
ChaosChaos and and RealReal World:World:
Fractal analysisFractal analysis of of cardiovascular cardiovascular 

variability seriesvariability series

Maria Maria Gabriella SignoriniGabriella Signorini
Dipartimento di Bioingegneria, 

Politecnico di Milano, p.zza L. da Vinci,32, 
20133 Milano, Italy. 

e-mail: signorini@biomed.polimi.it



Fractal structures

NATURE GEOMETRY
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Fractal structure generation



Fractal structures

• Coronary System Model generated through 
fractal algorithms



Fractal structures



SelfSelf--Similarity Similarity 
in the time in the time domaindomain

• Evolution in time of 
HRV signal shows
SELFSELF--SIMILARITYSIMILARITY
propertiesproperties

• Time series repeats 
the same pattern at 
different magnitude 
degrees.

• It looks similar to a 
geometricgeometric fractalfractal



Recent results showed biological signals  do not only not only 
contains linear harmonic contributionscontains linear harmonic contributions
(traditionally identified through spectral analysis 
techniques) but they possess a fractal like possess a fractal like 
geometrygeometry with many rhythmic componentsmany rhythmic components
interacting over different scales. over different scales. 

Biological  time series can show fractal can show fractal 
characteristicscharacteristics in their patterns, as well as in the 
temporal scales. 

Signals with different degrees of magnification of 
time step, show patterns possessing selfshow patterns possessing self--similar similar 
characteristicscharacteristics (at a more or less extent).               



Two heart rate time series, one from a healthy 
subject (top) and the other from a patient with 
severe congestive heart failure (CHF) (middle) 
have nearly identical means and variances 
(bottom), yet very different dynamics. 

Note that according to classical physiological 
paradigms based on homeostasis, 
neuroautonomic control systems should be 
designed to damp out noise and settle down to a 
constant equilibrium-like state. However, the 
healthy heartbeat displays highly complex, 
apparently unpredictable fluctuations even under 
steady-state conditions. In contrast, the heart rate 
pattern from the subject with heart failure shows 
slow, periodic oscillations that correlate with 
Cheyne-Stokes breathing.



. Examples of nonlinear 
dynamics of the heartbeat. 
Panels (a-c) are from 
subjects with obstructive 
sleep apnea syndrome. 
Panels (d and e) are from 
healthy subjects at high 
altitude (~15,000 ft). 



Left, schematic of a tree-
like fractal has self-similar 
branchings such that the 
small scale (magnified) 
structure resembles the 
large scale form. 
Right, a fractal process 
such as heart rate 
regulation generates 
fluctuations on different 
time scales (temporal 
"magnifications") that are 
statistically self-similar. 
(Goldberger AL. Non-
linear dynamics for 
clinicians: chaos theory, 
fractals, and complexity at 
the bedside. Lancet
1996;347:1312-1314.) 



Breakdown of a fractal 
physiological control 
mechanism can lead 
ultimately either to a 
highly periodic output 
dominated by a single 
scale or to uncorrelated 
randomness. 

The top heart rate time series 
is from a healthy subject; 
bottom left is from a subject 
with heart failure; and 
bottom right from a subject 
with atrial fibrillation. 
(Goldberger AL. Non-linear 
dynamics for clinicians: 
chaos theory, fractals, and 
complexity at the bedside. 
Lancet 1996;347:1312-
1314.)



GOALGOAL
• Proposal of new methods measuring the 

Self-Similarity H parameter in time series 
(ex. Heart Rate Variability).

• Evaluation of the diagnostic power of the 
index H in a population with cardiovascular 
pathologies.



SelfSelf--SimilaritySimilarity: : definitiondefinition
4 x(t) ⇒ λ-H x(λt) 

(λ is the scaling factor)

4 x(t) =d λ-H x(λt)
=d means equality in distributions

4 for fBM:    ∆∆(1) =d  λλ-H ∆∆(λλ) 

44 0 < 0 < HH < 1< 1
44 H is calledH is called

4 self-similarity parameter
4 long period correlation
44 Hurst exponentHurst exponent
4 long period memory

4 H ≅ 0  ⇔ negativenegative correlation
4 H=0,5 ⇔ uncorrelateduncorrelated signal
4 H ≅ 1 ⇔ positivepositive correlation 
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Methods for the Methods for the 
H parameter estimationH parameter estimation

HRV Signal

CLASSICAL METHODS
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DFA Method

a (BP)

a (LP)

•• Absolute valuesAbsolute values of the 
aggregated series 
(J. Beran, 1994)

•• VarianceVariance of the 
aggregated series 
(J. Beran, 1994)

•• HiguchiHiguchi (Higuchi, 
1988)

•• PeriodogramPeriodogram
•• DetrendedDetrended

Fluctuation AnalysisFluctuation Analysis
(DFA) (C.K. Peng, 
1995)



MethodsMethods
Detrended Fluctuations Analysis
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MethodsMethods
a)a)

absolute value

LogLog--log plots are obtained from a log plots are obtained from a 
fBmfBm with with HH = 0.3, N=100,000.= 0.3, N=100,000.

EXAMPLE
íítime series time series xx((ii)) (1≤ i ≤ N

íX(i) = x(i+1)-x(i). 

íX(i) is divided into N/m blocks of 

size mm..

í From the average of each block 

we obtain the aggregated seriesaggregated series

k = 1, 2, ..., N / m .    
The absolute values of absolute values of 

the aggregatedthe aggregated seriesseries are: 
í.        

íWe repeat this step for different repeat this step for different 
mm valuesvalues (m dimension of the 

data subset), 
í Plot  of Plot  of MM((mm) vs. ) vs. mm in login log--loglog

scale.  
ííMM((mm) ) ∝∝ mmγγ related to the self-

similarity parameter 
ííγγ = = HH -- 11

ílog(M) vs. log(m) plot é straight 
line with slope γ.
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Higuchi

c)c)
periodogram



Interpretation Interpretation 
NORMALS: Random Walk in short 
period, 1/f noise in long period.

HF PATIENTS: 1/f noise in both 
short and long period.

Normal subjects are more 
correlated than HF patients in 
long period and less correlated in 
short period.

resultsresults in in HeartHeart FailureFailure patientspatients
Detrended Fluctuations Analysis (DFA)

4S: short period 
(4,000 beats)

4L: long period 
(10,000 beats)
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resultsresults in in HeartHeart FailureFailure patientspatients

44HH calculation over a 24 hour HRV 
signal

Method
H

Normal
(avg.±std)

Heart Failure
(avg.±std)

t-test

Modulus 0.115.±0.017 0.153.±0.050 p<0.05
Aggr. Var. 0.127.± 0.034 0.205 ±0.072 p<0.05
Higuchi 0.121.± 0.022 0.141.± 0.042 n.s.

Periodogram 0.0925.± 0.054 0.1657.± 0.050 p<0.05



resultsresults in ICU in ICU patientspatients

p<0.02                        p<0.002 p<0.03                            p<0.2
èLong-term H parameter are significantly different between 

survived and non-survived subjects. 
èS show α-slope values close to 1 (almost normal values), 

while D have significantly higher values.
èThe α-slope (periodogram) : 1.44±0.35 (dead)1.44±0.35 (dead) vs 1.13±0.10 1.13±0.10 

(survived)(survived)
èIncrease of α values in patients who died èè prognostic prognostic 

PERIODOG.
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ConclusionsConclusions

/All the presented methods confirm the exponent H is 
a powerful indicator of the neural control activity on the 
heart over long time scales. 

/Further decomposition of H value (in short, medium and 
long time scales) could be used to better understand 
fractal properties of biological time series.

/Results confirm the presence of fractal and self-
similar characteristics in the HRV signal 

/Analysis of different groups with various 
cardiovascular diseases show H parameter significantly 
differentiate healthy vs. pathological subjects.


