldar.taveter@ttu.ee

Leon Sterling
Department of Computer Science and Software Engineering, University of Melbourne, Victoria, 3010, Australia

(+61 3) 8344 1404
leonss@unimelb.edu.au

1 Introduction
In [1] is proposed a modular approach enabling
developers to build customized project-specific
methodologies from agent-oriented software
engineering (AOSE) features. An AOSE feature is
defined in [2] to encapsulate software engineering
techniques, models, supporting Computer-Aided
Software Engineering (CASE) tools and development
knowledge such as design patterns. It is considered a
stand-alone unit to perform part of a development
phase, such as analysis or prototyping, while achieving
a quality attribute such as privacy. Another method for
building customized methodologies – OPEN [3] –
includes the notions of Work Units, Work Products,
Producers, Stages, and Languages. We can define an
AOSE feature in terms of these notions as a Work Unit
performed by one or more Producers in support of a
specific software engineering Stage resulting in one or
more Work Products represented in the respective
Languages. For example, we can identify the feature of
goal and role modelling performed by a domain
engineer in support of the requirements engineering
stage and resulting in goal models and role schemas.
Analogously, we can identify the feature of simulation
performed by a domain engineer and system architect
in support of the rapid prototyping stage and resulting
in the executable constructs of the JADE agent
platform represented in the Java language. Both of the
features mentioned support the quality goals of
adequacy and correctness of the requirements captured.
According to [3], a work product is any significant
thing of value (e.g., document, diagram, model, class,
or application) that is developed during a project. A
language is the medium used to document a work
product. A producer is anything that produces (i.e.,
creates, evaluates, iterates, or maintains), either
directly or indirectly, versions of one or more work
products. A work unit is defined as a functionally
cohesive operation that is performed by a producer. A
stage is a formally identified and managed duration of
time. Differently from OPEN [3], we do not regard it
as necessary to rely on the formal metamodel of
method fragments. As has been demonstrated by our
earlier work [1, 2, 4], and by the forthcoming book [5],
informal approach to methodology composition works
equally well and is more likely to be adopted by
industry.

2 The conceptual space
In place of a formal metamodel, we define features
based on an ontologically-founded conceptual space
within which to view systems. Two kinds of entities
inhabit the conceptual space: abstract entities and
concrete entities. Abstract entities are entities that exist
neither in space nor in time, that is they cannot be
localized. Examples of abstract entities are
mathematical objects like numbers and sets, modelling
abstractions like goals and roles, as well as types. On
the other hand, concrete entities are defined as entities
that exist at least in time. They subsume physical
entities that exist in both time and space, and virtual
entities that exist merely in time. Examples of physical
entities are humans and machines and as examples of
virtual entities serve actions and events. Likewise, a
software system exists in time but can we claim that it
also exists in space?
The conceptual space consists of three layers: a
motivation layer, a system design layer, and a
deployment layer. These layers straightforwardly
correspond to the three kinds of models defined by the
Model-Driven Architecture (MDA) by the Object
Management Group (OMG): Computation-
Independent Models (CIM), Platform-Independent
Models (PIM), and Platform Specific Models (PSM).
The conceptual space is represented in Figure 1. The
CIM or motivation layer contains abstract modelling
concepts needed for defining requirements and
purposes of a system. Arguably, the most foundational
are the goals of the system, which must be modelled,
as well as roles for achieving the goals. Here goals
represent functionalities expected from the system,
while roles are capabilities of the system required for
achieving the functionalities. In addition, social
policies are domain-specific guidelines on interaction
and behaviour of agents playing the roles. Domain
entities are the basic concepts of the problem domain
of the system.
The PIM or system design layer consists of the notions
required for modelling and designing a socio-technical
system. The central one among them is the concept of
agents, which is depicted at the PIM or system design
layer in Figure 1. We define an agent as an
autonomous entity situated in an environment capable
of both perceiving the environment and acting on it.
Each agent belongs to some agent type that, in turn, is

mailto:leonss@unimelb.edu.au
mailto:kuldar.taveter@ttu.ee

related to one or more roles from the CIM layer.
Agents enact roles by performing activities. Each
activity instantiates some activity type that specifies
and refines functionalities defined by goals at the CIM
layer. Activities are started and sequenced by rules.
Rules thus determine when goals are to be achieved.
Rules are triggered by perceptions of events by an
agent and/or by the knowledge held by an agent. The
knowledge consists of a set of knowledge items where
each knowledge item belongs to a specific knowledge
item type. An activity consists of actions where each
action is of some action type.
The environment is populated by concrete agents and
concrete objects, which are shown at the PSM or
deployment layer in Figure 1. Concrete agents and
objects belong to the respective concrete agent types
and concrete object types, such as agent and object
types of a specific software platform. They are derived
from the agent types and knowledge items of the PIM
layer. Likewise, behavioural construct types of the
PSM layer are based on the rules of the PIM layer.
Behavioural construct types are instantiated by the
corresponding behavioural constructs. At the PSM
layer of the conceptual space, the counterparts of
action types of the PSM layer are concrete action
types. A concrete action performed by one agent can
be perceived as an event by other agents. Events
belong to event types.

Figure 1. The conceptual space.

Orthogonal to the three horizontal layers are vertical
concerns that cross the layers. They are needed for a
clear understanding of the issues to be addressed when
designing and implementing a system. The types of
models required for domain analysis, system design,
and implementation lie at the intersections of
abstraction layers and cross-cutting concerns. The
kinds of such vertical concerns are provided by
conceptual frameworks. In the forthcoming book [5],

we provide an overview of the existing conceptual
frameworks and then describe our own conceptual
framework – the viewpoint framework – suitable for
modelling distributed socio-technical systems. This
conceptual framework has three vertical modelling
aspects: interaction, information, and behaviour. After
dividing the conceptual space vertically into the three
modelling aspects, we define and explain ten types of
models. Each of these model types fits into a particular
compartment of the conceptual space. Goal models
define the system’s purpose by the goals and quality
goals set for it. Goal models include roles, which
define functionalities required for achieving the goals.
Motivational scenarios describe in an informal and
loose narrative manner how goals are to be achieved
by agents enacting the corresponding roles. Role
models describe responsibilities and constraints related
to the performing of particular roles and organisation
models describe relationships between roles. Domain
models describe the knowledge that the system is
supposed to handle. The purpose of agent models is to
transform the abstract constructs from the analysis
stage – roles – to concrete constructs – agent types –
that will be realized at runtime. The acquaintance
model complements the agent model by outlining
interaction pathways between the agents of the system.
Interaction models represent interaction patterns and
protocols between the agents. Knowledge models
describe common and private knowledge for the
agents. Service models describe physical and virtual
environments that have been made computationally
accessible by agents – computational environments.
Finally, behaviour models describe the process of
decision-making and performing activities by
individual agents. Platform-specific models related to a
specific software platform, such as Microsoft.NET or
JADE, can also be utilized.
3 Identification of features
Implicit in the conceptual space introduced in Section
2 are three Stages: Analysis, Design, and
Implementation. If needed, they can be split into sub-
stages like requirements engineering and architectural
design. A model of each generic model type described
in Section 2 results from performing a Work Unit by
some Producer. Models themselves are Work Products
represented in the corresponding Languages. Table 1
represents the Stages, Work Units, Producers, Work
Products, and Languages present in the combination of
models originating in the ROADMAP (Role-Oriented
Analysis and Design for Multiagent Programming) and
RAP/AOR (Radical Agent-Oriented Process / Agent-
Object-Relationship) AOSE methodologies. These
methodologies are described in [8] and [9],
respectively. As we described in Section 1, features are
orthogonal to the notions of OPEN. Relying on the
definition of a feature provided in Section 1, we can
identify ten features in Table 1. These features have
been utilized in the Intelligent Lifestyle project [6]
conducted at the University of Melbourne.

Table 1. Stages, Work Units, Producers, Work Products and Languages of the Intelligent Lifestyle project.

Stage Work Units Producer(s) Work Product(s) Language(s)
Conceptual domain
modelling

Goal and role
modelling,
organisation
modelling,
conceptual
interaction
modelling, domain
modelling

Domain engineer Goal models and
motivational
scenarios, role
schemas, agent
diagram, interaction-
frame diagram,
domain model

ROADMAP
Graphical
Modelling Language

Platform-
independent
computational
design

Agent modelling,
acquaintance
modelling,
interaction
modelling,
knowledge
modelling,
behaviour modelling

Domain engineer,
system architect

Interaction-sequence
diagrams, agent
diagram, scenarios,
behaviour diagrams

AOR Modelling
Language

Platform-specific
design and
implementation

Implementing
agents Software engineer

Constructs of JADE
[7] agent platform

Java

4 Conclusions
We proposed features as loosely defined method
fragments. We do not regard it as necessary to rely on
the formal metamodel(s) for method engineering,
because we have seen that informal approach to
methodology composition works equally well and is
more likely to be adopted by industry. In the near
future, we plan to come up with process descriptions
for method engineering based on the conceptual space.

5 References

[1] Juan, T., Sterling, L., and Winikoff, M. (2002).
Assembling agent oriented software engineering
methodologies from features. In F. Giunchiglia, J. Odel,
and G. Weiss (Eds.), Agent-Oriented Software
Engineering III, Third International Workshop, AOSE
2002, Bologna, Italy, July 15, Revised Papers and
Invited Contributions (LNCS 2585, 198–209). Berlin,
Germany: Springer-Verlag.

[2] Juan, T., Sterling, L., Martelli, M., and Mascardi, V.
(2003). Customizing AOSE methodologies by reusing
AOSE features. In J. S. Rosenschein, T. Sandholm, M.
Wooldridge, and M. Yokoo (Eds.), Proceedings of the
Second International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-03),
Melbourne, Australia, July 14–18 (113–120). New
York, NY: ACM.

[3] Firesmith, D. G., and Henderson-Sellers, B. (2002).
The OPEN process framework: An introduction.
London, UK: Addison-Wesley.

[4] Juan, T., and Sterling, L. (2003). The ROADMAP
meta-model for intelligent adaptive multiagent systems
in open environments. In P. Giorgini, J. Muller, and J.
Odell (Eds.), Agent-Oriented Software Engineering IV,
4th International Workshop, AOSE 2003, Melbourne,
Australia, July 15, Revised Papers (LNCS 2935, 53–
68). Berlin, Germany: Springer-Verlag.

[5] Sterling, L. & Taveter, K. (2009). The art of agent-
oriented modeling. Cambridge, MA; London, England:
The MIT Press (forthcoming).

[6] Sterling, L., Taveter, K., and the Daedalus Team
(2006). Building agent-based appliances with
complementary methodologies. In E. Tyugu and T.
Yamaguchi (Eds.), Knowledge-Based Software
Engineering, Proceedings of the Seventh Joint
Conference on Knowledge-Based Software
Engineering (JCKBSE ’06), August 28–31, Tallinn,
Estonia (223–232). Amsterdam, The Netherlands: IOS
Press.

[7] Bellifemine, F., Caire, G., and Greenwood, D. (2005).
Developing multiagent systems with JADE. Chichester,
UK: John Wiley and Sons.

[8] Juan, T., and Sterling, L. (2003). The ROADMAP
meta-model for intelligent adaptive multiagent systems
in open environments. In P. Giorgini, J. Muller, and J.
Odel (Eds.), Agent-Oriented Software Engineering IV,
4th International Workshop, AOSE 2003, Melbourne,
Australia, July 15, Revised Papers (LNCS 2935, 53–
68). Berlin, Germany: Springer-Verlag.

[9] Taveter, K., and Wagner, G. (2005). Towards radical
agent-oriented software engineering processes based on
AOR modeling. In B. Henderson-Sellers and P.
Giorgini (Eds.), Agent-Oriented Methodologies (277–
316). Hershey, PA: Idea Group.

