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Inference Networks / Graphical Models� Decomposition: Under certain conditions a distribution � (e.g. a probability
distribution) on a multi-dimensional domain, which encodes prior or generic
knowledge about this domain, can be decomposed into a set f�1; : : : ; �sg of
(overlapping) distributions on lower-dimensional subspaces.� Simplified Reasoning: If such a decomposition is possible, it is sufficient
to know the distributions on the subspaces to draw all inferences in the domain
under consideration that can be drawn using the original distribution �.� Since such a decomposition is usually represented as a network and since it is
used to draw inferences, it can be called an inference network. The edges
of the network indicate the paths along which evidence has to be propagated.� Another popular name is graphical model, where “graphical” indicates that
it is based on a graph in the sense of graph theory.



A Simple Example

Example World �� ��� � �� � � Relation

color shape size� � small� � medium
 � small
 � medium
 � medium
 � large�  medium	  medium	 � medium	 � large� 10 simple geometrical objects, 3 attributes.� One object is chosen at random and examined.� Inferences are drawn about the unobserved attributes.



The Reasoning Space� 
 � 	 ��
large

medium
small

$ $$ $ $$$% $ $      % �
medium

� �
� The reasoning space consists of a finite set Ω of world states.� The world states are described by a set of attributes Ai, whose domainsfa(i)

1 ; : : : ; a(i)ki g can be seen as sets of propositions or events.� The events in a domain are mutually exclusive and exhaustive.� The reasoning space is assumed to contain the true, but unknown state !0.



The Relation in the Reasoning Space

Relation

color shape size� � small� � medium
 � small
 � medium
 � medium
 � large�  medium	  medium	 � medium	 � large

Relation in the Reasoning Space� 
 � 	 ��
large

medium
small

$ $"  # #!# # # # ! !#
Each cube represents one tuple.



Reasoning� Let it be known (e.g. from an observation) that the given object is green.
This information considerably reduces the space of possible value combinations.� From the prior knowledge it follows that the given object must be

– either a triangle or a square and

– either medium or large.� 
 � 	 ��
large

medium
small

$ $$  ! !# # � 
 � 	 ��
large

medium
small

$ $$ @@"A A



Prior Knowledge and Its Projections� 
 � 	 ��
large

medium
small

$ $"  # #!# # # # ! !# � 
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Cylindrical Extensions and Their Intersection

" $# ## %%% % %� 
 � 	 ��
large

medium
small

$ $
   " " "   # !!! # #� 
 � 	 ��

large
medium

small

$ $� 
 � 	 ��
large

medium
small

$ $"  # #!# # # # ! !#� �
Intersecting the cylindrical ex-
tensions of the projection to
the subspace formed by color
and shape and of the projec-
tion to the subspace formed by
shape and size yields the origi-
nal three-dimensional relation.



Reasoning with Projections

The same result can be obtained using only the projections to the subspaces
without reconstructing the original three-dimensional space:� 
 � 	

color� extend�� � 
 � 	 �project

shape �extend

s m l

���
project

s m l

sizeC@ @@ @@ @ CCC CC C C C@ @C C C@@ @
C C

This justifies a network representation:
�
�
�
�color
�
�
�
�shape
�
�
�
�size



Using other Projections� 
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Is Decomposition Always Possible?� 
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Possibility-Based Formalization

Definition: Let Ω be a (finite) sample space.
A discrete possibility measure R on Ω is a function R : 2Ω ! f0; 1g satisfying

1. R(;) = 0 and

2. 8E1; E2 � Ω : R(E1 [ E2) = maxfR(E1); R(E2)g.� Similar to Kolmogorov’s axioms of probability theory.� If an event E can occur (if it is possible), then R(E) = 1;
otherwise (if E cannot occur/is impossible) then R(E) = 0:� R(Ω) = 1 is not required, because this would exclude the empty relation.� From the axioms it follows R(E1 \ E2) � minfR(E1); R(E2)g:� Attributes are introduced as random variables (as in probability theory).� R(A = a) is an abbreviation of R(f! j A(!) = ag)



Possibility-Based Formalization (continued)

Definition: Let X = fA1; : : : ; Ang be a set of attributes defined on a (finite)
sample space Ω with respective domains dom(Ai), i = 1; : : : ; n. A relation rX
over X is the restriction of a discrete possibility measure R on Ω to the set of
all events that can be defined by stating values for all attributes in X . That is,rX = RjEX , whereEX =

{E 2 2Ω
∣∣∣ 9a1 2 dom(A1) : : : : 9an 2 dom(An) :E =̂

∧Aj2X Aj = aj}
=

{E 2 2Ω
∣∣∣ 9a1 2 dom(A1) : : : : 9an 2 dom(An) :E =

{! 2 Ω
∣∣∣ ∧Aj2X Aj(!) = aj}}:� Corresponds to the notion of a probability distribution.� Advantage of this formalization: No index transformation functions are needed

for projections, there are just fewer terms in the conjunctions.



Possibility-Based Formalization (continued)

Definition: Let U = fA1; : : : ; Ang be a set of attributes and rU a relation over U .
Furthermore, let M = fM1; : : : ;Mmg � 2U be a set of nonempty (but not neces-
sarily disjoint) subsets of U satisfying⋃M2MM = U:rU is called decomposable w.r.t. M iff8a1 2 dom(A1) : : : : 8an 2 dom(An) :rU( ∧Ai2U Ai = ai) = minM2M{rM( ∧Ai2M Ai = ai)}:
If rU is decomposable w.r.t. M, the set of relationsRM = frM1

; : : : ; rMm
g = frM jM 2Mg

is called the decomposition of rU .



Conditional Possibility and Independence

Definition: Let Ω be a (finite) sample space, R a discrete possibility measure on
Ω, and E1; E2 � Ω events. ThenR(E1 j E2) = R(E1 \ E2)

is called the conditional possibility of E1 given E2.

Definition: Let Ω be a (finite) sample space, R a discrete possibility measure
on Ω, and A; B; and C attributes with respective domains dom(A); dom(B);
and dom(C). A and B are called conditionally relationally independent
given C, written A??RB j C, iff8a 2 dom(A) : 8b 2 dom(B) : 8c 2 dom(C) :R(A = a; C = c j B = b) = minfR(A = a j B = b); R(C = c j B = b)g:� Similar to the corresponding notions of probability theory.



Relational Evidence Propagation, Step 1R(B = b j A = aobs)

= R( ∨a2dom(A)

A = a;B = b; ∨c2dom(C)

C = c ∣∣∣A = aobs

)
(1)
= maxa2dom(A)

f maxc2dom(C)
fR(A = a;B = b; C = c j A = aobs)gg

(2)
= maxa2dom(A)

f maxc2dom(C)
fminfR(A = a;B = b; C = c); R(A = a j A = aobs)ggg

(3)
= maxa2dom(A)

f maxc2dom(C)
fminfR(A = a;B = b); R(B = b; C = c);R(A = a j A = aobs)ggg

= maxa2dom(A)
fminfR(A = a;B = b); R(A = a j A = aobs);

maxc2dom(C)
fR(B = b; C = c)g︸ ︷︷ ︸

=R(B=b)�R(A=a;B=b) gg
= maxa2dom(A)

fminfR(A = a;B = b); R(A = a j A = aobs)gg:



Relational Evidence Propagation, Step 1 (continued)

(1) holds because of the second axiom a discrete possibility measure has to satisfy.

(3) holds because of the fact that the relation RABC can be decomposed w.r.t. the
set M = ffA;Bg; fB;Cgg:

(2) holds, since in the first placeR(A = a;B = b; C = c jA = aobs) = R(A = a;B = b; C = c; A = aobs)
=

{ R(A = a;B = b; C = c); if a = aobs,
0; otherwise;

and secondlyR(A = a j A = aobs) = R(A = a;A = aobs)

=

{ R(A = a); if a = aobs;
0; otherwise;

and therefore, since trivially R(A = a) � R(A = a;B = b; C = c),R(A = a;B = b; C = c j A = aobs)
= minfR(A = a;B = b; C = c); R(A = a j A = aobs)g:



Relational Evidence Propagation, Step 2R(C = c j A = aobs)

= R( ∨a2dom(A)

A = a; ∨b2dom(B)

B = b; C = c ∣∣∣A = aobs

)
(1)
= maxa2dom(A)

f maxb2dom(B)
fR(A = a;B = b; C = c j A = aobs)gg

(2)
= maxa2dom(A)

f maxb2dom(B)
fminfR(A = a;B = b; C = c); R(A = a j A = aobs)ggg

(3)
= maxa2dom(A)

f maxb2dom(B)
fminfR(A = a;B = b); R(B = b; C = c);R(A = a j A = aobs)ggg

= maxb2dom(B)
fminfR(B = b; C = c);

maxa2dom(A)
fminfR(A = a;B = b); R(A = a j A = aobs)gg︸ ︷︷ ︸

=R(B=bjA=aobs)

g
= maxb2dom(B)

fminfR(B = b; C = c); R(B = b j A = aobs)gg:



A Probability Distribution

all numbers in
parts per 1000$ $ " $ $ "& &� 
 � 	

� 
 � 	��
��

small

medium

large

��
�� s m l� 
 � 	

small
medium

large

20 90 10 80
2 1 20 17
28 24 5 3

18 81 9 72
8 4 80 68
56 48 10 6

2 9 1 8
2 1 20 17
84 72 15 9

40 180 20 160
12 6 120 102
168 144 30 18

50 115 35 100
82 133 99 146
88 82 36 34

20 180 200
40 160 40
180 120 60

220 330 170 280

400
240
360

240

460

300

� The numbers state the probability of the corresponding value combination.



Reasoning

all numbers in
parts per 1000$ $ " $ $ "& &� 
 � 	

� 
 � 	��
��

small

medium

large

��
�� s m l� 
 � 	

small
medium

large

0 0 0 286
0 0 0 61
0 0 0 11

0 0 0 257
0 0 0 242
0 0 0 21

0 0 0 29
0 0 0 61
0 0 0 32

0 0 0 572
0 0 0 364
0 0 0 64

0 0 0 358
0 0 0 531
0 0 0 111

29 257 286
61 242 61
32 21 11

0 0 0 1000

572
364
64

122

520

358

� Using the information that the given object is green.



Probabilistic Decomposition� As for relational networks, the three-dimensional probability distribution can
be decomposed into projections to subspaces, namely the marginal distribution
on the subspace formed by color and shape and the marginal distribution on
the subspace formed by shape and size.� The original probability distribution can be reconstructed from the marginal
distributions using the following formulae 8i; j; k :P (!(color)i ; !(shape)j ; !(size)k ) = P (!(color)i ; !(shape)j ) � P (!(size)k j !(shape)j )

= P (!(color)i ; !(shape)j ) � P (!(shape)j ; !(size)k )P (!(shape)j )� These equations express the conditional independence of attributes color and
size given the attribute shape, since they only hold if 8i; j; k :P (!(size)k j !(shape)j ) = P (!(size)k j !(color)i ; !(shape)j )



Reasoning with Projections

Again the same result can be obtained using only projections to subspaces
(marginal distributions):� 
 � 	

new

old
color��� � 
 � 	 � new old

shape �
s m l

���s m l

old

new
size(old

new
(old

new

0 0 0 1000

220 330 170 280�new
old(40

0
(180
0

(20
0

(160
572(12

0
(6
0

(120
0

(102
364(168

0
(144
0

(30
0

(18
64

∑
line

572 400

364 240

64 360

�new
old

(20
29

(180
257

(200
286(40

61
(160

242
(40
61(180

32
(120
21

(60
11

∑
column

240 460 300

122 520 358

This justifies a network representation:
�
�
�
�color
�
�
�
�shape
�
�
�
�size



Probabilistic Decomposition (continued)

Definition: Let U = fA1; : : : ; Ang be a set of attributes and pU a probability
distribution over U . Furthermore, let M = fM1; : : : ;Mmg � 2U be a set of
nonempty (but not necessarily disjoint) subsets of U satisfying⋃M2MM = U:pU is called decomposable or factorizable w.r.t. M iff it can be written as a
product of m nonnegative functions �M : EM ! IR+

0 ; M 2M; i.e., iff8a1 2 dom(A1) : : : : 8an 2 dom(An) :pU( ∧Ai2U Ai = ai) =
∏M2M�M( ∧Ai2M Ai = ai):

If pU is decomposable w.r.t. M the set of functions

ΦM = f�M1
; : : : ; �Mm

g = f�M jM 2Mg
is called the decomposition or the factorization of pU . The functions in ΦM
are called the factor potentials of pU .



Conditional Probability and Independence

Definition: Let Ω be a (finite) sample space, P a probability measure on Ω, andE1; E2 � Ω events with P (E2) > 0. ThenP (E1 j E2) =
P (E1 \ E2)P (E2)

is called the conditional probability of E1 given E2.

Definition: Let Ω be a (finite) sample space, P a probability measure on Ω, andA; B; and C attributes with respective domains dom(A); dom(B); and dom(C).A and B are called conditionally probabilistically independent given C,
written A??P B j C, iff8a 2 dom(A) : 8b 2 dom(B) : 8c 2 dom(C) :P (A = a;B = b j C = c) = P (A = a j C = c) � P (B = b j C = c)
Equivalent Formula:8a 2 dom(A) : 8b 2 dom(B) : 8c 2 dom(C) :P (A = a j B = b; C = c) = P (A = a j C = c)



Probabilistic Decomposition (continued)

Chain Rule of Probability:8a1 2 dom(A1) : : : : 8an 2 dom(An) :P(∧ni=1
Ai = ai) =

n∏i=1

P(Ai = ai ∣∣∣∧i�1j=1
Aj = aj)� The chain rule of probability is valid in general

(or at least for strictly positive distributions).

Chain Rule Factorization:8a1 2 dom(A1) : : : : 8an 2 dom(An) :P(∧ni=1
Ai = ai) =

n∏i=1

P(Ai = ai ∣∣∣∧Aj2parents(Ai)Aj = aj)� Conditional independence statements are used to “cancel” conditions.



Probabilistic Evidence Propagation, Step 1P (B = b j A = aobs)

= P( ∨a2dom(A)

A = a;B = b; ∨c2dom(C)

C = c ∣∣∣A = aobs

)
(1)
=

∑a2dom(A)

∑c2dom(C)

P (A = a;B = b; C = c j A = aobs)

(2)
=

∑a2dom(A)

∑c2dom(C)

P (A = a;B = b; C = c) � P (A = a j A = aobs)P (A = ai)
(3)
=

∑a2dom(A)

∑c2dom(C)

P (A = a;B = b)P (B = b; C = c)P (B = b) � P (A = a j A = aobs)P (A = a)

=
∑a2dom(A)

P (A = a;B = b) � P (A = a j A = aobs)P (A = a)

∑c2dom(C)

P (C = c j B = b)
︸ ︷︷ ︸

=1

=
∑a2dom(A)

P (A = a;B = b) � P (A = a j A = aobs)P (A = a)
:



Probabilistic Evidence Propagation, Step 1 (continued)

(1) holds because of Kolmogorov’s axioms.

(3) holds because of the fact that the distribution pABC can be decomposed w.r.t.
the set M = ffA;Bg; fB;Cgg:

(2) holds, since in the first placeP (A = a;B = b; C = c jA = aobs) =
P (A = a;B = b; C = c; A = aobs)P (A = aobs)

=


P (A = a;B = b; C = c)P (A = aobs)

; if a = aobs,

0; otherwise;
and secondlyP (A = a;A = aobs) =

{ P (A = a); if a = aobs;
0; otherwise;

and thereforeP (A = a;B = b; C = c j A = aobs)
= P (A = a;B = b; C = c) � P (A = a j A = aobs)P (A = a)

:



Probabilistic Evidence Propagation, Step 2P (C = c j A = aobs)

= P( ∨a2dom(A)

A = a; ∨b2dom(B)

B = b; C = c ∣∣∣A = aobs

)
(1)
=

∑a2dom(A)

∑b2dom(B)

P (A = a;B = b; C = c j A = aobs)

(2)
=

∑a2dom(A)

∑b2dom(B)

P (A = a;B = b; C = c) � P (A = a j A = aobs)P (A = a)

(3)
=

∑a2dom(A)

∑b2dom(B)

P (A = a;B = b)P (B = b; C = c)P (B = b) � P (A = a j A = aobs)P (A = a)

=
∑b2dom(B)

P (B = b; C = c)P (B = b) ∑a2dom(A)

P (A = a;B = b) � R(A = a j A = aobs)P (A = a)︸ ︷︷ ︸
=P (B=bjA=aobs)

=
∑b2dom(B)

P (B = b; C = c) � P (B = b j A = aobs)P (B = b) :



Conditional Independence: An Example
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Conditional Independence: An Example
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Conditional Independence: An Example
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Axioms of Conditional Independence

Definition: Let U be a set of (mathematical) objects and (� ?? � j �) a three-place
relation of subsets of U . Furthermore, let W; X; Y; and Z be four disjoint subsets
of U . The four statements

symmetry: (X ?? Y j Z) ) (Y ??X j Z)

decomposition: (W [X ?? Y j Z) ) (W ?? Y j Z) ^ (X ?? Y j Z)

weak union: (W [X ?? Y j Z) ) (X ?? Y j Z [W )

contraction: (X ?? Y j Z [W ) ^ (W ?? Y j Z) ) (W [X ?? Y j Z)

are called the semi-graphoid axioms. A three-place relation (� ?? � j �) that sat-
isfies the semi-graphoid axioms for all W; X; Y; and Z is called a semi-graphoid.
The above four statements together with

intersection: (W ?? Y j Z [X) ^ (X ?? Y j Z [W ) ) (W [X ?? Y j Z)

are called the graphoid axioms. A three-place relation (� ?? � j �) that satisfies
the graphoid axioms for all W; X; Y; and Z is called a graphoid.



Illustration of the (Semi-)Graphoid Axioms

decomposition: ABCW
X

Z Y ) ABW
Z Y ^ AC

X
Z Y

weak union: ABCW
X

Z Y ) ABCDW
X

Z Y

contraction: ABCDW
X

Z Y ^ ABW
Z Y ) ABCW

X
Z Y

intersection: ABCEW
X

Z Y ^ ABCDW
X

Z Y ) ABCW
X

Z Y� Similar to the properties of separation in graphs.� Idea: Represent conditional independence by separation in graphs.



Separation in Graphs

Definition: Let G = (V;E) be an undirected graph and X; Y; and Z three
disjoint subsets of nodes. Z u-separates X and Y in G, written hX j Z j Y iG,
iff all paths from a node in X to a node in Y contain a node in Z. A path that
contains a node in Z is called blocked (by Z), otherwise it is called active.

Definition: Let ~G = (V; ~E) be a directed acyclic graph and X;Y; and Z three
disjoint subsets of nodes. Z d-separates X and Y in ~G, written hX j Z j Y i ~G,
iff there is no path from a node in X to a node in Y along which the following two
conditions hold:

1. every node with converging edges either is in Z or has a descendant in Z,

2. every other node is not in Z.

A path satisfying the conditions above is said to be active, otherwise it is said to
be blocked (by Z).



Separation in Directed Acyclic Graphs

Example Graph: A1
a�A2
a� A3

a�2 A4
a� A5

a�A6
a3 A7

a�� A8
aA9
a

Valid Separations:hfA1g j fA3g j fA4gi hfA8g j fA7g j fA9gihfA3g j fA4; A6g j fA7gi hfA1g j ; j fA2gi
Invalid Separations:hfA1g j fA4g j fA2gi hfA1g j fA6g j fA7gihfA4g j fA3; A7g j fA6gi hfA1g j fA4; A9g j fA5gi



Conditional (In)Dependence Graphs

Definition: Let (� ??� � j �) be a three-place relation representing the set of con-
ditional independence statements that hold in a given distribution � over a set U
of attributes. An undirected graph G = (U;E) over U is called a conditional
dependence graph or a dependence map w.r.t. � iff for all disjoint subsetsX;Y; Z � U of attributesX ??� Y j Z ) hX j Z j Y iG;
i.e., if G captures by u-separation all (conditional) independences that hold in �
and thus represents only valid (conditional) dependences. Similarly, G is called a
conditional independence graph or an independence map w.r.t. � iff for
all disjoint subsets X;Y; Z � U of attributeshX j Z j Y iG ) X ??� Y j Z;
i.e., if G captures by u-separation only (conditional) independences that are valid
in �. G is said to be a perfect map of the conditional (in)dependences in �, if it
is both a dependence map and an independence map.



Limitations of Graph Representations

Perfect directed map, no perfect undirected map:

Aa& Ba%
Ca A = a1 A = a2pABC B = b1 B = b2 B = b1 B = b2C = c1

4=24
3=24

3=24
2=24C = c2

2=24
3=24

3=24
4=24

Perfect undirected map, no perfect directed map:

Aa
BaH DaI

CaHI A = a1 A = a2pABCD B = b1 B = b2 B = b1 B = b2D = d1
1=47

1=47
1=47

2=47C = c1 D = d2
1=47

1=47
2=47

4=47D = d1
1=47

2=47
1=47

4=47C = c2 D = d2
2=47

4=47
4=47

16=47



Markov Properties of Undirected Graphs

Definition: An undirected graph G = (U;E) over a set U of attributes is said to
have (w.r.t. a distribution �) the

pairwise Markov property,
iff in � any pair of attributes which are nonadjacent in the graph are conditionally
independent given all remaining attributes, i.e., iff8A;B 2 U;A 6= B : (A;B) =2 E ) A??� B j U � fA;Bg;
local Markov property,
iff in � any attribute is conditionally independent of all remaining attributes given
its neighbors, i.e., iff8A 2 U : A??� U � closure(A) j boundary(A);
global Markov property,
iff in � any two sets of attributes which are u-separated by a third are conditionally
independent given the attributes in the third set, i.e., iff8X;Y; Z � U : hX j Z j Y iG ) X ??� Y j Z:



Markov Properties of Directed Acyclic Graphs

Definition: A directed acyclic graph ~G = (U; ~E) over a set U of attributes is said
to have (w.r.t. a distribution �) the

pairwise Markov property,
iff in � any attribute is conditionally independent of any non-descendant not among
its parents given all remaining non-descendants, i.e., iff8A;B 2 U : B 2 nondescs(A)� parents(A) ) A??� B j nondescs(A)� fBg;
local Markov property,
iff in � any attribute is conditionally independent of all remaining non-descendants
given its parents, i.e., iff8A 2 U : A??� nondescs(A)� parents(A) j parents(A);
global Markov property,
iff in � any two sets of attributes which are d-separated by a third are conditionally
independent given the attributes in the third set, i.e., iff8X;Y; Z � U : hX j Z j Y i ~G ) X ??� Y j Z:



Equivalence of Markov Properties

Theorem: If a three-place relation (� ??� � j �) representing the set of conditional
independence statements that hold in a given joint distribution � over a set U of
attributes satisfies the graphoid axioms, then the pairwise, the local, and the global
Markov property of an undirected graph G = (U;E) over U are equivalent.

Theorem: If a three-place relation (� ??� � j �) representing the set of conditional
independence statements that hold in a given joint distribution � over a set U of
attributes satisfies the semi-graphoid axioms, then the local and the global Markov
property of a directed acyclic graph ~G = (U; ~E) over U are equivalent.
If (� ??� � j �) satisfies the graphoid axioms, then the pairwise, the local, and the
global Markov property are equivalent.



Undirected Graphs and Decompositions

Definition: A probability distribution pU over a set U of attributes is called
decomposable or factorizable w.r.t. an undirected graph G = (U;E)
over U; iff it can be written as a product of nonnegative functions on the maximal
cliques of G: That is, let M be a family of subsets of attributes, such that the
subgraphs of G induced by the sets M 2 M are the maximal cliques of G: Then
there must exist functions �M : EM ! IR+

0 ; M 2M;8a1 2 dom(A1) : : : : 8an 2 dom(An) :pU( ∧Ai2U Ai = ai) =
∏M2M�M( ∧Ai2M Ai = ai):A1

aB A2
aA3

aTU A4
aUA5

aBT A6
aTU pU (A1 = a1; : : : ; A6 = a6) = �A1A2A3

(A1 = a1; A2 = a2; A3 = a3)� �A3A5A6
(A3 = a3; A5 = a5; A6 = a6)� �A2A4

(A2 = a2; A4 = a4)� �A4A6
(A4 = a4; A6 = a6):



Directed Acyclic Graphs and Decompositions

Definition: A probability distribution pU over a set U of attributes is called
decomposable or factorizable w.r.t. a directed acyclic graph ~G = (U; ~E)
over U; iff it can be written as a product of the conditional probabilities of the
attributes given their parents in ~G, i.e., iff8a1 2 dom(A1) : : : : 8an 2 dom(An) :pU( ∧Ai2U Ai = ai) =

∏Ai2U P(Ai = ai ∣∣∣ ∧Aj2parents~G(Ai)Aj = aj):A1
a�. A2

a-. A3
a-A4

a� A5
a0�A6

a A7
a P (A1 = a1; : : : ; A7 = a7)

= P (A1 = a1) � P (A2 = a2 j A1 = a1) � P (A3 = a3)� P (A4 = a4 j A1 = a1; A2 = a2)� P (A5 = a5 j A2 = a2; A3 = a3)� P (A6 = a6 j A4 = a4; A5 = a5)� P (A7 = a7 j A5 = a5):



Conditional Independence Graphs and Decompositions

Theorem: Let pU be a strictly positive probability distribution on a set U of (dis-
crete) attributes. An undirected graph G = (U;E) is a conditional independence
graph w.r.t. pU ; if and only if pU is factorizable w.r.t. G:
Theorem: Let pU be a probability distribution on a set U of (discrete) attributes.
A directed acyclic graph ~G = (U; ~E) is a conditional independence graph w.r.t. pU ;
if and only if pU is factorizable w.r.t. ~G:
Definition: A Markov network is an undirected conditional independence
graph of a probability distribution pU together with the family of positive func-
tions �M of the factorization induced by the graph.

Definition: A Bayesian network is a directed conditional independence graph
of a probability distribution pU together with the family of conditional probabilities
of the factorization induced by the graph.� Sometimes the conditional independence graph is required to be minimal.



Naive Bayes Classifiers� Try to compute P (C = ci j !) = P (C = ci j A1 = a1; : : : ; An = an):� Predict the class with the highest conditional probability.

Bayes’ Rule:P (C = ci j !) =
P (A1 = a1; : : : ; An = an j C = ci) � P (C = ci)P (A1 = a1; : : : ; An = an)  p0

Chain Rule of Probability:P (C = ci j !) =
P (C = ci)p0

� n∏j=1

P (Aj = aj j A1 = a1; : : : ; Aj�1 = aj�1; C = ci)
Conditional Independence Assumption:P (C = ci j !) =

P (C = ci)p0
� n∏j=1

P (Aj = aj j C = ci)



Star-like Bayesian Networks� A naive Bayes classifier is a Bayesian network with a star-like structure.� The class attribute is the only unconditioned attribute.� All other attributes are conditioned on the class only.Ca�(+,/ A1
aA2

aA3
aA4
a � � � An

a Ca�(+,/ A1
aA2

aA3
aA4
a � � � An

a�,1
P (C = ci; !) = P (C = ci j !) � p0 = P (C = ci) � n∏j=1

P (Aj = aj j C = ci)



Evidence Propagation in Polytrees

A��
��

B��
��@

@
@
@ �� ��B!A�A!B Idea: Node processors communicating

by message passing: �-messages are sent
from parent to child and �-messages are
sent from child to parent.

Derivation of the Propagation Formulae

Computation of Marginal Distribution:P (Ag = ag) =
∑8Ai2U�fAgg:ai2dom(Ai) P( ∧Aj2U Aj = aj)

Chain Rule Factorization w.r.t. the Polytree:P (Ag = ag) =
∑8Ai2U�fAgg:ai2dom(Ai) ∏Ak2U P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)



Evidence Propagation in Polytrees (continued)

Decomposition w.r.t. Subgraphs:P (Ag = ag) =
∑8Ai2U�fAgg:ai2dom(Ai) (P(Ag = ag ∣∣∣ ∧Aj2parents(Ag)

Aj = aj)� ∏Ak2U+(Ag)

P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)� ∏Ak2U�(Ag)

P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)):
Attribute sets underlying subgraphs:UAB (C) = fCg [ fD 2 U j D �~G0 C; ~G0 = (U;E � f(A;B)g)g;U+(A) =

⋃C2parents(A)

UCA (C); U+(A;B) =
⋃C2parents(A)�fBgUCA (C);U�(A) =

⋃C2children(A)

UAC (C); U�(A;B) =
⋃C2children(A)�fBgUCA (C):



Evidence Propagation in Polytrees (continued)

Terms that are independent of a summation variable can be moved out of the
corresponding sum. This yields a decomposition into two main factors:P (Ag = ag) =

( ∑8Ai2parents(Ag):ai2dom(Ai) P(Ag = ag ∣∣∣ ∧Aj2parents(Ag)

Aj = aj)�[ ∑8Ai2U�
+(Ag):ai2dom(Ai) ∏Ak2U+(Ag)

P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)])�[ ∑8Ai2U�(Ag):ai2dom(Ai) ∏Ak2U�(Ag)

P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)]
= �(Ag = ag) � �(Ag = ag);

where U�
+(Ag) = U+(Ag)� parents(Ag):



Evidence Propagation in Polytrees (continued)

∑8Ai2U�
+(Ag):ai2dom(Ai) ∏Ak2U+(Ag)

P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)
=

∏Ap2parents(Ag)

( ∑8Ai2parents(Ap):ai2dom(Ai) P(Ap = ap ∣∣∣ ∧Aj2parents(Ap)Aj = aj)�[ ∑8Ai2U�
+(Ap):ai2dom(Ai) ∏Ak2U+(Ap) P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)])�[ ∑8Ai2U�(Ap;Ag):ai2dom(Ai) ∏Ak2U�(Ap;Ag)

P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)]
=

∏Ap2parents(Ag)

�(Ap = ap)�[ ∑8Ai2U�(Ap;Ag):ai2dom(Ai) ∏Ak2U�(Ap;Ag)

P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)]



Evidence Propagation in Polytrees (continued)

∑8Ai2U�
+(Ag):ai2dom(Ai) ∏Ak2U+(Ag)

P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)
=

∏Ap2parents(Ag)

�(Ap = ap)�[ ∑8Ai2U�(Ap;Ag):ai2dom(Ai) ∏Ak2U�(Ap;Ag)

P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)]
=

∏Ap2parents(Ag)

�Ap!Ag(Ap = ap)�(Ag = ag) =
∑8Ai2parents(Ag):ai2dom(Ai) P (Ag = ag j ∧Aj2parents(Ag)

Aj = aj)� ∏Ap2parents(Ag)

�Ap!Ag(Ap = ap)



Evidence Propagation in Polytrees (continued)�(Ag = ag) =
∑8Ai2U�(Ag):ai2dom(Ai) ∏Ak2U�(Ag)

P (Ak = ak j ∧Aj2parents(Ak)

Aj = aj)
=

∏Ac2children(Ag)

∑ac2dom(Ac)( ∑8Ai2parents(Ac)�fAgg:ai2dom(Ai) P (Ac = ac j ∧Aj2parents(Ac)Aj = aj)�[ ∑8Ai2U�
+(Ac;Ag):ai2dom(Ai) ∏Ak2U+(Ac;Ag)

P (Ak = ak j ∧Aj2parents(Ak)

Aj = aj)])� [ ∑8Ai2U�(Ac):ai2dom(Ai) ∏Ak2U�(Ac) P (Ak = ak j ∧Aj2parents(Ak)

Aj = aj)]
︸ ︷︷ ︸

= �(Ac = ac)
=

∏Ac2children(Ag)

�Ac!Ag(Ag = ag)



Propagation Formulae without Evidence�Ap!Ac(Ap = ap)
= �(Ap = ap)�[ ∑8Ai2U�(Ap;Ac):ai2dom(Ai) ∏Ak2U�(Ap;Ac)P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)]
=

P (Ap = ap)�Ac!Ap(Ap = ap)�Ac!Ap(Ap = ap)
=

∑ac2dom(Ac)�(Ac = ac) ∑8Ai2parents(Ac)�fApg:ai2dom(Ak)

P(Ac = ac ∣∣∣ ∧Aj2parents(Ac)Aj = aj)� ∏Ak2parents(Ac)�fApg �Ak!Ap(Ak = ak)



Evidence Propagation in Polytrees (continued)

Evidence: The attributes in a set Xobs are observed.P(Ag = ag ∣∣∣ ∧Ak2Xobs

Ak = a(obs)k )

=
∑8Ai2U�fAgg:ai2dom(Ai) P( ∧Aj2U Aj = aj ∣∣∣ ∧Ak2Xobs

Ak = a(obs)k )

= � ∑8Ai2U�fAgg:ai2dom(Ai) P( ∧Aj2U Aj = aj) ∏Ak2Xobs

P (Ak = ak ∣∣∣Ak = a(obs)k ) ;
where � =

1P (∧Ak2Xobs
Ak = a(obs)k )



Propagation Formulae with Evidence�Ap!Ac(Ap = ap)
= P (Ap = ap ∣∣∣Ap = a(obs)p ) � �(Ap = ap)�[ ∑8Ai2U�(Ap;Ac):ai2dom(Ai) ∏Ak2U�(Ap;Ac)P(Ak = ak ∣∣∣ ∧Aj2parents(Ak)

Aj = aj)]
=

 �; if ap = a(obs)p ;
0; otherwise,� The value of � is not explicitly determined. Usually a value of 1 is used and

the correct value is implicitly determined later by normalizing the resulting
probability distribution for Ag.



Propagation Formulae with Evidence�Ac!Ap(Ap = ap)
=

∑ac2dom(Ac)P (Ac = ac ∣∣∣Ac = a(obs)c ) � �(Ac = ac)� ∑8Ai2parents(Ac)�fApg:ai2dom(Ak)

P(Ac = ac ∣∣∣ ∧Aj2parents(Ac)Aj = aj)� ∏Ak2parents(Ac)�fApg �Ak!Ac(Ak = ak)



Propagation in Multiply Connected Networks� Multiply connected networks pose a problem:

– There are several ways on which information can travel from one attribute
(node) to another.

– As a consequence, the same evidence may be used twice to update the
probability distribution of an attribute.

– Since probabilistic update is not idempotent, multiple inclusion of the same
evidence usually invalidates the result.� General idea to solve this problem:

Transform network into a singly connected structure.

Aa��
Ba� Ca�

Da ) Aa�
BCd�
Da Merging attributes can make the

polytree algorithm applicable in
multiply connected networks.



Transformation into a Join Tree� Goal: Transform a graph into a singly connected structure

original

graph

1�
3�
5� 2�

4�
6���� ��@

@
@
@
@
@ �

triangulated

moral graph

1�
3�
5� 2�

4�
6�@

@
@

@
@
@

bbb
bbb
b

cliques of the

triangulated

moral graph

1

3$
5& 2%

4%
6

join tree

� �� ��
�
��

Q
Q
QQ

2
1 4

1 4
3

3
5

4
3 6



Graph Triangulation

Algorithm: (graph triangulation)

Input: An undirected graph G = (V;E):
Output: A triangulated undirected graph G0 = (V;E 0) with E 0 � E:
1. Compute an ordering of the nodes of the graph using maximum cardinality

search, i.e., number the nodes from 1 to n = jV j; in increasing order, always
assigning the next number to the node having the largest set of previously
numbered neighbors (breaking ties arbitrarily).

2. From i = n to i = 1 recursively fill in edges between any nonadjacent neighbors
of the node numbered i having lower ranks than i (including neighbors linked to
the node numbered i in previous steps). If no edges are added, then the original
graph is chordal; otherwise the new graph is chordal.



Join Tree Construction

Algorithm: (join tree construction)

Input: A triangulated undirected graph G = (V;E):
Output: A join tree G0 = (V 0; E 0) for G:
1. Determine a numbering of the nodes of G using maximum cardinality search.

2. Assign to each clique the maximum of the ranks of its nodes.

3. Sort the cliques in ascending order w.r.t. the numbers assigned to them.

4. Traverse the cliques in ascending order and for each clique Ci choose from the
cliques C1; : : : ; Ci�1 preceding it the clique with which it has the largest number
of nodes in common (breaking ties arbitrarily).



Constructing a Graphical Model

Procedure based on human expert knowledge:

causal model�
conditional independence graph�

decomposition of the distribution�
evidence propagation method

heuristics!

formally provable

formally provable� Problem: strong assumptions about the statistical effects of causal relations



Probabilistic Graphical Models: An Example

Danish Jersey Cattle Blood Type Determination@�	 @�	A A A A@� @� @� @�	 	� �@ @� �@���	@� @� @� @�A A A A
1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 29 20 21

21 attributes: 11 – offspring ph.gr. 1
1 – dam correct? 12 – offspring ph.gr. 2
2 – sire correct? 13 – offspring genotype
3 – stated dam ph.gr. 1 14 – factor 40
4 – stated dam ph.gr. 2 15 – factor 41
5 – stated sire ph.gr. 1 16 – factor 42
6 – stated sire ph.gr. 2 17 – factor 43
7 – true dam ph.gr. 1 18 – lysis 40
8 – true dam ph.gr. 2 19 – lysis 41
9 – true sire ph.gr. 1 20 – lysis 42

10 – true sire ph.gr. 2 21 – lysis 43

The grey nodes correspond to observable attributes.



Danish Jersey Cattle Blood Type Determination� Full 21-dimensional domain has 26 �310 �6 �84 = 92 876 046 336 possible states.� Bayesian network requires only 306 conditional probabilities.� Example of a conditional probability table (attributes 2, 5, and 9):

sire true sire stated sire phenogroup 1
correct phenogroup 1 F1 V1 V2

yes F1 1 0 0
yes V1 0 1 0
yes V2 0 0 1
no F1 0.58 0.10 0.32
no V1 0.58 0.10 0.32
no V2 0.58 0.10 0.32



Danish Jersey Cattle Blood Type Determination@$%() @$%()A A A A@� @� @� @�*% *%$ $@ @#+ "@ !$%@� @� @� @�A A A A
1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 19 20 21

moral graph

C C C CC./ C./C- C-C012345B B B BB, B, B, B,
3 1

7
1 4

8
5 2

9
2 6

10

1
7 8

2
9 10

7 8
11

9 10
12

11 12
13

13 13 13 13
14 15 16 17

14
18

15
19

16
20

17
21

join tree



Learning Graphical Models from Data

Given: A database of sample cases from a domain of interest.

Desired: A (good) graphical model of the domain of interest.� Quantitative or Parameter Learning

– The structure of the conditional independence graph is known.

– Conditional or marginal distributions have to be estimated by standard
statistical methods. (parameter estimation)� Qualitative or Structural Learning

– The structure of the conditional independence graph is not known.

– A good graph has to be selected from the set of all possible graphs.
(model selection)

– Tradeoff between model complexity and model accuracy.



Inducing Naive Bayes Classifiers from Data� Maximum likelihood model
for each class and
for each attribute� Symbolic attributes:P̂ (Aj = aj j C = ci) =

#(Aj = aj; C = ci)
#(C = ci)� Numeric attributes:�̂j(ci) =

1

#(C = ci) #(C=ci)∑
k=1

aj(k)�̂2
j (ci) =

1

#(C = ci) #(C=ci)∑
k=1

(aj(k) � �̂j(ci))2

(normal distribution assumption)

�
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? iris virginica



Learning the Structure of Graphical Models from Data� Test whether a distribution is decomposable w.r.t. a given graph.

This is the most direct approach. It is not bound to a graphical representation,
but can also be carried out w.r.t. other representations of the set of subspaces
to be used to compute the (candidate) decomposition of the given distribution.� Find an independence map by conditional independence tests.

This approach exploits the theorems that connect conditional independence
graphs and graphs that represent decompositions. It has the advantage that a
single conditional independence test, if it fails, can exclude several candidate
graphs.� Find a suitable graph by measuring the strength of dependences.

This is a heuristic, but often highly successful approach, which is based on
the frequently valid assumption that in a conditional independence graph an
attribute is more strongly dependent on adjacent attributes than on attributes
that are not directly connected to them.



Direct Test for Decomposability
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Evaluation Measures and Search Methods� An exhaustive search over all graphs is too expensive:

– 2(n2) possible undirected graphs for n attributes.

– f (n) =
n∑i=1

(�1)i+1
(ni )2i(n�i)f (n� i) possible directed acyclic graphs.� Therefore all learning algorithms consist of

an evaluation measure (scoring function), e.g.

– Hartley information gain (relational networks)

– Shannon information gain, K2 metric (probabilistic networks)

and a (heuristic) search method, e.g.

– guided random search (simulated annealing, genetic algorithms)

– greedy search (K2 algorithm)

– conditional independence search



Marginal Independence Tests

@ @ @ @@ @� 
 � 	 �� Hartley information needed to determine

coordinates: log2 4 + log2 3 = log2 12 � 3:58
coordinate pair: log2 6 � 2:58

gain: log2 12� log2 6 = log2 2 = 1

Definition: Let A and B be two attributes and R a discrete possibility measure
with 9a 2 dom(A) : 9b 2 dom(B) : R(A = a;B = b) = 1. ThenI(Hartley)

gain (A;B) = log2

( ∑a2dom(A)

R(A = a)
)

+ log2

( ∑b2dom(B)

R(B = b))� log2

( ∑a2dom(A)

∑b2dom(B)

R(A = a;B = b))
= log2

(∑a2dom(A)R(A = a)
) � (∑b2dom(B)R(B = b))∑a2dom(A)

∑b2dom(B)R(A = a;B = b) ;
is called the Hartley information gain of A and B w.r.t. R.



Conditional Independence Tests� The Hartley information gain can be used directly to test for (approximate)
marginal independence.

attributes relative number of Hartley information gain
possible value combinations

color, shape 6
3�4 = 1

2 = 50% log2 3 + log2 4� log2 6 = 1

color, size 8
3�4 = 2

3 � 67% log2 3 + log2 4� log2 8 � 0:58

shape, size 5
3�3 = 5

9 � 56% log2 3 + log2 3� log2 5 � 0:85� In order to test for (approximate) conditional independence:

– Compute the Hartley information gain for each possible instantiation of
the conditioning attributes.

– Aggregate the result over all possible instantiations, for instance, by simply
averaging them.



Conditional Independence Tests (continued)� 
 � 	 ��
large

medium
small

$ $"  # #!# ## ! !# ! A Hartley information gaina1 log2 1 + log2 2� log2 2 = 0a2 log2 2 + log2 3� log2 4 � 0:58a3 log2 1 + log2 1� log2 1 = 0a4 log2 2 + log2 2� log2 2 = 1

average: � 0:40B Hartley information gainb1 log2 2 + log2 2� log2 4 = 0b2 log2 2 + log2 1� log2 2 = 0b3 log2 2 + log2 2� log2 3 � 0:42

average: � 0:14

C Hartley information gainc1 log2 2 + log2 1� log2 2 = 0c2 log2 4 + log2 3� log2 5 � 1:26c3 log2 2 + log2 1� log2 2 = 0

average: � 0:42



Conditional Independence Tests (continued)

Algorithm: (conditional independence graph construction)

1. For each pair of attributes A and B, search for a set SAB � UnfA;Bg such
that A??B j SAB holds in P̂ , i.e., A and B are independent in P̂ conditioned
on SAB. If there is no such SAB, connect the attributes by an undirected edge.

2. For each pair of non-adjacent variables A and B with a common neighbour C
(i.e., C is adjacent to A as well as to B), check whether C 2 SAB.� If it is, continue.� If it is not, add arrowheads pointing to C, i.e., A! C  B.

3. Recursively direct all undirected edges according to the rules:� If for two adjacent variables A and B there is a strictly directed path from A
to B not including A! B, then direct the edge towards B.� If there are three variables A, B, and C with A and B not adjacent, B � C,
and A! C, then direct the edge C ! B.



Measuring the Strengths of Marginal Dependences� Learning a relational network consists in finding those subspace, for which the
intersection of the cylindrical extensions of the projections to these subspaces
approximates best the set of possible world states, i.e. contains as few additional
states as possible.� Since computing explicitly the intersection of the cylindrical extensions of the
projections and comparing it to the original relation is too expensive, local
evaluation functions are used, for instance:

subspace color � shape shape � size size � color

possible combinations 12 9 12
occurring combinations 6 5 8
relative number 50% 56% 67%� The relational network can be obtained by interpreting the relative numbers

as edge weights and constructing the minimal weight spanning tree.



Measuring the Strengths of Marginal Dependences� Optimum Weight Spanning Tree Construction

– Compute an evaluation measure on all possible edges
(two-dimensional subspaces).

– Use the Kruskal algorithm to determine an optimum weight spanning tree.� Greedy Parent Selection (for directed graphs)

– Define a topological order of the attributes (to restrict the search space).

– Compute an evaluation measure on all single attribute hyperedges.

– For each preceding attribute (w.r.t. the topological order):
add it as a candidate parent to the hyperedge and
compute the evaluation measure again.

– Greedily select a parent according to the evaluation measure.

– Repeat the previous two steps until no improvement results from them.



Measuring the Strengths of Marginal Dependences� 
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Direct Test for Decomposability

Definition: Let p1 and p2 be two strictly positive probability distributions on the
same set E of events. ThenIKLdiv(p1; p2) =

∑E2E p1(E) log2

p1(E)p2(E)

is called the Kullback-Leibler information divergence of p1 and p2.� The Kullback-Leibler information divergence is non-negative.� It is zero if and only if p1 � p2.� Therefore it is plausible that this measure can be used to assess the quality of
the approximation of a given multi-dimensional distribution p1 by the distri-
bution p2 that is represented by a given graph:
The smaller the value of this measure, the better the approximation.



Direct Test for Decomposability (continued)
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Upper numbers: The Kullback-Leibler information divergence of the original
distribution and its approximation.

Lower numbers: The binary logarithms of the probability of an example database
(log-likelihood of data).



Evaluation Measures / Scoring Functions

Relational Networks� Hartley Information Gain� Conditional Hartley Information Gain

Probabilistic Networks� �2-Measure� Mutual Information / Cross Entropy / Information Gain� (Symmetric) Information Gain Ratio� (Symmetric/Modified) Gini Index� Bayesian Measures (K2 metric, BDeu metric)� Measures based on the Minimum Description Length Principle� Other measures that are known from Decision Tree Induction



A Probabilistic Evaluation Measure

Mutual Information / Cross Entropy / Information Gain

Based on Shannon Entropy H = � n∑i=1

pi log2 pi (Shannon 1948)Igain(A;B) = H(A) � H(A j B)

=

︷ ︸︸ ︷� nA∑i=1

pi: log2 pi: � ︷ ︸︸ ︷nB∑j=1

p:j � nA∑i=1

pijj log2 pijjH(A) Entropy of the distribution on attribute AH(AjB) Expected entropy of the distribution on attribute A
if the value of attribute B becomes knownH(A)�H(AjB) Expected reduction in entropy or information gain



Question/Coding SchemesP (x1) = 0:40; P (x2) = 0:19; P (x3) = 0:16; P (x4) = 0:15; P (x5) = 0:10

Shannon Entropy: 2.15 bit/symbol

Shannon-Fano Coding (1948)x1; x2; x3; x4; x5

0.59 0.41x1; x2 x3; x4; x5

0.25x4; x5

0.40 0.19 0.16 0.15 0.10x1 x2 x3 x4 x5
2 2 2 3 3

Average Code Length: 2.25 bit/symbol

Code Efficiency: 0.955

Huffman Coding (1952)x1; x2; x3; x4; x5

0.60x2; x3; x4; x5

0.35 0.25x2; x3 x4; x5

0.40 0.19 0.16 0.15 0.10x1 x2 x3 x4 x5
1 3 3 3 3

Average Code Length: 2.20 bit/symbol

Code Efficiency: 0.977



A Probabilistic Evaluation Measure

Mutual Information / Cross Entropy / Information Gain� Mutual information is symmetric:Igain(A;B) = HA �HAjB = HA + HB �HAB
= � ∑a2dom(A)

P (A = a) log2P (A = a)� ∑b2dom(B)

P (B = b) log2P (B = b)
+

∑a2dom(A)

∑b2dom(B)

P (A = a;B = b) log2P (A = a;B = b)
= HB �HBjA
= Igain(B;A)� Consequently, it can also be used for undirected graphs.



Mutual Information for the Example

projection to
subspace

product of
marginals� 
 � 	�� � 
 � 	��

s m l�� s m l��� 
 � 	
small

medium
large

� 
 � 	
small

medium
large

mutual
information

0.429 bit
40 180 20 160
12 6 120 102
168 144 30 18

88 132 68 112
53 79 41 67
79 119 61 101

0.211 bit
20 180 200
40 160 40
180 120 60

96 184 120
58 110 72
86 166 108

0.050 bit
50 115 35 100
82 133 99 146
88 82 36 34

66 99 51 84
101 152 78 129
53 79 41 67



Conditional Independence Tests� There are no marginal independences, although the dependence of color and
size is rather weak.� Conditional independence tests may be carried out by summing the mutual
information for all instantiations of the conditioning variables:Imut(A;B j C)

=
∑c2dom(C)

P (c) ∑a2dom(A)

∑b2dom(B)

P (a; b j c) log2

P (a; b j c)P (a j c) P (b j c);
where P (c) is an abbreviation of P (C = c) etc.� Since Imut(color; size j shape) = 0 indicates the only conditional independence,
we get the following learning result:

�
�
�
�color
�
�
�
�shape
�
�
�
�size



Conditional Independence Tests (continued)� The conditional independence graph construction algorithm presupposes that
there is a perfect map. If there is no perfect map, the result may be invalid.

Aa
BaH DaI

CaHI A = a1 A = a2pABCD B = b1 B = b2 B = b1 B = b2D = d1
1=47

1=47
1=47

2=47C = c1 D = d2
1=47

1=47
2=47

4=47D = d1
1=47

2=47
1=47

4=47C = c2 D = d2
2=47

4=47
4=47

16=47� Independence tests of high order, i.e., with a large number of conditions,
may be necessary.� There are approaches to mitigate these drawbacks.
(E.g., the order is restricted and all tests of higher order are assumed to fail
if all tests of lower order failed.)



Measuring the Strengths of Marginal Dependences� Results for the simple example:Imut(color; shape) = 0:429 bitImut(shape; size) = 0:211 bitImut(color; size) = 0:050 bit� Applying the Kruskal algorithm yields as a learning result:

�
�
�
�color
�
�
�
�shape
�
�
�
�size� It can be shown that this approach always yields the best possible spanning

tree w.r.t. Kullback-Leibler information divergence (Chow and Liu 1968).� For more complex graphs, the best graph need not be found
(there are counterexamples, see next slide).



Measuring the Strengths of Marginal Dependences

Aa
CaH DaI

BaHIAA A = a1 A = a2pABCD B = b1 B = b2 B = b1 B = b2D = d1
48=250

2=250
2=250

27=250C = c1 D = d2
12=250

8=250
8=250

18=250D = d1
12=250

8=250
8=250

18=250C = c2 D = d2
3=250

32=250
32=250

12=250pAB a1 a2b1 0:3 0:2b2 0:2 0:3 pAC a1 a2c1 0:28 0:22c2 0:22 0:28

pAD a1 a2d1 0:28 0:22d2 0:22 0:28pCD c1 c2d1 0:316 0:184d2 0:184 0:316

pBC b1 b2c1 0:28 0:22c2 0:22 0:28

pBD b1 b2d1 0:28 0:22d2 0:22 0:28� Attributes C and D have the highest mutual information



Another Probabilistic Evaluation Measure: K2 Metric� Idea: Compute the probability of a graph given the data (Bayesian approach)P ( ~G j D) =
1P (D)

∫
Θ
P (D j ~G;Θ)f (Θ j ~G)P ( ~G) dΘ� Assumptions about data and parameter independence yield:P ( ~G;D) =  r∏k=1

mk∏j=1

∫ � � �∫�ijk  nk∏i=1

�Nijkijk  f (�1jk; : : : ; �nkjk) d�1jk : : : d�nkjk� Choose f (�1jk; : : : ; �nkjk) = const. [Cooper and Herskovits 1992]� Then the solution can be obtained via Dirichlet’s integral:K2( ~G;D) =  r∏k=1

mk∏j=1

(nk � 1)!

(N:jk + nk � 1)!

nk∏i=1

Nijk!



Simple Causal Structures and Alleged (In)Dependences

Aa Ba Ca� �
causal chain

Example:

A – accelerator pedal
B – fuel supply
C – engine speed

A?6?C j ;
A??C j B

Aa Ba
Ca% &

common cause

Example:

A – ice cream sales
B – temperature
C – bathing accidents

A?6?C j ;
A??C j B

Aa
Ba Ca& %

common effect

Example:

A – influenza
B – fever
C – measles

A??C j ;
A?6?C j B



Common Cause Assumption (Causal Markov Assumption)�
� �

T

L R

?

Y-shaped tube arrangement into which a ball is
dropped (T ). Since the ball can reappear either
at the left outlet (L) or the right outlet (R) the
corresponding variables are dependent.t r rll∑ ∑

0 1=2
1=2 0

1=2 1=2 1=2
1=2

Counter argument: The cause is insufficiently de-
scribed. If the exact shape, position and velocity
of the ball and the tubes are known, the outlet
can be determined and the variables become in-
dependent.

Counter counter argument: Quantum mechanics
states that location and momentum of a particle
cannot both at the same time be measured with
arbitrary precision.



Sensitive Dependence on the Initial Conditions� Sensitive dependence on the initial conditions means that a small change
of the initial conditions (e.g. a change of the initial position or velocity of a
particle) causes a deviation that grows exponentially with time.� Many physical systems show, for arbitrary initial conditions, a sensitive depen-
dence on the initial conditions.

� �
�

�
� �� �
��� � 	 Example: Billiard with round

(or generally convex) obstacles.

Initial imprecision: � 1
100 degree

after four collisions: � 100 degrees



Fields of Application (DaimlerChrysler AG)� Improvement of Product Quality by Finding Weaknesses

– Learn decision trees or inference network
for vehicle properties and faults.

– Look for unusual conditional fault frequencies.

– Find causes for these unusual frequencies.

– Improve construction of vehicle.� Improvement of Error Diagnosis in Garages

– Learn decision trees or inference network
for vehicle properties and faults.

– Record properties of new faulty vehicle.

– Test for the most probable faults.



A Simple Approach to Fault Analysis� Check subnets consisting of an attribute and its parent attributes.� Select subnets with highest deviation from an independent distribution.

Vehicle Properties

el. sliding
roof

air con-
ditioning

area
of sale

cruise
control

tire
type

anti slip
control

B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
� ?

J
J
J
J
J
J
J
J
J
J
J
J
Ĵ ?


























�

battery
fault

paint
fault

brake
fault

Fault Data



Example Subnet

Influence of special equipment on battery faults:

(fictitious) frequency of
battery faults

electrical sliding roof
with

without

air conditioning
with without

8 % 3 %

3 % 2 %� Significant deviation from independent distribution.� Hints to possible causes and improvements.� Here: Larger battery may be required if an air conditioning system.
and an electrical sliding roof are built in.

(The dependences and frequencies of this example are fictitious, true numbers are confidential.)



Summary� Decomposition: Under certain conditions a distribution � (e.g. a probability
distribution) on a multi-dimensional domain, which encodes prior or generic
knowledge about this domain, can be decomposed into a set f�1; : : : ; �sg of
(overlapping) distributions on lower-dimensional subspaces.� Simplified Reasoning: If such a decomposition is possible, it is sufficient
to know the distributions on the subspaces to draw all inferences in the domain
under consideration that can be drawn using the original distribution �.� Graphical Model: The decomposition is represented by a graph (in the
sense of graph theory). The edges of the graph indicate the paths along which
evidence has to be propagated. Efficient and correct evidence propagation
algorithms can be derived, which exploit the graph structure.� Learning from Data: There are several highly successful approaches to
learn graphical models from data, although all of them are based on heuristics.


