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e Regression
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e Analysis of Survival Data



The fitting of generalized linear models is currently the most frequently applied
statistical technique. Generalized linear models are used to described the rela-
tionship between the mean, sometimes called the trend, of one variable and the
values taken by several other variables.



3.2.1 Regression

How is a variable, y, related to one, or more, other variables, x1, o, ..., xn?

Names for y:
response; dependent variable; output.

Names for the x;’s:
regressors; explanatory variables; independent variables; inputs.

Here, we will use the terms output and inputs.



Common reasons for doing a regression analysis include:

e the output is expensive to measure, but the inputs are not, and so cheap
predictions of the output are sought;

e the values of the inputs are known earlier than the output is, and a working
prediction of the output is required,;

e we can control the values of the inputs, we believe there is a causal link
between the inputs and the output, and so we want to know what values
of the inputs should be chosen to obtain a particular target value for the
output;

e it is believed that there is a causal link between some of the inputs and the
output, and we wish to identify which inputs are related to the output.



The (general) linear model is

y; = Bo + B1x1; + Boxoj + -+ Bnxy; +¢;, 7=1,2,...,m (3.1

where the ¢;’s are independently and identically distributed as A/ (O, o2) and m
IS the number of data points.

The model is linear in the 3’s.

E(y;) = B0+ MU Ghttsg (3.2)

1=1
(A weighted sum of the 3’s.)



The main reasons for the use of the linear model.

e The maximum likelihood estimators of the 3’s are the same as the least
squares estimators; see Section 2.4 of Chapter 2.

e EXxplicit formulae and rapid, reliable numerical methods for finding the least
squares estimators of the g’s.

e Many problems can be framed as general linear models. For example,

E(y) = Bo + 11 + Boxo + B3r12o + B4zt + Bs25 (3.3)

can be converted by setting x3 = x1xo, x4 = &m and x5 = aw

e Even when the linear model is not strictly appropriate, there is often a way
to transform the output and/or the inputs, so that a linear model can provide
useful information.



Non-linear Regression

Two examples are:
@u.“ﬁo&%.wl_lmw 17=1,2,...,m (3.4)

y; = Bo AH - mIQHAaE+mva +e j=1,2,...,m. (3.5)

where the ¢’'s and m are as in (3.1).



Problems

1. Estimation is carried out using iterative methods which require good choices
of starting values, might not converge, might converge to a local optimum
rather than the global optimum, and will require human intervention to over-
come these difficulties.

2. The statistical properties of the estimates and predictions from the model
are not known, so we cannot perform statistical inference for non-linear

regression.



Generaliz ed Linear Models

The generalization is in two parts.

1. The distribution of the output does not have to be the normal, but can be
any of the distributions in the exponential family.

2. Instead of the expected value of the output being a linear function of the
#’s, we have

g (E(w)) =Bo+ > Biwij (3.6)
i=1

where g(-) is a monotone differentiable function. The function g(-) is called
the link function.

There is a reliable general algorithm for fitting generalized linear models.
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Generaliz ed Additive Models
Generalized additive models are a generalization of generalized linear models.

The generalization is that g Am@bv need not be a linear function of a set of 3’s,
but has the form

g (E@w)) =Bo+ Y si(zi) (3.7)
i=1

where the s;’s are arbitrary, usually smooth, functions.

An example of the model produced using a type of scatterplot smoother is
shown in Figure 3.1.
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Figure 3.1
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Methods for fitting generalized additive models exist and are generally reliable.
The main drawback is that the framework of statistical inference that is avail-
able for generalized linear models has not yet been developed for generalized

additive models.

Despite this drawback, generalized additive models can be fitted by several of
the major statistical packages already.
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3.2.2 Analysis of Variance

The analysis of variance, or ANOVA, is primarily a method of identifying which
of the 3’s in a linear model are non-zero. This technique was developed for the
analysis of agricultural field experiments, but is now used quite generally.

Example 27 Turnips for Winter Fodder. The data in Table 3.1 are from an ex-
periment to investigate the growth of turnips. These types of turnips would be
grown to provide food for farm animals in winter. The turnips were harvested
and weighed by staff and students of the Departments of Agriculture and Ap-
plied Statistics of The University of Reading, in October, 1990.
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Table 3.1

Treatments Blocks

Variety Date  Density | Label _ 1 1] IV
Barkant | 21/8/90 1kg/ha A 27 14 12 3.8
2 kg/ha B 7.3 38 30 1.2

4 kg/ha C 6.5 46 4.7 0.8

8 kg/ha D 82 40 6.0 25

28/8/90 1kg/ha = 44 04 65 3.1

2 kg/ha = 26 7.1 7.0 32

4 kg/ha € 24.0 149 146 2.6

8 kg/ha H 12.2 189 156 9.9

Marco | 21/8/90 1kg/ha J 1.2 1.3 15 1.0
2 kg/ha K 22 20 21 25

4 kg/ha L 22 6.2 57 06

8 kg/ha \Y 40 2.8 108 3.1

28/8/90 1kg/ha N 25 16 1.3 0.3

2 kg/ha P 55 12 20 0.9

4 kg/ha ) 4.7 13.2 9.0 2.9

8 kg/ha R 149 133 9.3 3.6

5



The following linear model

y; = Bo+ Bpzp;+ Bcrc;+ -+ BrRTR;
+Brrzrr; + Brirerrr; + Brverv; +¢; j=1,2,...,64(3.8)

or an equivalent one could be fitted to these data. The inputs take the values 0
or 1 and are usually called dummy or indicator variables.

On first sight, (3.8) should also include a 34 and a 3y, but we do not need them.

16



The first question that we would try to answer about these data is

Does a change in treatment produce a change in the turnip yield?

which is equivalent to asking

Are any of 8g, B¢, ..., Br NON-zero?

which is the sort of question that can be answered using ANOVA.
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This is how the ANOVA works. Recall, the general linear model of (3.1),
y; = Bo + B1x1j + Boxoj+ -+ Bnxpnj +e; 1=1,2,...,m

The estimate of 3; is 3;.

Fitted values
n
J; = PBo+ ) Bizij - (3.9)
i=1
Residuals

TP =Y; — Yj - (3.10)

The size of the residuals is related to the size of qM. the variance of the m\m. It
turns out that we can estimate o2 by

m ~ )2
> 2j=1(y; — ;)
§? =TS (3.11)
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The key facts about S2 is that allow us to compare different linear models are:

e if the fitted model is adequate (‘the right one’), then S2 is a good estimate
of o2:

e if the fitted model includes redundant terms (that is includes some §’s that
are really zero), then S< is still a good estimate of o2;

e if the fitted model does not include one or more inputs that it ought to, then
S2 will tend to be larger than the true value of o2.

So if we omit a useful input from our model, the estimate of o2 will shoot up,
whereas if we omit a redundant input from our model, the estimate of o2 should
not change much. Note that omitting one of the inputs from the model is equiv-
alent to forcing the corresponding 3 to be zero.
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Example 28 Turnips for Winter Fodder continued. Let €21 to be the model at
(3.8), and €2( to be the following model

y; = Bo+ Brrxrrj+ Brrrxrrrj +Biverv,i+e; j=1,2,...,64 . (3.18)

So, (g is the special case of €21 in which all of B8g, B¢, ..., Br are zero.
Table 3.2

Df Sumof Sq Mean Sq F Val ue Pr(F)

bl ock 3 163. 737 54.57891 2.278016 0.08867543

Resi duals 60 1437.538 23. 95897

Table 3.3
Df Sumof Sq Mean Sq F Val ue Pr(F)
bl ock 3 163. 737 54.57891 5. 690430 0.002163810
treat 15 1005.927 67.06182 6.991906 0. 000000171

Resi dual s 45 431. 611 9.59135
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Table 3.4 shows the ANOVA that would usually be produced for the turnip data.
Notice that the ‘block’ and ‘Residuals’ rows are the same as in Table 3.3. The
basic difference between Tables 3.3 and 3.4 is that the treatment information is
broken down into its constituent parts in Table 3.4.

Table 3.4

Df Sum of Sq Mean Sqg

bl ock 3
variety 1
Sow ng 1
density 3
variety: sow ng 1
variety:density 3
Sow ng: density 3
variety:sow ng:density 3
Resi dual s 45

163.
83.
28
470.
36.
8.
154.
17.
431.

/367
9514
7077
3780
4514
6467
7930
9992
6108

4.
83.
28
156.
36.
. 8822
S51.
. 9997
. 9914

5789
9514
7077
71927
4514

5977

o Ol

O Ul O W o

Val ue

. 69043
. 15282
. 36650
. 34730
. 80045

30050

. 37960
. 62554

O OO0 OO0 OO

Pr(F)

. 0021638

0049136

. 0000114
. 0000003
. 0574875

8248459

. 0029884
. 6022439



3.2.3 Log-linear Models

The data shown in Table 3.7 show the sort of problem attacked by log-linear
modelling. There are five categorical variables displayed in Table 3.7:

centre one of three health centres for the treatment of breast cancer;

age the age of the patient when her breast cancer was diagnosed,;

survived whether the patient survived for at least three years from diagnosis;
appear appearance of the patient’s tumour—either malignant or benign;

Inflam amount of inflammation of the tumour—either minimal or greater.

22



Table 3.7

State of Tumour

Minimal Inflammation Greater Inflammation
Malignant Benign Malignant Benign
Centre Age Survived Appearance Appearance Appearance Appearance
Tokyo Under 50 No 9 7 4 3
Yes 4) 68 AS) 9
50-69 No 9 9 11 2
Yes 20 46 18 )
70 or over No 2 3 1 0)
Yes 1 6 5 1
Boston Under 50 No 6 7 6 0)
Yes 11 24 4 o)
50-69 No 8 20 3 2
Yes 18 58 10 3
70 or over No 9 18 3 0)
Yes 15 26 1 1
Glamorgan Under 50 No 16 7 3 0
Yes 16 20 8 1
50-69 No 14 12 3 0
Yes 27 39 10 4
70 or over No 3 7 3 0)
Yes 12 11 4 1




For these data, the output is the number of patients in each cell.

The model is

y; ~ Pois(u;) and log(u;) = Bo+PB1x1j+0Poroj+ -+ Bnxy; - (3.21)

Since all the variables of interest are categorical, we need to use indicator vari-
ables as inputs in the same way as in (3.8).
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Table 3.8
Ternms added sequentially (first to | ast)
Df Deviance Resid. Df Resid. Dev Pr (Chi)

NUL L 71 860. 0076
centre 2 9. 3619 69 850. 6457 0. 0092701
age 2 105.5350 67 745. 1107 0. 0000000
survived 1 160.6009 66 584. 5097 0. 0000000
Inflam 1 291.1986 65 293. 3111 0. 0000000
appear 1 [.5727 64 285. 7384 0. 0059258
centre:age 4 76.9628 60 208. 7756 0. 0000000
centre:survived 2 11.2698 58 197. 5058 0. 0035711
centre:inflam 2 23.2484 56 174. 2574 0. 0000089
centre: appear 2 13.3323 o4 160. 9251 0. 0012733
age: survived 2 3. 5257 52 157. 3995 0.1715588
age:inflam 2 0. 2930 50 157. 1065 0. 8637359
age: appear 2 1.2082 48 155. 8983 0. 5465675
survived:inflam 1 0. 9645 47 154. 9338 0. 3260609
survi ved: appear 1 9.6709 46 145. 2629 0. 0018721
| nfl am appear 1 95.4381 45 49. 8248 0. 0000000



To summarise this model, | would construct its conditional independence graph
and present tables corresponding to the interactions.

Tables are in the book.

The conditional independence graph is shown in Figure 3.2.

survived

centre

inflam appear

Figure 3.2
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3.2.4 Logistic Regression

In logistic regression, the output is the number of successes out of a number of
trials, each trial resulting in either a success or failure.

For the breast cancer data, we can regard each patient as a ‘trial’, with success
corresponding to the patient surviving for three years.

The output would simply be given as number of successes, either 0 or 1, for
each of the 764 patients involved in the study.

The model that we will fitis P(y; =0) =1 — p;, P(y; = 1) = p; = u; and

= Bo + B1x1; + Boxoj + - + BnTyn; - (3.22)

Again, the inputs here will be indicators for the breast cancer data, but this
IS not generally true; there is no reason why any of the inputs should not be
guantitative.
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Table 3.15

NUL L
centre
age
appear
I nfl am

centre: age

centre

centre

age

age

appear

centre: age
centre: age
centre: appear
age: appear
centre: age: appear

. appear
i1 nflam
. appear

1 nflam
i nflam
. appear

i nflam
1 nfl am
i nflam
1 nfl am

WINNNEBREPNNNNPEARERPEDNDN

=

. 26979
. 92566
. 69100
. 00653
. 42101
. 08077
. 39128
. 33029
. 06318
. 24812
. 04635
04411
. 07840
. 34374
. 01535

763
761
759
758
757
753
751
749
747
745
744
740
736
734
732
729

Df Devi ance Resid. Df Resid. Dev
898.
887.
883.
874.
874.
866.
865.
862.
859.
859.
859.
857.
850.
845.
840.
840.

5279
2582
7325
0415
0350
6140
5332
1419
8116
7484
5003
4540
4099
3315
9877
9724

Pr ( Chi)

. 0035711
. 1715588
. 0018517
. 9356046

1152433

. 5825254
. 1834814
. 3118773
. 9689052
. 6184041
. 1272344

1335756

. 0789294
. 1139642
. 9994964
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The fitted model is simple enough in this case for the parameter estimates to
be included here; they are shown in the form that a statistical package would
present them in Table 3.16.

Table 3.16
Coefficients:

(I ntercept) centre2 centre3 appear
1. 080257 -0.6589141 -0.4944846 0.5157151

Using the estimates given in Table 3.16, the fitted model is

logit(p;) = 1.080257—0.6589141zp;—0.4944846x5,+0.5157151x,;
(3.23)
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3.2.5 Analysis of Survival Data

Survival data are data concerning how long it takes for a particular event to hap-
pen. In many medical applications the event is death of a patient with an iliness,
and so we are analysing the patient’s survival time. In industrial applications the
event is often failure of a component in a machine.

The output in this sort of problem is the survival time. As with all the other
problems that we have seen in this section, the task is to fit a regression model
to describe the relationship between the output and some inputs. In the medical
context, the inputs are usually qualities of the patient, such as age and sex, or
are determined by the treatment given to the patient.

We will skip this topic.

30



3.3 Special Topics in Regression Modelling

e Multivariate Analysis of Variance
e Repeated Measures Data

e Random Effects Models

The topics in this section are special in the sense that they are extensions to
the basic idea of regression modelling. The techniques have been developed
In response to methods of data collection in which the usual assumptions of
regression modelling are not justified.
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3.3.1 Multiv ariate Analysis of Variance

Model

Yy; = Po+B1z1j+ Boxoj+ -+ Brxnj+e; j=1,2,...,m (3.26)
(ex1)
where the €,’s are independently and identically distributed as A¢(0, %) and m
Is the number of data points. The (¢ x 1) under y; Indicates the dimensions of
the vector, in this case ¢ rows and 1 column; the 3’s are also (¢ x 1) vectors.

This model can be fitted in exactly the same way as a linear model (by least
squares estimation). One way to do this fitting would be to fit a linear model to
each of the ¢ dimensions of the output, one-at-a-time.
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Having fitted the model, we can obtain fitted values
—~ : —
y;=PBo+ D Bz j=1,2,...,m
i=1
and hence residuals

@u|®u .w.””_.uwv...us

The analogue of the residual sum of squares from the (univariate) linear model
IS the matrix of residual sums of squares and products for the multivariate linear
model. This matrix is defined to be

m
R=) (y;—9,)(y; — @bﬂ :
=

33



3.3.2 Repeated Measures Data

Repeated measures data are generated when the output variable is observed
at several points in time, on the same individuals. Usually, the covariates are
also observed at the same time points as the output; so the inputs are time-
dependent too. Thus, as in Section 3.3.1 the output is a vector of measure-
ments. In principle, we can simply apply the techniques of Section3.3.1 to
analyse repeated measures data. Instead, we usually try to use the fact that
we have the same set of variables (output and inputs) at several times, rather
than a collection of different variables making up a vector output.

Repeated measures data are often called longitudinal data, especially in the so-
cial sciences. The term cross-sectional is often used to mean ‘not longitudinal’.
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3.3.3 Random Effects Models
Overdisper sion

In a logistic regression we might replace (3.22) with

logit(p;) = Bo + B1z1; + Bozoj + -+ + Bnzyn; +U; (3.29)

where the U;’s are independently and identically distributed as A (O, qmv. We
can think of U; as representing either the effect of the missing input on p; or
simply as random variation in the success probabilities for individuals that have
the same values for the input variables.
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Hierar chical models

In the turnip experiment, the growth of the turnips is affected by the different
blocks, but the effects (the 3’s) for each block are likely to be different in different
years. So we could think of the g’s for each block as coming from a population
of 3’s for blocks. If we did this, then we could replace the model in (3.8) with

y; = Bo+ Bpxrp;+ Bcrc;+ -+ BRTR;
+brxrj +brrxrrj + bz +orverv; e 3=1,2,...,64
(3.30)

where by, byr, by and by, are independently and identically distributed as
N (O, QWV.

36



3.4 Classical Multiv ariate Analysis

Principal Components Analysis

Correspondence Analysis

Multidimensional Scaling

Cluster Analysis and Mixture Decomposition

Latent Variable and Covariance Structure Models
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3.4.1 Principal Components Analysis

Principal components analysis is a way of transforming a set of n-dimensional
vector observations, x1, o, ..., £m, INto another set of n-dimensional vectors,
Y1, Yo, ---» Y- 1he y’s have the property that most of their information content

IS stored in the first few dimensions (features).

This will allow dimensionality reduction, so that we can do things like:
e obtaining (informative) graphical displays of the data in 2-D;
e carrying out computer intensive methods on reduced data;
e gaining insight into the structure of the data, which was not apparent in n

dimensions.
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Figure 3.3
Fisher’s Iris Data (collected by Anderson)

Petal W.
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The main idea behind principal components analysis is that high information
corresponds to high variance.

So, if we wanted to reduce the x’s to a single dimension we would transform «
to

e
@lﬂgv

choosing a so that y has the largest variance possible.

It turns out that a should be the eigenvector corresponding to the largest eigen-
value of the variance (covariance) matrix of a, >_.

It is also possible to show that of all the directions orthogonal to the direction of
highest variance, the (second) highest variance is in the direction parallel to the
eigenvector of the second largest eigenvalue of >_. These results extend all the
way to n dimensions.
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Estimate of > Is

|Fs.|L.H
?m3|3|HWUHA§ T) (zj—=) , a.wc

e b N
wherex = =3, x;.

e The eigenvalues of S are

e The eigenvectors of S corresponding to A1, A\, ..., A\p are ey, eo, ..., €n,
respectively.
The vectors eq, eo, ..., ey, are called the principal axes. (eq Is the first

principal axis, etc.)

e The (n x n) matrix whose ith column is e; will be denoted as E.
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The principal axes (can be and) are chosen so that they are of length 1 and are
orthogonal (perpendicular). Algebraically, this means that

T, 1 ife=14
€ €/ =1 0o ifq £ (3.32)
The vector y defined as,
) m% _
L
Y e m.m xZr == mn_la
(nx1) ; (nx1)
=
(nxn)

Is called the vector of principal component scores of . The :th principal com-
ponent score of x Is y; = &48“ sometimes the principal component scores are
referred to as the principal components.
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1. The elements of y are uncorrelated and the sample variance of the sth
principal component score is A;. In other words the sample variance matrix
ofyis

(nxn)

2. The sum of the sample variances for the principal components is equal to
the sum of the sample variances for the elements of . That is,

n n 5
2 A= DS
i=1 i=1
where mw Is the sample variance of x;.
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Figure 3.4
Principal component score for Fisher’s Iris Data. Compare with Figure 3.3
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Effective Dimensionality

1. The proportion of variance accounted for Take the first r principal com-
ponents and add up their variances. Divide by the sum of all the variances,
to give

i=1 A
i=1 A

which is called the proportion of variance accounted for by the first r princi-

pal components.

Usually, projections accounting for over 75% of the total variance are con-
sidered to be good. Thus, a 2-D picture will be considered a reasonable
representation if

A1+ A2
n_ A

1=

> 0.75 .
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2. The size of impor tant variance The idea here is to consider the variance

3.

If all directions were equally important. In this case the variances would be
approximately

The argument runs

If A\; < A, then the ith principal direction is less interesting than
average.

and this leads us to discard principal components that have sample vari-
ances below \.

Scree diagram A scree diagram is an index plot of the principal component
variances. In other words it is a plot of \; against :. An example of a scree
diagram, for the Iris Data, is shown in Figure 3.5.
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Figure 3.5
We look for the elbow; in this case we only need the first component.
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Normalising

The data can be normalised by carrying out the following steps.

e Centre each variable. In other words subtract the mean of each variable to
give

Hm.” Hm. el

e Divide each element of mb. by its standard deviation; as a formula this means
calculate

where s; is the sample standard deviation of x;.
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Mean Centred Data Scaled Data

-5 0 5 10
5 x Petal L.

Figure 3.6 If we don’t normalise.




Interpretation

The final part of a principal components analysis is to inspect the eigenvectors
In the hope of identifying a meaning for the (important) principal components.

See the book for an interpretation for Fisher’s Iris Data.
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3.4.2 Correspondence Analysis

Correspondence is a way to represent the structure within incidence matrices.

Incidence matrices are also called two-way contingency tables.

An example of a (5 x 4) incidence matrix, with marginal totals is shown in

Table 3.17.
Table 3.17
Smoking Category

Staff Group None Light Medium Heavy | Total
Senior Managers 4 2 3 2 11
Junior Managers 4 3 7 4 18
Senior Employees | 25 10 12 4 51
Junior Employees 18 24 33 13 88
Secretaries 10 6 7 2 25
Total 61 45 62 25 193
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Two Stages

e Transform the values in a way that relates to a test for association between
rows and columns (chi-squared test).

e Use a dimensionality reduction method to allow us to draw a picture of the
relationships between rows and columns in 2-D.

Details are like principal components analysis mathematically; see the book.
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3.4.3 Multidimensional Scaling

Multidimensional scaling is the process of converting a set of pairwise dissimi-
larities for a set of points, into a set of co-ordinates for the points.

Examples of dissimilarities could be:

e the price of an airline ticket between pairs of cities;

e road distances between towns (as opposed to straight-line distances);

e a coefficient indicating how different the artefacts found in pairs of tombs
within a graveyard are.

53



Classical Scaling

Classical scaling is also known as metric scaling and as principal co-ordinates
analysis. The name ‘metric’ scaling is used because the dissimilarities are as-
sumed to be distances—or in mathematical terms the measure of dissimilarity
IS the euclidean metric. The name ‘principal co-ordinates analysis’ is used be-
cause there is a link between this technique and principal components analysis.
The name ‘classical’ is used because it was the first widely used method of
multidimensional scaling, and pre-dates the availability of electronic computers.

The derivation of the method used to obtain the configuration is given in the
book.
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The results of applying classical scaling to British road distances are shown in
Figure 3.7. These road distances correspond to the routes recommended by
the Automobile Association; these recommended routes are intended to give
the minimum travelling time, not the the minimum journey distance.

e An effect of this, that is visible in Figure 3.7 is that the towns and cities have
lined up in positions related to the motorway network.

e The map also features distortions from the geographical map such as the
position of Holyhead (holy), which appears to be much closer to Liverpool
(Iver) and Manchester than it really is, and the position of Cornish peninsula
(the part ending at Penzance, penz) is further from Carmarthen (carm) than
it is physically.
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Ordinal Scaling

Ordinal scaling is used for the same purposes at classical scaling, but for dis-
similarities that are not metric, that is, they are not what we would think of as
distances. Ordinal scaling is sometimes called non-metric scaling, because the
dissimilarities are not metric. Some people call it Shepard-Kruskal scaling, be-
cause Shepard and Kruskal are the names of two pioneers of ordinal scaling.

In ordinal scaling, we seek a configuration in which the pairwise distances be-
tween points have the same rank order as the corresponding dissimilarities. So,
If 93,0 1S the dissimilarity between points k and ¢, and dy is the distance between
the same points in the derived configuration, then we seek a configuration in
which

die < dgp

Ore < dgp
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3.4.4 Cluster Analysis and Mixture Decomposition

Cluster analysis and mixture decomposition are both techniques to do with iden-
tification of concentrations of individuals in a space.
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Cluster Analysis

Cluster analysis is used to identify groups of individuals in a sample. The groups
are not pre-defined, nor, usually, is the number of groups. The groups that are
identified are referred to as clusters.

e hierarchical
— agglomerative
— divisive

e non-hierarchical
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Minim um distance or single-link

Maximum distance or complete-link

Average distance

Centroid distance defines the distance between two clusters as the squared
distance between the mean vectors (that is, the centroids) of the two clus-
ters.

Sum of squared deviations defines the distance between two clusters as
the sum of the squared distances of individuals from the joint centroid of the
the two clusters minus the sum of the squared distances of individuals from
their separate cluster means.
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Figure 3.8
Usual way to present results of hierarchical clustering.
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Non-hierarchical clustering is essentially trying to partition the sample so as to
optimize some measure of clustering.

The choice of measure of clustering is usually based on properties of sums of
squares and products matrices, like those met in Section 3.3.1, because the aim
In the MANOVA is to measure differences between groups.

The main difficulty here is that there are too many different ways to partition the
sample for us to try them all, unless the sample is very small (around about
m = 10 or smaller). Thus our only way, in general, of guaranteeing that the
global optimum is achieved is to use a method such as branch-and-boundg,

One of the best known non-hierarchical clustering methods is the k-means
method.
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Mixture Decomposition

Mixture decomposition is related to cluster analysis in that it is used to identify
concentrations of individuals. The basic difference between cluster analysis and
mixture decomposition is that there is an underlying statistical model in mixture
decomposition, whereas there is no such model in cluster analysis. The proba-
bility density that has generated the sample data is assumed to be a mixture of
several underlying distributions. So we have

K

fx) =) wifr(z; 0y) ,

k=1
where K is the number of underlying distributions, the f.'s are the densities
of the underlying distributions, the 6;’s are the parameters of the underlying
distributions, the w;’s are positive and sum to one, and f is the density from
which the sample has been generated.

Details in one of Hand’s books.
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3.4.5 Latent Variable and Covariance Structure Models

| have never used the techniques in this section, so | do not conssider myself
expert enough to give a presentation on them.

Not enough time to cover everything.
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3.5 Summary

The technigues presented in this chapter do not form anything like an exhaustive
list of useful statistical methods. These techniques were chosen because they
are either widely used or ought to be widely used. The regression techniques
are widely used, though there is some reluctance amongst researchers to make
the jJump from linear models to generalized linear models.

The multivariate analysis techniques ought to be used more than they are. One
of the main obstacles to the adoption of these techniques may be that their roots
are in linear algebra.

| feel the techniques presented in this chapter, and their extensions, will remain
or become the most widely used statistical techniques. This is why they were
chosen for this chapter.
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