
SPEM on test: the SODA case study

Elena Nardini
Alma Mater Studiorum –

Università di Bologna
Cesena, Italy

elena.nardini@unibo.it

Ambra Molesini
Alma Mater Studiorum –

Università di Bologna
Bologna, Italy

ambra.molesini@unibo.it
Andrea Omicini

Alma Mater Studiorum –
Università di Bologna

Cesena, Italy

andrea.omicini@unibo.it

Enrico Denti
Alma Mater Studiorum –

Università di Bologna
Bologna, Italy

enrico.denti@unibo.it

ABSTRACT
In the Software Engineering (SE) research field, several ef-
forts are underway aimed at developing appropriate meta-
models for SE methodologies. Meta-models are meant to
check and verify both the software development process and
the completeness and expressiveness of methodologies. In
this context, in order to provide a uniform way to repre-
sent, compare and reuse methodologies, Software Process
Engineering Meta-model (SPEM) – an OMG object-oriented
standard – is a natural candidate.

In order to put the SPEM meta-modelling power to test,
and emphasise its benefits and limitations, in this paper we
apply SPEM to a more articulated context than the object-
oriented one where it was initially conceived – that is, Agent-
Oriented Software Engineering (AOSE) methodologies. In
particular, we take the SODA methodology as a significant
case study in order to assess strengths and limitations of
SPEM, given the peculiar SODA focus on the modelling and
engineering of (i) social issues and (ii) application environ-
ment – essential aspects in the engineering of complex soft-
ware systems.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies;
D.2.18 [Software Engineering]: Software Engineering Pro-
cess—Process definition, Software process models

General Terms
Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

Keywords
Multiagent System, Agent-Oriented Software Engineering,
AOSE Methodology, SODA, SPEM

1. INTRODUCTION
The “silver bullet”, one-size-fits-all methodology is nowa-

days a recognised chimera in the Software Engineering field.
Quite naturally, each SE methodology has its own approach
and peculiarities, its pros and cons—and none is general
enough to fit with any possible application scenario. As a
consequence, it has been observed [7] that software designers
tend to define/refine their own problem-specific methodol-
ogy, as an ad hoc tool specially suited to the typical appli-
cation scenarios of interest. Of course, such methodological
approaches can be hardly reused in different contexts, or
for different problems, without significant changes: in the
overall, this results in considerable costs of the system de-
velopment process.

For these reasons, research efforts are ongoing meant to
define a unified meta-model, aimed at representing the ex-
isting methodologies in a uniform way, so as to promote
their mutual comparison, their composition and reuse—this
area is sometimes referred to as Method Engineering [5, 25].
SPEM (Software Process Engineering Meta-model, [26]) and
OPF (Object-oriented Process,Environment and Notation
Process Framework, [24]) are two key references for this
purpose: as it could be expected, both were conceived for
an object-oriented context, since most current methodolo-
gies adopt this paradigm as the reference one. In particu-
lar, SPEM seems a natural candidate for representing the
meta-models of Software Engineering methodologies, both
because it is an OMG standard, and because it is based on
formal descriptions that can lead to consistent, comparable
models: so, an interesting challenge is to test its applicability
to other, non object-oriented Software Engineering domains.

In this paper, in particular, we explore its applicability to
the Agent-Oriented Software Engineering (AOSE) domain,
whose abstractions and mechanisms are particularly suited
to the design and development of complex software systems.
While some AOSE methodologies have already been mod-
elled in SPEM by the FIPA Methodology Technical Com-
mittee [8, 11], here we mean to exploit SPEM to model the
SODA methodology process, taken as a significant case study

Figure 1: Process Structure package of SPEM

for stressing SPEM’s strengths and weaknesses because of its
specific features—namely, its focus on modelling the social
issues and the application environment, and its mechanisms
for capturing the layered structure of complex systems.

So, this paper is structured as follows. Section 2 briefly
presents SPEM and the main motivations for taking it as
the natural reference for modelling SE methodologies, while
Section 3 introduces the SODA methodology in short. Then,
in Section 4 we outline the reasons for taking SODA as our
case study, discuss how the SODA process could be modelled
in SPEM, and highlight pros and cons of SPEM. Conclusions
are reported in Section 5.

2. SOFTWARE PROCESS ENGINEERING
META-MODEL

SPEM is an OMG standard object-oriented meta-model
defined as an UML profile and used to describe a concrete
software development process or a family of related software
development processes. More concretely, as a meta-model
SPEM allows for the formal definition of processes and their
components.

The remainder of this section presents the main concepts
of SPEM and compares SPEM with UML and OPEN, in
order to show why SPEM is a natural candidate to model
software development process.

2.1 Core Elements
SPEM is based on the idea that a software development

process is a collaboration between active abstract entities
called roles which perform operations called activities on
concrete and real entities called work products. Each role
interacts or collaborates by exchanging work products and
triggering the execution of activities. The overall goal of a
process is to bring a set of work products to a well-defined
state.

Figure 1–from [26]– shows the main elements of the SPEM
meta-model definition. SPEM introduces the concept of

WorkDefinition that describes the work performed in a pro-
cess. A WorkDefinition can be decomposed reflexively. Be-
side activities, there are other specialisations of WorkDefi-
nition that are not drawn in Figure 1: Lifecycle, which is
a sequence of Phases, and Iteration. These two elements
describe/constrain the overall behavior of the performing
process, and are used to assist with planning, executing and
monitoring the process.

An Activity can be divided into atomic elements called
Steps. A Step is a specialisation of ActionState (Figure 1),
so that the flow of Step elements within an Activity can be
represented by activity graphs [26, 27]. Each WorkDefini-
tion is under the responsability of a unique role (ProcessPer-
former). In the case of an Activity, a set of ProcessRoles can
assist the main role for the realisation of the activity. SPEM
also defines two further concepts: Process and Discipline.
A Process corresponds to the root of a process model from
which a tool can perform the transitive closure of a complete
process. A Discipline allows activities within a process to be
partitioned according to a common theme. Finally, Guid-
ance elements may be associated with any other SPEM ele-
ments to provide more detailed information to practitioners
about the associated element.

2.2 Why SPEM: UML and OPEN
The Unified Modeling Language (UML) is a language for

specifying, visualising, constructing, and documenting the
components of a software system [27]. As such, it has been
used also to express meta-models of agent-oriented method-
ologies [4]. However, UML is not suitable to model the soft-
ware development process: in order to obtain an effective
representation of processes, a far richer set of concepts and
symbols is needed.

To overcome these limits, UML profiles [27] can be used:
these are UML extensions for building UML models related
to specific domains. In particular, SPEM is a UML profile
which extends UML expressiveness towards the modelling of
software development processes. For instance, since a UML

profile can inherit UML diagrams from UML itself, it is pos-
sible to provide users with an easy-to-understand notation
and exploit it for modelling software development processes.
To this end, Use Case diagrams can be used to model actor
activities, while Activity diagrams can be exploited to repre-
sent the flow of activities within a process. Moreover, a wide
community of software developers is familiar with UML and
uses a UML case environment tool. Defining a UML pro-
file allows such a large community to reuse its knowledge
and tools in the software-process modelling domain. On the
other hand, SPEM makes it possible to overcome the limits
of UML by adding all the concepts and symbols required to
represent a software development process.

Besides SPEM, OPEN Process Framework (OPF) is an-
other relevant process meta-model [24]. Both SPEM and
OPF are conceived for an object-oriented context, so it is not
surprising that they are based on the same basic conceptual
model: there, a software development process is a collabora-
tion between abstract active entities that perform operations
on concrete and tangible entities [24, 26]. Moreover, both
meta-models adopt UML as the main language for the de-
scription of processes and process components. There are,
however important differences between the two approaches.
First, OPF is not a UML profile: as such, it consists of a
meta-model accompanied by a descriptive definition of its
main ingredients. Instead, SPEM comes in the form of a
UML profile, thus with a complete definition of the ingredi-
ents and a special purpose language notation which makes
it easier to build comparable and reusable models with re-
spect to OPF. In fact, SPEM provides a complete set of
icons for the newly introduced concepts – the SPEM nota-
tion – that make it possible to build more comprehensible
models, while OPF leaves the choice of a notation to the de-
veloper, though suggesting UML as a good candidate [24].
However, the actual use of SPEM is not straightforward,
since the OMG proposal is quite generic and provides no
clear directive about how to apply it. In fact, SPEM’s se-
mantics is essentially expressed in natural language, which
could easily lead to imperfect process models due to the lack
of a formal semantical definition for the SPEM concepts [6].

3. SODA: A SKETCH
SODA (Societies in Open and Distributed Agent spaces)

[16, 17, 19, 1] is an agent-oriented methodology for the anal-
ysis and design of agent-based systems. Since the original
version of 2001, SODA has always focussed on inter-agent
issues, like the engineering of agents’ societies and the envi-
ronment for MASs: in this perspective, it has recently been
re-formulated according to the Agents & Artifacts meta-
model (A&A) [20, 22, 23], where artifacts take the form
of computational devices that populate the agents’ environ-
ment, and provide some kind of function or service used by
agents [23]. In addition, SODA introduces a layering princi-
ple as an effective tool for scaling with the system complex-
ity, applied throughout the SODA process. This layering
principle consists of two mechanisms, zoom and projection:
zoom makes it possible to pass from an abstract layer to
another, while projection projects the entities of a layer un-
touched into another layer.

SODA is organised in two phases, each structured in two
sub-phases: the Analysis phase, which is composed of the
Requirements Analysis and the Analysis steps, and the De-
signphase, which is composed of the Architectural Design

and the Detailed Design steps.

Requirement Analysis. Several abstract entities are intro-
duced for requirement modelling. In particular, requirement
and actor are used for modelling the customers’ require-
ments and the requirement sources, respectively, while the
external-environment notion is used as a container of the
legacy-systems that represent the legacy resources of the
environment. The relationships between requirements and
legacy systems are then modelled in terms of suitable rela-
tion entities.

Analysis. The Analysis step expresses the requirement rep-
resentation in terms of more concrete entities such as tasks
and functions. Tasks are activities requiring one or more
competences, while functions are reactive activities aimed
at supporting tasks. The relations highlighted in the pre-
vious step are now the starting point for the definition of
dependencies (interactions, constraints, etc.) among such
abstract entities. The structure of the environment is also
modelled in terms of topologies, i.e. topological constraints
over the environment.

Architectural Design. The main goal of this stage is to
assign responsibilities of achieving tasks to roles, and re-
sponsibilities of providing functions to resources. In order
to attain one or more tasks, the role should be able to per-
form actions; analogously, the resource should be able to
execute operations providing one or more functions. The
dependencies identified in the previous phase become here
interactions, i.e. “rules” enabling and bounding the entities’
behaviour. Finally, the topology constraints lead to the def-
inition of workspaces, i.e. conceptual places structuring the
environment.

Detailed Design. The Detailed Design is expressed in terms
of agents, agent societies, artifacts and artifact aggregates.
More precisely, agents are intended as autonomous entities
able to play several roles, while societies are defined as the
abstractions responsible for a collection of agents. The re-
sources identified in the previous step are now mapped onto
suitable artifacts, while aggregates are defined as the ab-
stractions responsible for a group of related artifacts. Fi-
nally, workspaces defined in the Architectural Design step
take now the form of an open set of artifacts and agents.

4. SODA & SPEM
In this section, we first present the motivations that led

us to take SODA as a case of study. Then, we present how
we modelled SODA with SPEM: for space reasons, only a
limited description of modelling is reported; readers inter-
ested in further details can refer to [18]. In the last part of
this section, we discuss/report on the pros and cons of using
SPEM to model SODA.

4.1 Why SODA
While software systems are growing more and more in

complexity, object-oriented standard methods and techniques
often fail to provide an adequate set of abstractions and
mechanisms for engineering complex computational systems
[10, 13]. With respect to other lines of research that are try-
ing to address the same issues, like Aspect-Oriented Soft-

ware Development [10], Agent-Oriented Software Engineer-
ing (AOSE) [2] seems to be best suited to provide a coherent
set of abstractions to manage the engineering of complex
software systems. Among the many AOSE methodologies
in the literature [14], SODA defines a process that focusses
on fundamental issues such as interaction [21], environment
[23], and management of complexity [17]. Therefore, putting
SPEM to test by modelling the SODA agent-oriented pro-
cess makes it possible to understand whether (and to which
extent) the SPEM meta-model is expressive enough to cap-
ture the methodological abstractions and mechanisms that
explicitly deal with complexity.

Interaction. Interaction in MAS can take two different forms:
social interaction, involving agents interacting with each
other, and environmental interaction, concerning agents’ in-
teraction with their environment. SODA is one of the few
agent-oriented methodologies focussing on the modelling of
such two types of interactions, since the erliest phases of the
process.

Environment. Modelling the environment is a key feature
for Engineering complex software system [28], and SODA ac-
tually considers this aspect a first-class issue—see Section 3.

Management of Complexity. Complexity frequently takes
the form of a hierarchy [12], so that complex systems typi-
cally require layers in order to fully understand and repro-
duce their dynamics and behaviour. The software devel-
opment process should then support some forms of system
layering to support engineers in the design and development
of this type of systems [9, 17]. Again, SODA deals well with
this issue, too, by means of its layering principle—see Sec-
tion 3.

4.2 Modelling SODA with SPEM
The first step to model a process with SPEM is to de-

fine the model root as an instance of Process—in this case,
called SODA. The dynamic global behaviour of this process
can be described by a suitable Lifecycle instance: in turn,
this is further composed of two Phase instances – Analysis
and Design – representing the homonymous SODA phases.
Although the Lifecycle element is not mandatory – phases
could be also associated directly to the process element–,
its presence helps understanding the execution flow of the
different phases in the process. Phase elements can be fur-
ther decomposed into a set of WorkDefinition elements to
model the sub-phases of the SODA process: Figure 2 shows
the UML use-case diagram that models the relationships
among the above Phase and WorkDefinition elements, us-
ing the include stereotype (Lifecycle is not shown). The
decomposition is not over: in fact, each sub-phase can be
decomposed in its turn into a set of correlated activities,
modelled as Activity instances[18]: each activity will be as-
sociated to a responsible actor in the SODA analysis phase.

While Lifecycle expresses the dynamic part of the pro-
cess model (that is, the process execution flow), Discipline
instances are used to partition the activities of a process
according to a common theme. In the case of SODA, we
decided to group into the same Discipline the activities be-
longing to the same phase of the SODA development process,
which led us to define two disciplines—Discipline Analysis
and Discipline Design. Thus, each Discipline contains and

Figure 2: Use-case diagram of the SODA process:
relationships between phases (left) and workdefini-
tions expressing sub-phases (right).

organises all the elements needed for modelling the corre-
sponding SODA phase, including the diagrams that describe
the execution flow of each activity.1

The SODA Analysis phase can be naturally characterised
by three actors (Roles): one is responsible for the activ-
ities of Requirements Analysis sub-phase, another for the
activities of the Analysis sub-phase, while the third is an
application-domain expert aimed at assisting the two pre-
vious actors when analysing the application domain. These
actors are modelled by three ProcessRole instances: Require-
ment Analyst, System Analyst and Domain Expert. Figure 3
shows the use-case diagram that models the relationships be-
tween the Activity instances and the ProcessRole instances
in SODA’s Analysis phase. Analogously, the Design phase is
characterised by four actors: the Architectural Designer, re-
sponsible for the activities of the Architectural Design sub-
phase; the System Designer, responsible for the activities
of the Detailed Design sub-phase; and the aforementioned
System Analyst and Domain Expert, which support the two
previous actors in performing their tasks.

The execution flows of process activities are expressed
via UML activity diagrams, which show the WorkDefini-
tions, the Activities and the involved actors, as well as the
WorkProduct instances of each process activity. As an ex-

1Of course, in principle one could define a Discipline for each
sub-phase instead that one for each phase. However, such a
finer-grain approach seems unnecessary and inappropriate,
since the activities of each phase are strictly related to each
other.

Figure 3: Use-case diagram of the Analysis phase.

ample, Figure 4 reports the Activity diagram of the activi-
ties performed in the Architectural Design sub-phase. The
structure of WorkProduct instances and their relations with
the SODA MAS meta-model [1] are then represented via
UML Class diagrams (not shown).

4.3 Discussion
Despite its origin in the object-oriented context, SPEM

could be applied to the agent-oriented SODA process quite
naturally, yet with some limits in expressiveness and read-
ability. On the one side, in fact, the software develop-
ment process and its phases are similar in any methodol-
ogy, and mostly independent of the computational paradigm
adopted. On the other, however, agent-oriented method-
ologies introduce a richer set of abstractions and mecha-
nisms, which naturally lead to define a more articulated soft-
ware development process: this sometimes stresses SPEM
to its limits, showing its weakness in facing the increas-
ing complexity—in particular, UML diagrams often become
nearly unreadable when applied to AOSE methodologies.

In the specific case of SODA, for instance, the key issues of
interaction and environment (see Subsection 4.1) are appar-
ently well modelled, instead the management of complexity
presents some problems. In fact, process iterations and ap-
plications of the layering principle are not easily captured by
Activity diagrams—see Figure 4. Moreover, the WorkProd-

(if exists)

(if exists)

(if exists)

(updated)

Figure 4: Activity diagram of the Architectural De-
sign sub-phase.

uct elements are characterised by a unique symbol, which
makes it very difficult to express their change of state dur-
ing process iteration. Currently, the only means provided
by SPEM to face this issue is the Guidance element, which
can be used to express these aspects by barely adding de-
scriptions (comments) to the Activity diagrams (see Subsec-
tion 2.1): of course, an ad hoc diagram specifically designed
for process modelling would be a much better solution. Use-
case diagrams, too, become very complex when modelling
actors’ activities (Figure 4). In fact, SPEM provides just
only one symbol to represent two different types of associ-
ation, perform and assist [26]: so, it has to adopt different
stereotypes – �perform� and �assist� – to tell one from
the other. This choice, however, makes the diagram unread-
able if there are many activities and roles: again, enhancing
the language to provide different symbols for modelling such
associations would be a more effective and expressive solu-
tion.

Other methodologies modelled by the FIPA Methodology
Technical Committee [15] apparently do not suffer from such
limitations, mainly because they do not include mechanisms
similar to the SODA layering principle: so, in such cases
SPEM turns out to be able to capture the whole methodol-
ogy process in quite an easy way. For instance, iterations of
the activities in ADELFE [3] can be modelled quite easily,

and also the activity diagrams obtained from this method-
ology are clear—in particular, they capture adequately the
change of status of the ADELFE WorkProducts, while SODA
diagrams are nearly unreadable due to the considerably larger
number of WorkProducts. However, in the overall the SPEM
notation is not expressive enough for correctly modelling all
the dynamics of the AOSE methodologies: for instance, the
change in the WorkProduct status above is represented only
in the label associated to the WorkProduct itself—there is
no standard way to do this inside the notation.

Summing up, SPEM is apparently a good base to model
agent-oriented software development processes, although the
above limits make it difficult to represent the process ef-
fectively, leading to models that are sometimes uneasy to
understand. So, an extension seems necessary in order to
enable SPEM to overcome its current limits in expressive-
ness and readability.

5. CONCLUSIONS AND FUTURE WORKS
SPEM seems to be the natural candidate for modelling

Software Engineering processes—see Subsection 2.2. In this
paper we apply SPEM in the context of AOSE method-
ologies, so as to test its general applicability by exploit-
ing it in a different context with respect to the object-
oriented field where it was initially conceived. Our expe-
rience with the SODA case study (see Subsection 4.1) shows
that SPEM can be a good base meta-model for modelling
processes defined by agent-oriented methodologies. How-
ever, some weaknesses and limits of expressiveness clearly
emerge: as discussed in Subsection 4.3, UML diagrams of-
ten become unreadable, both for the intrinsic complexity
of the agent-oriented methodologies, and for the lack of ad
hoc entities that are necessary to obtain good methodology
models. Such limits are intrinsic to the current SPEM def-
inition, and could be overcome only by means of a suitable
extension. For instance, some interesting extensions could
be (i) a new Activity Diagram to capture and show the
WorkProduct changes during iteration and layering; (ii) a
new formalism to express guard conditions in the choice el-
ement, so as to enrich its semantics in capturing iteration
and layering. In addition, as highlighted in Subsection 4.2,
the introduction of new symbols and stereotypes could im-
prove the readability of most diagrams. Finally, since AOSE
methodologies often have to deal with many different kinds
of WorkProduct and relations among WorkProducts and ac-
tors, one further addition to SPEM could be a mechanism
for the management of the representation complexity similar
to the SODA layering principle.

Therefore, in the future we also plan to test SPEM in
other contexts, like for instance Aspect-Oriented Software
Development [10], with the purpose of devising a possible
SPEM extension that makes it general enough to potentially
model any kind of process, independently of the computa-
tional paradigm adopted.

6. ACKNOWLEDGEMENT
This work has been supported by the MEnSA project

funded by MIUR (Ministero dell’Università e della Ricerca)
(PRIN 2006).

7. REFERENCES

[1] aliCE Research Group. SODA home page.
http://soda.alice.unibo.it.

[2] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors.
Methodologies and Software Engineering for Agent
Systems: The Agent-Oriented Software Engineering
Handbook. Kluwer Academic Publishers, June 2004.

[3] C. Bernon, V. Camps, M.-P. Gleizes, and G. Picard.
Engineering adaptive multi-agent systems: The
ADELFE methodology. In B. Henderson-Sellers and
P. Giorgini, editors, Agent Oriented Methodologies,
chapter VII, pages 172–202. Idea Group Publishing,
Hershey, PA, USA, June 2005.

[4] C. Bernon, M. Cossentino, M. P. Gleizes, P. Turci,
and F. Zambonelli. A study of some multi-agent
meta-models. In J. Odell, P. Giorgini, and J. P.
Müller, editors, Agent-Oriented Software Engineering
V, volume 3382 of LNCS, pages 62–77. Springer, 2004.
5th International Workshop, AOSE 2004, New York,
NY, USA, July 19, 2004, Revised Selected Papers.

[5] S. Brinkkemper, K. Lyytinen, and R. Welke. Method
engineering: Principles of method construction and
tool support. Kluwer Academic Publishers, 1996.

[6] B. Combemale, X. Crégut, A. Caplain, and
B. Coulette. Towards a rigorous process modeling
with SPEM. In Y. Manolopoulos, J. Filipe,
P. Constantopoulos, and J. Cordeiro, editors, 8th
International Conference on Enterprise Information
Systems: Databases and Information Systems
Integration, pages 530–533, 2006. ICEIS 2006, Paphos,
Cyprus, 23-27 May 2006.

[7] M. Cossentino and V. Seidita. Composition of a new
process to meet agile needs using method engineering.
In R. Choren, A. F. Garcia, C. Lucena, and
A. Romanovsky, editors, Software Engineering for
Multi-Agent Systems III, volume 3390, pages 36–51.
Springer, Feb. 2004.

[8] M. Cossentino and V. Seidita. Activity of the FIPA
Methodology Technical Commitee. Technical report,
ICAR-CNR, 2005.

[9] D. Dori. Object-Process Methodology: A Holistic
System Paradigm. Springer, 2002.

[10] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit,
editors. Aspect-Oriented Software Development.
Addison-Wesley, Boston, 2005.

[11] FIPA Methodologies. Home page.
http://www.pa.icar.cnr.it/~cossentino/FIPAmeth/.

[12] M. J. Grene. Hierarchies in biology. American
Scientist, 75:504–510, 1987.

[13] N. R. Jennings. Agent-Oriented Software Engineering.
In F. J. Garijo and M. Boman, editors, Multi-Agent
Systems Engineering, volume 1647 of LNAI, pages
1–7. Springer, 1999. 9th European Workshop on
Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW’99), Valencia, Spain,
30 June – 2 July 1999. Proceedings.

[14] M. Luck, R. Ashri, and M. D’Inverno. Agent-Based
Software Development. Agent-Oriented Systems.
Artech House, Boston, MA, USA, 2004.

[15] Methodology Working Group. IEEE-FIPA
methodology working group home page.

http://www.fipa.org/activities/methodology.html.

[16] A. Molesini, A. Omicini, E. Denti, and A. Ricci.
SODA: A roadmap to artefacts. In O. Dikenelli, M.-P.
Gleizes, and A. Ricci, editors, Engineering Societies in
the Agents World VI, volume 3963 of LNAI, pages
49–62. Springer, June 2006. 6th International
Workshop (ESAW 2005), Kuşadası, Aydın, Turkey,
26–28 Oct. 2005. Revised, Selected & Invited Papers.

[17] A. Molesini, A. Omicini, A. Ricci, and E. Denti.
Zooming multi-agent systems. In J. P. Müller and
F. Zambonelli, editors, Agent-Oriented Software
Engineering VI, volume 3950 of LNCS, pages 81–93.
Springer, 2006. 6th International Workshop (AOSE
2005), Utrecht, The Netherlands, 25–26 July 2005.
Revised and Invited Papers.

[18] E. Nardini. Metodologie orientate agli agenti e
standard SPEM: un caso di studio. Master’s thesis,
Bologna University, 2007.

[19] A. Omicini. SODA: Societies and infrastructures in the
analysis and design of agent-based systems. In
P. Ciancarini and M. J. Wooldridge, editors,
Agent-Oriented Software Engineering, volume 1957 of
LNCS, pages 185–193. Springer-Verlag, 2001. 1st
International Workshop (AOSE 2000), Limerick,
Ireland, 10 June 2000. Revised Papers.

[20] A. Omicini. Formal ReSpecT in the A&A perspective.
Electronic Notes in Theoretical Computer Sciences,
175(2):97–117, June 2007. 5th International Workshop
on Foundations of Coordination Languages and
Software Architectures (FOCLASA’06), CONCUR’06,
Bonn, Germany, 31 Aug. 2006. Post-proceedings.

[21] A. Omicini, S. Ossowski, and A. Ricci. Coordination
infrastructures in the engineering of multiagent

systems. In Bergenti et al. [2], chapter 14, pages
273–296.

[22] A. Omicini, A. Ricci, and M. Viroli. Agens Faber:
Toward a theory of artefacts for MAS. Electronic
Notes in Theoretical Computer Sciences, 150(3):21–36,
29 May 2006. 1st International Workshop
“Coordination and Organization” (CoOrg 2005),
COORDINATION 2005, Namur, Belgium,
22 Apr. 2005. Proceedings.

[23] A. Omicini, A. Ricci, and M. Viroli. Coordination
artifacts as first-class abstractions for MAS
engineering: State of the research. In A. F. Garcia,
R. Choren, C. Lucena, P. Giorgini, T. Holvoet, and
A. Romanovsky, editors, Software Engineering for
Multi-Agent Systems IV: Research Issues and
Practical Applications, volume 3914 of LNAI, pages
71–90. Springer, Apr. 2006. Invited Paper.

[24] OPEN. OPEN home page. http://www.open.org.au/.

[25] J. Ralyté and C. Rolland. An approach for method
reengineering. In Conceptual Modeling, pages 471–484,
London, UK, 2001. Springer-Verlag. 20th International
Conference (ER 2001), Yokohama, Japan,
27-30 Nov. 2001. Proceedings.

[26] SPEM. SPEM Software Process Engineering
Meta-Model home page.
http://www.omg.org/technology/documents/formal/spem.htm.

[27] UML. Home page. http://www.uml.org/.

[28] D. Weyns, A. Omicini, and J. Odell. Environment as a
first-class abstraction in multi-agent systems.

Autonomous Agents and Multi-Agent Systems,
14(1):5–30, Feb. 2007. Special Issue on Environments
for Multi-agent Systems.

