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Abstract The paper is in two parts. Part I is A basis for a theory of computing with intelligent languages and intelligent agent tree computing. Part II presents the infinite stae agent  machine and the morphic ontotology and systems behavior. We present intelligent syntax and put forth intelligent tree rewriting. Multiagent signatures are defined and applied to define a basis for algebraic tree information-theoretic computing, presenting the concepts of tree information content and mutual information amongst trees. The formulation leads to theoretical results that provide the basis for algebraic tree rewrite computing with intelligent trees.  Intelligent tree completion theorems are presented, and techniques for generating initial intelligent models are developed with soundness and completeness theorems for their algebraic theories. Intelligent game trees are defined with applications to chess playing. Yet another frontier for research presented is that of information theoretic algebraic tree computation based on the various concepts of information content within trees with agent functions. The project is applicable to design scurity authentication principles,andmultiagentprotocol. Agent morphisms are defined and applied to preservation principles. AI agents and Mediators define the stages of conceptualization, design and implementation. Objects, message passing actions, and implementing agents are defined by syntactic constructs, with agents appearing as functions. By defining specified agent activators events and activity are computed for the AII agents. 
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1. INTRODUCTION
The term "agent" has been recently applied to refer to AI constructs that enable computation on behalf of an AI activity[20,34]. It also refers to computations that take place in an autonomous and continuous fashion, while considered a high-level activity, in the sense that its definition is hardware and software independent , thus implementation independent [6,11]. The present paper develops the techniques and theory of computing with trees on signatures that bear agent functions on trees. Our results for computability of initial models by subtree replacement systems [1,2] are developed further for as a foundation for computing on trees to be applicable to intelligent free tree computing.

Applications, as a theory of computing to artificial intelligence and object level programming are stated in brief. Further research areas are put forth at the concluding section pointing us to new methods and theories of computing. We present the concepts of intelligent syntax, intelligent languages , and their applications to AI and programming. Algebraic tree rewriting is defined on intelligent trees by presenting the concepts and definition of algebraic tree intelligence content and mutual tree intelligence content within a forest. At the forest suddenly a  tree information theoretic theorem presents itself,  defining a  correspondence  between intelligent tree rewriting and tree intelligence preservation. Next,  tree rewriting with intelligent trees is formalized by defining canonical intelligent initial models and results that intelligent algebraic tree rewriting leads to intelligent initial models. That is models for intelligent theories emerge from the algebraic intelligent tree rewriting.  Intelligent algebraic tree completion theorems and initial model rewrite theorems are put forth for intelligent trees. To bring the techniques to a climax a soundness and completeness theorem is proved for intelligent tree rewriting as a formal algebraic and model-theoretic computing theory. 

2. COMPUTING ON TREES
2.1 RECENT VIEWS 
In order to present some motivation for the methods proposed certain model-theoretic concepts are reviewed and some new techniques are presented. The Henkin style proof for Godel's completeness theorem is implemented by defining a model directly from the syntax of theories[21]. A model is defined by putting terms that are provably equal into equivalence classes, then defining a free structure on the equivalence classes. The computing enterprise requires more general techniques of model construction and extension, since it has to accommodate dynamically changing world descriptions and theories. The models to be defined are for complex computing phenomena, for which we define generalized diagrams. The techniques in [3,4,7 ] for model building as applied to the problem of AI reasoning allows us to build and extend models through diagrams. This required us to focus attention on generalized diagrams for models  We had invented G-diagrams[3,4,7,8] to build models with a minimal family of generalized Skolem functions. The minimal set of function symbols is the set with which a model can be inductively defined. We focus our attention on such models, since they are Initial and computable [1,2,15].

The G-diagram methods allowed us to formulate AI world descriptions, theories, and models in a minimal computable manner. Thus models and proofs for AI and computing problems can be characterized by models computable by a set of functions. This allows us to program with objects and functions "running" on G-diagrams. To allude to our AI planning techniques as an example, the planning process at each stage can make use of GF-diagrams[7,8], G-diagrams with free Skolemized trees, by taking the free interpretation, as tree-rewrite computations for the possible proof trees that correspond to each goal satisfiability. Suppose there are some basic Skolem functions f1,...,fn that define a G-diagram. During planning or proof tree generation, a set of Skolem functions g1,...,gn, could be introduced. While defining such free proof trees, a set of congruence relations relates the g's to the f's. The proofs can make use of the congruence relations to reduce trees, or carry out proofs by tree rewriting. These directions for research were begun by this author in [1,7]. 

2.2 ALGEBRAIC TREE COMPUTATION
The computing and reasoning enterprise require more general techniques of model construction and extension, since it has to accommodate dynamically changing world descriptions and theories. The techniques in [4,7] for model building as applied to the problem of AI reasoning allows us to build and extend models through diagrams. This requires us to focus on the notion of generalized diagram. A technical example of algebraic models defined from syntax had appeared in defining initial algebras for equational theories of data types [10,13] and our research in [2,11]. In such direction for computing models of equational theories of computing problems are presented by a pair (SYMBOL 83 \f "Symbol",E), where SYMBOL 83 \f "Symbol" is a signature (of many sorts, for a sort set S) [10,13] and E a set of SYMBOL 83 \f "Symbol"-equations.  Let T<SYMBOL 83 \f "Symbol"> be the free tree word algebra of signature SYMBOL 83 \f "Symbol".  The quotient of T<SYMBOL 83 \f "Symbol">, the word algebra of signature SYMBOL 83 \f "Symbol", with respect to the SYMBOL 83 \f "Symbol"-congruence relation generated by E, will be denoted by T<SYMBOL 83 \f "Symbol",E>, or T<P> for presentation P. T<P> is the "initial" model of the presentation P. The SYMBOL 83 \f "Symbol"-congruence relation will be denoted by (P. One representation of of T(P) which is nice in practice consists of an algebra of the canonical representations of the congruence classes. This is a special case of generalized standard models defined here.  In what follows g t1...tn denotes the formal string obtained by applying the operation symbol g in SYMBOL 83 \f "Symbol" to an n-tuple t of arity corresponding to the signature of g. Furthermore, gC denotes the function corresponding to the symbol g in the algebra C. We present some definitions from our papers [1,2,11] that allow us to define standard models of theories that are SYMBOL 83 \f "Symbol"-CTA's. The standard models are significant for tree computational theories that we had presented in [1,2] and the intelligent tree computation theories developed by the present paper. We apply generic diagrams, definitions 2.5 and  2.6  to define canonical standard models in the same snese as set theory. This definitions are basic to sets and in defining induction for abstract recursion and inductive definitions. We had put forth variants of it with axiomatizations in [15,17]. The definition were put forth by the present author [17,11] around 1982 for the computability problems of initial models.

2.2 G-diagrams for Initial Models
The G-diagrams for models [4,7,8] are diagrams in which the elements of the structure are all represented by a minimal set of function symbols and constants, such that it is sufficient to define the truth of formulas only for the terms generated by the minimal set of functions and constant symbols. Such assignment implicitly defines the diagram. This allows us to define a canonical model of a theory in terms of a minimal family of function symbols. The minimal set of functions that define a G-diagram are those with which a standard model could be defined by a monomorphic pair.Formal definition of diagrams are stated here, generalized to G-diagrams, and applied in the sections to follow. 

Definition 2.3 Let M be a structure for a language L, call a subset X of M a generating set for M if no proper substructure of M contains X,i.e. if Mis the closure of X U {c(M): c is a constant symbol of L}. An assignment of constants to M is a pair <A,G>, where A is an infinite set of constant symbols in L and G: A SYMBOL 174 \f "Symbol"M, such that  {G(a): a in A} is a set of generators for M. Interpreting a by g(a), every element of M is denoted by at least one closed term of L(A). For a fixed assignment  <A,G> of constants to M, the diagram of M, D<A,G>(M) is the set of basic (atomic and negated atomic) sentences of L(A) true in M. (Note that L(A) is L enriched with set A of constant symbols.) (
Definition 2.4 A G-diagram for a structure M is a diagram D<A,G>, such that the G in definition 2.5 has a proper definition by specific functions. (
Thus initial standard models are models definable from their G-diagrams. Further practical and the theoretical characterization of models by their G-diagrams are presented by this author in [7]. This builds the basis for some forthcoming formulations that follow, and the tree computation theories that we had put forth in [2,11].  Methods of constructing initial models by algebraic tree rewriting for the intelligent languages is to be developed from our approach in [1,2]. We showed how initial algebras can be defined by subtree replacement and tree rewriting [1,2,11].  Our papers in 1979 pointed out the importance of specific signatures in computational characterization of initial models, and sufficient conditions for constructibility. These are the minimal set of functions that by forming a monomorphic pair with the base set, bring forth an initial model by forming the free trees that define it Thus an initial free model is formed. The models might be obtained by applying algebraic subtree replacement systems. The G-diagram for the model is also defined from the same free trees. The conditions of the theorems are what you expect them to be: that canonical subset be closed under constructor operations, and that operations outside the constructor signature on canonical terms yield canonical terms.

3. Intelligent Languages, and Models

3.1 Intelligent Syntax

By an intelligent language we intend a language with syntactic onstructs that allow function symbols and corresponding objects, such that the function symbols are implemented by computing agents in the sense defined by this author in (Nourani 1993c,96a). Sentential logic is the standard formal language applied when defining basic models. The language ( is a set of sentence symbol closed by finite application of negation and conjunction to sentence symbols. Once quantifier logical symbols are added to the language, the language of first order logic can be defined. A Model ( for ( is a structure with a set A .

There are structures defined for ( such that for each constant symbol in the language there corresponds a constant in A. For each function symbol in the language there is a function defined on A; and for each relation symbol in the language there is a relation defined on A. For the algebraic theories we are defining for intelligent tree computing in the forthcoming sections the language is defined from signatures as in the logical language is the language of many-sorted equational logic. The signature defines the language ( by specifying the function symbols' arities. The model is a structure defined on a many-sorted algebra consisting of S-indexed sets for S a set of sorts. By an intelligent language we intend a language with syntactic constructs that allow function symbols and corresponding objects, such that the function symbols are implemented by computing agents. A set of function symbols in the language, referred to by AF, is the set modeled in the computing world by AI Agents with across and/or over board capability. Thus the language ( defined by the signature has designated function symbols called AF. The AF function symbols define signatures which have specific message paths defined for carrying context around an otherwise context free abstract syntax. A set of function symbols in the language, referred to by AF, are agents with nontrivial capability. The boards, message passing actions, and implementing agents are defined by syntactic constructs, with agents appearing as functions. The computation is expressed by an abstract language that is capable of specifying modules, agents, and their communications.

We have put together the AI concepts with syntactic constructs that could run on the tree computing theories we are presenting in brief. We have to define how the syntactic trees involving functions from the AF are to be represented by algebraic tree rewriting on trees. This is the subject of the next section, where free intelligent trees are defined. An important technical point is that the for agents there are function names on trees.

Definition 3.5 We say that a signature SYMBOL 83 \f "Symbol" is intelligent iff it has intelligent function symbols. We say that a language has intelligent syntax if the syntax is defined on an intelligent signature. (
Definition 3.6 A language L is said to be an intelligent language iff L is defined from an intelligent syntax. (
3.2 Abstract Intelligent Syntax 

It is essential to the formulation of computations on intelligent trees and the notion of congruence that we define tree intelligence content. A reason is that there could be loss of tree intelligence content when tree rewriting because not all intelligent functions are required to be mutually informable. Theories are presented by axioms that define them and it is difficult to keep track of what equations not to apply when proving properties.  We already have presented the mathematics that allows us to order trees by abstract model theory and set theory for tree comptations [1,14,22] What we have to define, however, is some computational formulation of intelligence content such that it applies to the present method of computability on trees. Once that formulation is presented, we could start decorating the trees with it and define computation on intelligent trees. It would be nice to view the problem form the stand point of an example. The example of intelligent languages we could present have <O,A,R> triples as control structures. The A's have operations that also consist of agent message passing. The functions in AFS are the agent functions capable of message passing. The O refers to the set of objects and R the realtions defining the effect of A's on objects. Amongst the functions in AFS only some interact by message passing. What's worse the functions could affect objects in ways that affect the intelligence content of a tree. There you are: the tree congruence definition thus is more complex for intelligent languages than those of ordinary syntax trees. Let us define tree intelligence content for the present formulation.

Definition 3.7  We say that a function f is an string function, iff there is no message passing or information exchange except onto the object that is at the range set for f, reading parameters visible at each object. Otherwise, f is said to be a splurge function. We refer to them by string and splurge functions when there is no ambiguity.

Remark: Nullary functions are string functions.

Definition 3.8 The tree intelligence degree, TID, is defined by induction on 

tree structures:

(0) the intelligence content of a constant symbol function f is f;

(i)  for a string function f, and tree f(t1,...,tn) the TID is defined by 

     U TID (ti::f) , where (ti::f) refers to a subtree of ti visible to f;

(ii) for a splurge function f, TID is defined by U TID (f:ti), where f:ti

refers to the tree resulting from ti upon information exchange by f. (
The methods of object level programming are implicit in the above definition. For example, the concept of a subtree being visible to a function refers to encapsulation methods. The theorem below formalizes these points, while we defer the reader to some subsequent sections for methods of dealing with this problem. Thus out of the forest of intelligent trees, not to overstate the significance, there appears a sudden information theoretic rewrite theorem. 

Theorem 3.1 Trees on intelligent syntax, rewritten guided only by what

equations state, could cause a loss of intelligence content to the resultign set of trees.

Proof  Trees with AFS functions by definition affect TID, thus a rewrite from a tree formed by a function g in AFS to a tree that does not have g as a function symbol causes an intelligence loss. For example, a harmless looking equation of the form f-1(f(t)) = t, where f is in AFS causes an intelligence loss to the resulting set of trees,  from the left hand to the right hand tree t. (
Thus computing with arbitrary rewriting is irreversible and at times nonterminating. And we our facing a computing wilderness at the present time. Let us now define computing with intelligent equational theories. 

Definition 3.9  We say that an equational theory T of signature ISYMBOL 83 \f "Symbol" is an intelligent ISYMBOL 83 \f "Symbol" theory iff for every proof step involving tree rewriting, the TID is preserved. We state T<IST> |- t=t' when T is an ISYMBOL 83 \f "Symbol" theory. (
Definition 3.10 We say that an equational theory T is intelligent, iff T has an intelligent signature ISYMBOL 83 \f "Symbol",and axioms E, with ISYMBOL 83 \f "Symbol" its intelligent signature. A.proof of t=t' in an intelligent equational theory T is a finite sequence b of ISYMBOL 83 \f "Symbol" -equations ending in t=t' such that if q=q' is in b, then either q=q' in E, or q=q' is derived from 0 or more previous equations in E by one application of the rules of inference. Write T <IST>|-  t=t' for "T p proves t=t' by intelligent algebraic subtree replacement system." (
By definition of such theories proofs only allow tree rewrites that preserve TID across a rule. These definitions now may be applied to prove the theorems, set up the foundations for what could make intelligent tree rewriting TID, and define intelligent tree computation. Thus the essence of intelligent trees will not be lost while rewriting. Next, we define a computing agent function's intelligence content from the above definition. This is not as easy as it seems and it is a matter of the model of computation applied rather than a definition inherent to intelligent syntax. Let me make it a function of intelligent syntax only, because we are to stay with abstract model theory and build models from abstract syntax. The definition depends on the properties of intelligent trees, to be defined in the following section.

4. INTELLIGENT TREES

4.1 EMBEDDING INTELLIGENCE 

Viewing the methods of computation on trees presented in the sections above we define intelligent trees here. 

Definition 4.11 A tree defined from an arbitrary signature SYMBOL 83 \f "Symbol" is intelligent iff there is at least one function symbol g in SYMBOL 83 \f "Symbol" such that g is a member of the set of intelligent functions AFS, and g is a function symbol that appears on the tree. (
Definition 4.12 We define an intelligent SYMBOL 83 \f "Symbol"-equation, abbreviate by ISYMBOL 83 \f "Symbol"-equation, to be a SYMBOL 83 \f "Symbol"-equation on intelligent SYMBOL 83 \f "Symbol"-terms. An ISYMBOL 83 \f "Symbol"  congruence is an SYMBOL 83 \f "Symbol" -congruence with the following conditions:

(i) the congruence preserves ISYMBOL 83 \f "Symbol"  equations;

(ii) the congruence preserves computing agents intelligence content of

SYMBOL 83 \f "Symbol"-trees. (
Definition 4.13 The mutual intelligence content, MIC, of an intelligent function f,

a member of the intelligent signature AFS, is determined by the ISYMBOL 83 \f "Symbol" -congruence on T<AFS> relating the functions in AFS. It is union of the TID over the trees that are a member of the congruence class of the free T<AFS> with respect to the ISYMBOL 83 \f "Symbol" -congruence defined on the T<SYMBOL 83 \f "Symbol" ,w>, where w is the arity of f.

Definition 4.14  Let SYMBOL 83 \f "Symbol" be an intelligent signature. Then a canonical term ISYMBOL 83 \f "Symbol"-algebra (ISYMBOL 83 \f "Symbol"-CTA) is a SYMBOL 83 \f "Symbol"-algebra C such that 

(1) |C| is a subset of T<SYMBOL 83 \f "Symbol"> as S-indexed families

(2) gt1...tn in C  implies ti's are in C and;

     gC (t1,...,tn) = gt1...tn, where gC refer to the operation in algerba C correponding to the function symbol g,

For constant symbols (2) must hold as well, with gC = g.

(3) gt1...tn in T<AFS> implies ti's in C  and

     gC(t1,...,tn) = gt1...tn; for constant symbols it must hold as gC=g.

Definition 4.15 Let C be an ISYMBOL 83 \f "Symbol"-algebra. Let P = (SYMBOL 83 \f "Symbol",E) be a presentation. Then C is SYMBOL 83 \f "Symbol"-isomorphic to T<P>, iff 

(i) C satisfies E;

(ii) gC (t1,...,tn) (P g.t1...tn

(iii) gC(t1,...,tn) (P gt1...tn, with gt1...tn in T<AFS> whenever ti's are in T<AFS> and gC is in AFS.

Note: (ii and iii) must also hold for constants with g.C = g; ( refers to the ISYMBOL 83 \f "Symbol"-congruence generated by E;.

4.2 INTELLIGENT REWRITE MODELS
Term rewrite model theorems for intelligent syntax

Lemma 4.1 Let  R be a set of ISYMBOL 83 \f "Symbol"-equations. Let R be the set of algebraic

ISYMBOL 83 \f "Symbol"-rewrite rules obtained by considering each equation l =r in Ro as a rule

l => r, then for t,t' in T<SYMBOL 83 \f "Symbol" >, t => * t' iff T(R) <IST>|- t = t'. (
Recall that a presentation (SYMBOL 83 \f "Symbol",E) defined an equational theory of signature SYMBOL 83 \f "Symbol" and axioms E. Next we show how canonical models can be constructed by algebraic subtree replacement system. A definition and what we have done thus far [1,2] gets us to where we want to go: the canonical algebraic intelligent term rewriting theorems  SYMBOL 83 \f "Symbol" <s1,,,sn,s> denotes the part of the signature with operations of arity (s1,...,sn) and coarity s, with Csi the carrier of algebra C of sort si. FTP refers to finite termination property and UTP to the unique termination property of tree rewriting.

Definition 4.7 Let R be a convergent set of SYMBOL 83 \f "Symbol"-rewrite rules, i.e. T <SYMBOL 83 \f "Symbol",R> h as the FTP and UTP properties, let [t] denote the R-reduced form of t in T<SYMBOL 83 \f "Symbol">. Let |C| be a subset of |T<SYMBOL 83 \f "Symbol">|, for g in SYMBOL 83 \f "Symbol"  <s1...sn,s> and ti in C si, define gC (t1,...,tn) = [g(t1,...,tn)]. If this always lies in C, then C becomes a ISYMBOL 83 \f "Symbol"-algebra, and we say that (C,R) represents a ISYMBOL 83 \f "Symbol"-algebra A iff the ISYMBOL 83 \f "Symbol"-algebra so defined by (C,R) is ISYMBOL 83 \f "Symbol"-isomorphic to A. (
The following intermediate theorem gives sufficient conditions for constructibility of an initial model for an ISYMBOL 83 \f "Symbol"  equational presentation. It is the mathematical justification for the proposition that initial models with intelligent signature can be automatically implemented (constructed) by algebraic subtree replacement systems. The normal forms are defined by a minimal set of functions that are Skolem functions or type constructors. Thus we have the following Canonical Intelligent Model Theorems. The theorems provide conditions for automatic implementation by intelligent tree rewriting to initial models for programming with objects.

Theorem 4.2 Let SYMBOL 83 \f "Symbol"  be an S-sorted signature, R a convergent set of SYMBOL 83 \f "Symbol"-rewrite rules. Let |C| be a subset of |T<SYMBOL 83 \f "Symbol">|. Define gC(t1,...,tn) = [g(t1,...,tn)]. Furthermore, assume that [f] = f for all f in SYMBOL 83 \f "Symbol"(l,s) If there exists a subset CF of SYMBOL 83 \f "Symbol" such that SYMBOL 83 \f "Symbol" such that |C| = |T<CF>| and the following conditions are satisfied for g with nontrivial arity (s1,...,sn):

1. gC(t1,...,tn) in C whenever ti in C,  for ti of sort si;

2. for all g , ti in C, and g in CF,

gC(t1,...,tn) = gt1,...tn; in particular for a constant g, gC = g;

3. for g in SYMBOL 83 \f "Symbol" - CF , gC(t1,...,tn)=t, for some t in T<CF>;

4. for g in AFS , gC(t1,...,tn) = t for some t in T<CF  SYMBOL 199 \f "Symbol" AFS>

Then : (i) C is a canonical term ISYMBOL 83 \f "Symbol"-algebra; and

          (ii) (C,R) represents T <SYMBOL 83 \f "Symbol",R>, R is R viewed as a set of ISYMBOL 83 \f "Symbol"
          equations.

Proof First prove by induction on complexity of terms that (C,R) defines a SYMBOL 83 \f "Symbol"-algebra sturcture on C. The basis is given by the assumption that constant symbols are trivially R-reduced, because we define SYMBOL 115 \f "Symbol" (C). = [SYMBOL 115 \f "Symbol"] in C, for each SYMBOL 115 \f "Symbol" of 0 arity. Now define SYMBOL 115 \f "Symbol"<C> (t1,...,tn) = [SYMBOL 115 \f "Symbol"(t1,...tn)], where [t] denotes the R-reduced form of T. It is readily seen from the definitions that (C,R ) defines a SYMBOL 83 \f "Symbol"-algebra. Now since each t in C is R-reduced by (1) and (2) we have  SYMBOL 115 \f "Symbol"<C>(t1,...,tn) = SYMBOL 115 \f "Symbol" (t1,...,tn), where SYMBOL 115 \f "Symbol" is in CF. We have already seen that for constant symbols SYMBOL 115 \f "Symbol" , SYMBOL 115 \f "Symbol" <C> = SYMBOL 115 \f "Symbol" . By (3) and (4) the trees formed with function symbols apart form CF are reduced to CF terms that are AFS preserving. Thus (C,R) defines a canonical term ISYMBOL 83 \f "Symbol"-algebra C. This gives us (i). To show that C is isomorphic to T<SYMBOL 83 \f "Symbol",R> we apply a the CTA represetation theorem for ISYMBOL 83 \f "Symbol" presentations.C satisifes R because all t in C are R-reduced, and the SYMBOL 83 \f "Symbol"-algebra structure on C is defined by R. Furthermore,  SYMBOL 115 \f "Symbol"<C>(t1,...,tn) <ISYMBOL 83 \f "Symbol">( [SYMBOL 115 \f "Symbol" (t1,...,tn)] - because SYMBOL 115 \f "Symbol" <C>(t1,...,tn) = [SYMBOL 115 \f "Symbol" (t1,...,tn)] and since C is a CTA SYMBOL 83 \f "Symbol"-algebra SYMBOL 115 \f "Symbol" (t1,...,tn) = SYMBOL 115 \f "Symbol" t1...tn, therefore,

SYMBOL 115 \f "Symbol" <C> (t1,...,tn) = [SYMBOL 115 \f "Symbol" t1...tn], while preserving AFS terms. Thus we have the conditions for CTA representation. By theorem 4.6, C is isomorphic to T<SYMBOL 83 \f "Symbol",R>.  (
Theorem 4.9 Let SYMBOL 83 \f "Symbol" be an S-sorted signature, and R a convergent set of rewrite rules such that [g] = g. Define a SYMBOL 83 \f "Symbol"-algebra structure C on T<SYMBOL 83 \f "Symbol"> by gC(t1,...,tn) = [g(t1,...,tn)]. Let C* be the smallest sub ISYMBOL 83 \f "Symbol"-algebra of C Then C is a canonical term algebra consisting of R normal forms and (C,R) represents T <SYMBOL 83 \f "Symbol",R>.

Proof   [Similar to theorem 4.8's proof] (
Thus an initial free model with signature ISYMBOL 83 \f "Symbol" is formed. The model can be implemented by algebraic subtree replacement systems.

Theorem 4.10 (The MIC Theorem) Let P be a presentation with intelligent  signature ISYMBOL 83 \f "Symbol" for a computing theory T with intelligent syntax trees. Then T is

(a) A Sound logical theory iff every axiom or proof rule in T is TID preserving;

(b) A Complete logical theory iff there is a monomorphic pair defining a canonical set C and a G-diagram, such that C with R represents T<ISYMBOL 83 \f "Symbol",R>, where R is the set R of axioms for P viewed as ISYMBOL 83 \f "Symbol"-rewrite rules. 

Proof   By Definition of MIC , theorems above, completeness

theorems for the first order logic, and completeness of induction for algebraic

structures [17,11]. (
This should be referred to as the logical foundations MIC theorem for

intelligent syntax algebraic theories. We have not begun yet to present MIC

theorems for the information theoretic properties of the present tree

computing theories. At some further forthcoming research we might take a

brief walk in the consequent fields and present new areas of research for

computing. There are further MIC theorems that are relevant to computing and

the model theory of computing with intelligent trees. Some of these results

are to appear in our forthcoming research entitled Double Vision Computing [23].

5. COMPUTING ON INTELLIGENT TREES

We present a brief overview of the applications of our methods to AI planning problems[4,6,7] ,as yet another exciting research area. In our methods for planning , the planning process at each stage can make use of GF-diagram by taking the free interpretation, as tree-rewrite computations of the possible proof trees that correspond to each goal satisfiability [4,7]. We have proposed [7] methods that can be applied to planning with GF-diagrams with applications to current directions in AI for multi agent computing appears in [26] . The techniques can be applied to implement planning and reasoning for AI applications. While planning with GF-diagrams that part of the plan that involves free Skolemized trees is carried along with the proof tree for a plan goal. The idea is that if the free proof tree is constructed then the plan has a model in which the goals are satisfied. The model is the initial model of the AI world for which the free skolemized trees were constructed[1,7,8]. How are these applications affected by our intelligent language formulation is to be addressed by our forthcoming papers. The present formulation of computing has obvious applications to multi agent AI computing. 

6. Intelligent Game Trees

A Multiagent chess playing paradigm is defined. By defining  spheres on boards and strength degrees for pieces winning strategies on games can be defined. The new Intelligent Tree Computing theories we have defined  can be applied to present precise  strategies and prove theorems on games. The present computational model for multiagent system provides a formal basis for single agent moves. For each agent function there is a way to determine mutual information content with respect to the decision trees  connected to it.

We define a basis for intelligent game tree computing, presenting the concepts of tree information content and mutual information amongst trees. Let us view an abstract chess player as we defined [25] by a pair <P,B>. The player P makes its moves based on the board B it views. <P,B> might view chess as if the pieces on the board had come alive and were autonomous agents communicating by messages,  as if it were Alice in Wonderland.  For each chess piece a designating agent is defined. To have an agent model we must define the internal structure of agents as well as their external behavior. Instead of modeling the game as if it were played by something external to the board, we view it all as if <P,B> is an autonomous extension of a human player's mind. For each piece p we define its sphere S(p). S(p) is a defined by the board state from <P,B> and its situation defined by its location on the board the threat set, and the capture set. For each piece we define an activating agent. The muliagent morphisms and their ontologies are further defined by our [22].

6.2 Intelligent Game Trees and And/Or Trees

The chess game trees can be defined by AND/OR trees(27). For the intelligent game trees and the problem solving techniques defined, the same model can be applied to the game trees in the sense of two person games and to the state space from the single agent view. The two person game tree is obtained from the intelligent tree model, as is the state space tree for agents.  To obtain the two-person game tree the cross-board-coboard agent computation is depicted on a tree. Whereas the sate-space trees for each agent is determined by the computation sequence on its side of the board-coboard. We have defined an abstract notion of information on intelligent game trees corresponding to what Shannon might have defined for games. The way the intelligent game trees are defined, a tree information theoretic theorem presents itself, corresponding intelligent tree rewriting to tree information content preservation.

6.3 Intelligent AND/OR Trees and Search

AND/OR trees Nilsson[27] are game trees defined to solve a game from a player's stand point.

                                                 n              an OR node.

                                             /   |  \    

                                                 m           an AND node

                                           /__|__\

                                         /      |      \

Formally a node problem is said to be solved if one of the following conditions hold.

1. The node is the set of terminal nodes (primitive problem- the node has no successor).

2. The node has AND nodes as successors and the successors are solved.

3. The node has OR nodes as successors and any one of the successors is solved.

A solution to the original problem is given by the subgraph of AND/OR graph sufficient to show that the node is solved. A program which can play a theoretically perfect game would have task like searching and AND/OR tree for a solution to a one person problem to a two-person game.  An intelligent AND/OR tree is and AND/OR tree where the tree branches are intelligent trees. The branches compute a Boolean function via agents. The Boolean function is what might satisfy a goal formula on the tree. An intelligent AND/OR tree is solved iff the corresponding Boolean functions solve the AND/OR trees named by intelligent functions on the trees. Thus node m might be f(a1,a2,a3) & g(b1,b2), where f and g are Boolean functions of three and two variables, respectively, and ai's and bi's are Boolean valued agents satisfying goal formulas for f and g.

                                               g       is on OR agent

                                           /  |  \

                                               |

                                          b1 |  b2

                                                 f                 f is an AND agent

                                           /__|__\

                                         /      |      \

                                       a1      a2     a3

6.4  Intelligent Game Trees and the WWW 

When it comes to Intelligent Interfaces to the WWW the basic applications for intelligent game trees is in managing to acquire and complete a critical business transaction at minimal time when there are agents competing on the WWW. Intelligent game tree strategies are not always based on ordinary game principles. Without further investment it is not prudent to elaborate on the details here.  Starting with basic authentication as presented in section 2.3, where authentication is an abstract term referring to matching signatures to some specified signatures, with authentication encoded onto the signatures. Let us state a proposition as a basis to WWW intelligent computing. The proposition may be proved from what have stated thus far.

Authentication Proposition  WWW intelligent interface computing incorporates basic agent authentication via intelligent tree signatures.  

At the present stage it might sound ludicrous to think agents play games at WWW, but AI computing is on the brinck onto agent computing and marketing via virtual communities. 

7. CONCLUDING COMMENTS
What is accomplished thus far the basis for a theory of artificial intelligence computing with intelligent languages and  intelligent tree rewriting is presented.    We have presented intelligent syntax, intelligent trees and computing with intelligent tree rewriting. We have further defined a basis for algebraic tree information-theoretic computing. Further mathematical foundations are defined by [2]. Last, but not the least, we have soundness and completeness theorems for the algebraic theory of intelligent trees. Intelligent game trees and muliagnet games are presnted in brief. We have applied the formulation to computing with intelligent functions alluding to forthcoming application areas in AI. Applications to DAI appears in [18]. Further, there is the Double Vision Computing techniques [22]. It presents new formulations of computing with intelligent syntax for cognitive applications.
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Part II


Heterogeneous Computing, 
and Infinite State  Agent Machines  

Cyrus. F. Nourani

Abstract  Design techniques with software agents and  Abstract Intelligent Implementations are presented.  Agent morphisms are defined and applied to preservation principles. The object level definitions for individual modules can be automatically programmed by source abstract syntax tree to target abstract syntax tree morphisms. AII techniques are applied to define an Ontology Preservation Principle for Heterogeneous KB Design and implementation.  AI agents and Mediators define the stages of conceptualization, design and implementation. Multiagent implementations are applied to software design techniques, which incorporates object level nondeterministic knowledge learning and knowledge representation developed in [12]. Objects, message passing actions, and implementing agents are defined by syntactic constructs, with agents appearing as functions. By defining specified agent activators events and activity are computed for the AII agents. The proposed AII techniques provide a basis for an approach to automatic implementations from intelligent syntax trees. Mediators implementing objects and agents define interpretability. Intelligent fail-safe systems are formally defined. 
Keywords AII, Intelligent Trees, Agent/ Module Ontology Preservation Principle, Heterogeneous Data and Knowledge Engineering, KR, Mediators, Heterogeneous Software Engineering Agents, Interportability 

0. Introduction

A software design paradigm incorporating novel implementation techniques and a definition of abstract intelligent implementations (AII) are presented. Innovative techniques for design of knowledge bases and heterogeneous software systems with techniques for automated reasoning are put forth. The application areas include support for highly responsive planning. Intelligent implementation of software, i.e., the design and implementation by AII techniques is due to be an area of crucial importance. The AII techniques are being applied [8] gradually to the real problems encountered in fields such as intelligent systems, aerospace, robot design, and knowledge bases, abbreviated by KB. A basis for what we have called Artificial Algebras [2] has been written since the first version of AII was written in 1993. It is a preliminary theory for an algebra for intelligent trees and artificial intelligence. The mathematical foundations for software agents might call for algebras with varying carriers and functionality. AI systems might be defined by the stages of Conceptualization, Design, and Implementation. Each of the stages is to be approached in ways that minimize human error and enable the designed system to automatically recover from faults. The fault recovery issues are not the topic of this paper and are treated by this author in [12].  We design software with agents[10] via a methodology which commences with a knowledge acquisition phase, followed by a specification phase, and concluded by a system implementation phase. The present approach defines functional nondeterministic knowledge learning (Design_Agents), fault free system specification, and multiagent abstract implementations. Design_Agents is Flagrant Agent Computing by active agent learning, and includes exception knowledge as an essential component, as does system specification. The techniques are defined for designing heterogeneous software. System implementation is by independent concurrent computing agents. A pair of systems, each consisting, defines AI and software systems in the present paper of many computing agents. The two parts are mutually synchronized to enable fault and exception handling and recovery in an automatic manner [12]. Software agents are specific agents designed by a language that carry out specified tasks and define a software functionality. Most agents defined by our examples are software agents. In the space examples there, of course, implied hardware functionality specified. Objects are in the well-known sense of the word in object programming, abbreviated by OOP. However, our designs are with intelligent objects a concept we had invented since 1992. Its foundations has been developed and applied in out papers[1,9,12,22]. Ordinary objects consist of abstract data, perhaps encapsulation, and operations. Most recent programming techniques apply OOP in some form. Software engineering techniques with abstract data types have had OOP on their mind. IOOP [9] is a recent technique developed by the author combining AI and software agents with OOP.  For our project the modular programming concepts are combined with software agent computing, new IOOP constructs object-cobject pairs and kernels. Modules are aggregate objects with a specific functionality defined. Aggregate objects and their specified functions are defined by <module-comodule> pairs called kernels. A kernel consists of the minimal set of processes and objects that can be used as a basis for defining a computing activity. The term kernel is analogous to the terminology familiar in operating systems concepts, but is at a high level of abstraction with objects and functions encapsulated. A system is defined by a set of kernels, which can be programmed to function synchronous applying software agents. The analogy is a distributed computing environment with many computers on a net. Each kernel corresponds to a computer on the net. The muliagent AI concepts are the standard terms[10]. For the Intelligent Systems, the nomenclature, e.g. Facilitator, Mediator [3,17] is from standardization defined and agreed on at a conference in Colorado for the purpose in 1994-95[see 26]. Heterogeneous design with software agents dates back to the Nourani[1991-92] papers and addressed on a formal funding proposals the same years. The applied terminology is defined in our paper. The same conventions define heterogeneity to be the mismatch found in autonomously developed resources and services, ranges from platforms, operating systems, database systems and models, data representations, ontologys, semantics, and processing paradigms.

Level is a conceptual categorization, where objects at a lower level depend on their ancestors at a higher level. Ancestor is an object at a higher level, source of inheritable attributes. The root object is the ultimate ancestor. Ontology is a set of terms and relationships used in a domain, denoting concepts and objects, often ambiguous among domains. The techniques in [1,4,5] have started to be applied to the design of knowledge-based systems by the present project and [13]. The basis for a sound theoretical and practical methodology for designing AI software systems is emerging. The paper's structure is as follows. Section one defines the way mutiagent systems might be specified by software agents. Additional new concepts applied are <object-coobjects> and intelligent objects. There are illustrating examples. Section 2 combines the designs with abstract mediators and applies the current Intelligent Systems terms to define formal agent-based designs. Section three defines event-prompted agents. Section 4 defines multiagent systems designed with the techniques, instantiating facilitators and mediators by an example. Section 5 defines formal algebras for multiagent systems and defines formal implementation maps for the algebras. It further defines ontology algebras incorporating the Ontology Preservation Principle. Section 6 is an overview to the AIS synthesizer for multiagent software design. The paper is concluded by section 7.

1. Specifying Multiagent Systems

The hypotheses for the realization of systems in our project might appear "linear" steps of software engineering, however its linearity is no more stringent than the concept of modular design. It is the least we can demand from a design. In reality the design concept is highly nonlinear. The agents can be applied in ways which, compared to an ordinary software engineering design, appear highly nonfunctional and non-modular. From the software agent designer's viewpoint, however, there is modularity with artificial structures. Artificial structures [2] are implemented by agent morphisms. The process is thus includes loops amongst the phases in the software life cycle. The intelligent objects and modules, agents, facilitator and mediators leave many degrees of freedom to design. There are artificial loops in the design resembling aerobatics by high-speed airborne agents. The AI and software designer specifies the actions and operations from the informal specifications supplied by a “user.” The initial phase of the design of the proposed AII techniques is to present the design with Mediator [3,17], section 2. Abstract Specifications, where specifications are in the sense of [1,4,21]. Ontology algebras are defined at meta-data and meta-knowledge level. Intelligent tree computing theories [22] and artificial algerbas [2] can be applied to the theoretical development. Knowledge acquisition requires either interviewing an expert, brainstorming with a group of experts, or structuring one's thoughts if the specifier is the expert. For multiagent designs there are active learning agents and automatic learning. We present the notion of Functional Nondeterministic Knowledge Learning (Design_Agents) in [12]. Design_Agents is formulated to deal with the conceptualization stage and is being applied by the present project to define active learning by agents. Design_Agents requires the user to inform the specifier as to the domains that are to be expected, i.e. what objects there are and what the intended actions (operations) on the objects are, while fully defining such actions and operations. The actions could be in form of processes in a system. The relations amongst the objects and the operations (actions) can be expressed by algebras and clauses, which the specifier has to present. The usual view of a multi-agent systems might convey to an innocent AI designer that an agent has a local view of the environment, interacts with others and has generally partial beliefs (perhaps erroneous) about other agents. On the surface the Design_Agents specification techniques might appear as being rigid as to what the agents expect form other agents. The Design_Agents specification does not ask the agents be specified up to their learning and interaction potential. Design_Agents only defines what objects might be involved and what might start off an agent. It might further define what agents are functioning together. Thus specifications are triples <O,A,R> consisting of objects, actions and relations. Actions are operations or processes. The views of abstraction [1,4], object-level programming, and agent views of AI computation [12], are the important components of inter-play in the present paper. Design_Agents have some additional requirements to be put forth. The requirement is that each object to be defined has to have a dual definition in terms of the actions to be taken for flagrant agents, faults, exception and recovery. At the knowledge learning phase the expert is to state all exceptions to actions and what recovery and corrective actions are to be carried out. For each action on an object a dual action is to be supplied through Desig_Agents, such that a specifier can fully define the effect of the dual actions. As an illustration the following trivial example is presented. The design techniques do not imply asking the expert to state all the exceptions to actions. The exceptions naturally present themselves by the object-coobject concept. A coobject is an object defined with the same carriers as the object, but with a set of operations complementary to the object's operations carrying on an alternate symmetric Exception operations. In the figure let OPS denote operations, EXP denote exceptions. The last equations define the exception action. In the example there is a process (action) that is always checking the supply of Angelika coffee implementing the exception function. APs:= <A trivial example>, many robots appear at a critical entrance at once, necessitating FA activity. APs are computing events which activates an agent (see section 3).

Object:= Coffee_Constellation

OPS:= Serve_Coffee (Type,Table_no) | ......

Serve_Coffee (Spectacular_Brew,n) => Signal an available robot to fetch and serve (Spectacular_Brew,table n)

Exp:= Serve_Coffee (Angelika,Table_no) |...

Serve_coffee(Angelika,Table_no) => if out_of_Angelika notify Table_no;  

                                offer cookie <and make use of   

                                intelligent decision procedures to

                                offer alternatives>                            

The exception knowledge has to be acquired in every Case at the Design_Agents phase. The methods noted in [12] allow us to accomplish this in a systematic way. The following is an example mediator instantiation for the Stellar Robot Populated coffeeshop.
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In the figures above Mi's are objects; ai's are agents. The dotted lines are agent message paths. A specific super module appears as an <object-coobject> pair M.

2. The Formal Basis

The present approaches have a theoretical basis abbreviated in the following sections. We start with agents, define modules and algebras, and agent and module morphisms.

2.1 Agents 

Starting with what are called hysterectic agents (Genesereth&Nilsson 1987). A hysterectic agent has an internal state set I, which the agent can distinguish its membership. The agent can transit from each internal state to another in a single step. Actions by agents are based on I and board observations. There is an external state set S, modulated to a set T of distinguishable subsets from the observation viewpoint. An agent cannot distinguish states in the same partition defined by a congruence relation. A sensory function s :S ( T maps each state to the partition it belongs. Let A be a set of actions which can be performed by agents. A function action can be defined to characterize an agent activity action:T (A.  There is also a memory update function mem: I x T ( I. To define agent at arbitrary level of activity knowledge level agents are defined. All excess level detail is eliminated. In this abstraction an agent’s internal state consists entirely of a database of sentences and the agent’s actions are viewed as inferences based on its database. The action function for a knowledge level agent maps a database  and a state partition t into the action to be performed by an agent in a state with database  and observed state partition t.

action: Dx  T(  A

The update function database maps a state and a state partition t into a new internal database.

database: D x T ( D

A knowledge-level agent is an environment is an 8-tuple shown below. The set D in the tuple is an arbitrary set of predicate calculus databases, S is a set of external states, T is the set of partitions of S, A is a set of actions, see is a function from S into T, do is a function from A  S into S, database is a function from D x T into D, and action is a function from D x T into A.  <D,S,T,A,see,do,database,action>

Knowledge level agents are hysterectic agents.

2.3 Agent Morphisms and Module Preservation

Starting with what we called hysterectic agents (Genesereth&Nilsson 1987). A hysterectic agent has an internal state set I, which the agent can distinguish its membership. The agent can transit from each internal state to another in a single step. Actions by hysterectic agents are based on I and   observations. The observations are from problem solving boards [1,8,33], messages to the agent, and a database. There is an external state set S, modulated to a set T of distinguishable subsets from the observation view point. An agent cannot distinguish states in the same partition defined by a problem congruence relation. A sensory function s :S  T maps each state to the partition it belongs. Let A be a set of actions which can be performed by agents. A function action can be defined to characterize an agent activity action:T ( A.  There is also a memory update function. A hysterectic agent HA defined by a sextuple <I,S,T,A,s,d,internal,action> where d is a function form A x S ( S and internal I x T ( I. Let HA be a set of sextuples defining a hysterectic agents. Define HA morphims by a family of functions defined component-wise on the sextuple above. 

Definition 2.1  A HA morphism is a function F : HA ( HA’ defined component-wise by F[i]: I(   I’; F[S]: S ( S’, F[T]: T (T’, F[A]: A (A’; F[s]: S( T’; F[d]: A’ x S’ ( S’ and F[internal]: I’ x T’( I’. (
Definition 2.1 implies F defines a new hysterectic agents from HA by a morphism. The definition might become further transparent in view of definitions is section 2.4. Component-wise definitions for a morphism might be viewed as functions on a multi-sorted signature carrying the sextuple. Similar morphisms can be defined for knowledge level agents defined in section 2.1 which we can refer to by KL-morphisms.
2.4 Agents, Modules, and Algebras

The computing enterprise requires more general techniques of model construction and extension, since it has to accommodate dynamically changing world descriptions and theories. The models to be defined are for complex computing phenomena, for which we define generalized diagrams. The techniques in (Nourani 1983,87,91,94a) for model building as applied to the problem of AI reasoning allows us to build and extend models through diagrams. It required us to define the notion of generalized diagram. We had invented G-diagrams(Nourani 1987,91,93b,94a) to build models with prespecified  generalized Skolem functions. The specific minimal set of function symbols is the set with which a model fro a knowledge base can be defined. The G-diagram techniques allowed us to formulate AI worlds, KB’s  in a minimal computable manner to be applied to agent computation. The techniques in (Nourani 1991,94a) for model building as applied to the problem of AI reasoning allows us to build and extend models through
diagrams. A technical example of algebraic models defined from syntax had appeared in defining initial algebras for equational theories of data types (ADJ 1973) and our research in (Nilsson 1969). In such direction for computing models of equational theories of computing problems are presented by a pair (,E), where  is a signature (of many sorts, for a sort set S) (ADJ 1973,Nourani 1995a) and E a set of -equations. Signatures are in the same sense as key signatures in music.

Definition 2.2 An s-sorted signature or operator domain  is a family  <w,s> of sets, f or s  S and w  S* (where S* is the set of all finite strings from S , including the empty string ). call f  <w,s> and operation symbol of rank w,s; of arity w, and of sort s.(
The figure depicts an S-sorted signature from ADJ[27].
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Figure1- The sorts si for data carriers on which a function with range data carrier of sort s is defined. 

We apply multi-sorted algebras via definition 2.3 to multiagent systems. 

Definition 2.3 Let  be an S-sorted signatures. A -algebra A consists of a set As for each s S (called the carrier if A of sort s) and a function 

<A>: As1 x As2 x....xAsn   As for each   <w,s>, with w=s1s2...sn (called the operation named by ). For   <,s>, A  As, i,e the (set of names) of constants of sort s.   ( 

Definition 2.4 If A and B are  algebras, a -homomorphism h:A  B is a family of functions <hs:As  Bs> s in S  that preserve the operations, i.e. that satisfy

(h0) For   <,s>, the hs(A) =   B;

(h1) If ,  For   <w,s>, with w=s1s2...sn and <a1,...,an>  As1 x As2 x....xAsn, then hs[A(a1,...,an)] = B(hs(a1),...,hs(an)).    (
For an intelligent signature I, let T<I> be the free tree word algebra of signature I. The quotient of T<I>, the word algebra of signature , with respect to the I-congruence relation generated by a set of equations E, will be denoted by T<I,E>, or T<P> for presentation P.

2.5 Agents, Languages,  and Models 

By an intelligent language we intend a language with syntactic constructs that allow function symbols and corresponding objects, such that the function symbols are implemented by computing agents in the sense defined by this author in (Nourani 1993c, 96a). Sentential logic is the standard formal language applied when defining basic models. The language  is a set of sentence symbol closed by finite application of negation and conjunction to sentence symbols. Once quantifier logical symbols are added to the language, the language of first order logic can be defined. A Model  for  is a structure with a set A. There are structures defined for  such that for each constant symbol in the language there corresponds a constant in A. For each function symbol in the language there is a function defined on A; and for each relation symbol in the language there is a relation defined on A. For the algebraic theories we are defining for intelligent tree computing in the forthcoming sections the language is defined from signatures as in the logical language is the language of many-sorted equational logic. The signature defines the language  by specifying the function symbols' arities. The model is a structure defined on a many-sorted algebra consisting of S-indexed sets for S a set of sorts. By an intelligent language we intend a language with syntactic constructs that allow function symbols and corresponding objects, such that the function symbols are implemented by computing agents. A set of function symbols in the language, referred to by AF, is the set modeled in the computing world by AI Agents with across and/or over board capability. Thus the language  defined by the signature has designated function symbols called AF. The AF function symbols define signatures which have specific message paths defined for carrying context around an otherwise context free abstract syntax. A set of function symbols in the language, referred to by AF, are agents with nontrivial capability. The boards, message passing actions, and implementing agents are defined by syntactic constructs, with agents appearing as functions. The computation is expressed by an abstract language that is capable of specifying modules, agents, and their communications. We have put together the AI concepts with syntactic constructs that could run on the tree computing theories we are presenting in brief. We have to define how the syntactic trees involving functions from the AF are to be represented by algebraic tree rewriting on trees. This is the subject of the next section, where free intelligent trees are defined. An important technical point is that the for agents there are function names on trees.

Definition 2.5  We say that a signature  is intelligent iff it has intelligent function symbols. We say that a language has intelligent syntax if the syntax is defined on an intelligent signature (
Definition 2.6 A language L is said to be an intelligent language iff L is defined from an intelligent syntax .(
The example of intelligent languages [5] we could present are composed from  <O,A,R> triples as control structures. The A's have operations that also consist of agent message passing. The functions in AF are the agent functions capable of message passing. The O refers to the set of objects and R the relations defining the effect of A's on objects. Amongst the functions in AF only some interact by message passing. The functions could affect objects in ways that affect the information content of a tree. There you are: the tree congruence definition thus is more complex for intelligent languages than those of ordinary syntax trees. Let us define tree information content for the present formulation. Hence there is a new frontier for a theoretical development of the <O,A,R> algebras and that of the AII theory. <O,A,R> is a pair of algebras, <Alg[A],Alg[F]>(see section 3), connected by message passing and AII defines techniques for implementing such systems. To define AII we define homorphisms on intelligent signature algerbas.

Definition 2.7  An I-homorphism is a homoprphism defined on algebras with intelligent signature I.

To define agent specific designs we apply HA-morphisms via the following definition.(
Definition 2.8 Let A and B be I-algebras with signatures containing an agent signature HA. A HA-homoprphism from A to B is an I-homorphism with  defined HA-morphism properties. (
3. Multiagent IF Designs and Mediators 

The term "agent" has been recently applied to refer to AI constructs that enable computation on behalf of an AI activity. It also refers to computations that take place in an autonomous and continuous fashion, while considered a high-level activity, in the sense that its definition is software and hardware, implementation, independent [1,4]. For example, in a planning [10,19] problem for space exploration, an agent might be assigned by a designed flight system [1] to compute the next docking time and location , with a known orbiting space craft.  Agents are in most cases informable[1], thus allowing message passing actions.  We can define AII software systems designed by AI methods as intelligent agent architectures, with external behavior that is a function of the degree of message passing actions and parallelism conceptualized. Since our specifications consist of objects, actions, and relations defining the effect of actions on objects, we can define formal IF systems from the specifications and prove the specifications can be implemented by a set of agents. A mediator is a software module that exploits encoded knowledge about certain sets or subsets of data to create information for a higher layer of applications. and the definition goes on to state `It should be small and simple, so that it can be maintained by one expert or, at most, a small and coherent group of experts' Mediator instantiation is to populate a domain-independent service or tool with domain-specific knowledge. We define Mediator Specifications consisting of a tuple of functions and relations of the form <O,(A,F),(RNA,RFA)>, where A is actions and F computes Flagrant Agents from APs to faults. (RNA,RFA) are their respective relations, NA for normal action and FA for flagrant or fault actions. In the example of the last section O is Coffee_shop, and serve-coffee an example of an action, a member of A. EXP defines the set F. The third line defines an example of a relation in RNA, and the last function is an example of a relation in RFA. We had invented a twin-engine agent-based computing system [12]. <A,F> := <Design_Agents,CoAgents>, consisting of Design_Agents := <O,A,RNA> and CoAgents;= <O,F,RFA>. The design is depicted by the following figure. 


[image: image3.png]<ALF1>




Figure 2-The pairs <Ai,Fi> are modules composed to define <A,F>. 

The modules are defined from multiple objects.

The  Design_Agents corresponds to an algebra Alg[A] of Normal Activities and CoAgents to an algebra Alg[F] for Flagrant Agent Computing,faults,recovery, and revision of actions. 

It consist of a pair of complex algebras, connected only by agent message passing. 

Definition 3.9 A system is Intelligent Fail-safe, abbreviated by IF, when defined by a pair <Alg[A] ,Alg[F]> where A and F are I -algebras where I  is an intelligent signature bearing agent functions. (
Having defined the intelligent algebras, HA morphisms, and IF designs, we can define formal multiagent implementations for IF systems applying HA-homomorphism and formal implementation techniques Nourani[1,4], EKP [5,6]. It is obvious how to define AII implementations direct from HA-homomorphims applied to our 1980’s papers. The details are outside the scope of the present paper. Each of the Design_Agents and CoAgents consists of agents that are mutually, often pair-wise, informable. The systems <Ai,Fi>, each consist of objects, actions and relations. Actions could be in form of operations or message communication from one object to another. A set of computing agents forms Design_Agents and a dual set forms CoAgents. Thus a pair of systems is defined that can be implemented by agents that logically or physically can be thought of as running on several microprocessors. The algebras Alg[A] and Alg[F] define wrappers for the mediators as functions for interacting with resources. A wrapper is a tool to access known resources and translate their objects.

The spontaneity and fault tolerance degree is a function of the intelligence of the agents implementing the <Design_Agents,CoAgents> pair. The agents have incomplete information about the immediate needs of activating other agents or exceptions. Thus the efficiency and strength of functionality of our software systems are a function of the degree of intelligence we build in the implementing agents. The agents must have some reasoning ability to at least make transition or message passing decisions.

This approach allows us to design systems that can deal with unplanned or erroneous behavior in an AI system. The next step is defining the <Design_Agents,CoAgents> from the Flagrant Agent knowledge learning (Design_Agents) inputs.  Its implementation consists of an autonomous pair of communicating systems to be defined in the following section. We have thus defined a formal computing model, the IF definition   consisting of an algebra of processes and objects, with possible use of new parallel languages and intelligent object programming put forth in preliminary reports by this author in [7,9]. Theories for intelligent syntax tree computing are being put forth by this author in [22]. Starting form our techniques, programs capable of generating mediators, routers, and translators from formal specifications can be designed. In some cases these generators may work automatically, in some cases interactively with humans.

4. Agent Provocateur

An agent provocateur, henceforth abbreviated by AP, is a computing event which activates an agent, specifically a fault agent. There are many sorts of APs and they affect ontologys in ways unknown to the AP and to its originating resource, its content, model, and domain. Thus APs necessitate an ontology update. Accommodating the update is a challenging problem. The software agent system designer has to define APs. APs  might also be defined by learning agents. Their structure is design specific and run by the agents active with the events. A computing system with predefined APs was experimented with in [12] and an AII model was presented in [6], where APs were all defined in advance. The terminology AP is new to the present paper however. When the APs are not defined and known in advance the ontology revision problem is quite difficult. Defining mediators by abstract multiagent specifications and AII are ways to manage APs. Section 5 defines specific APs.

5. AI and Concurrent APs Computing

The above multi-agent implementation of the mediator specifications implies design with a pair of concurrent systems. Each of the two systems is to be designed with a collection of modules, such that there corresponds a module for each specification. A module consist of the minimal set of processes and objects that can be used as a basis for defining a computing activity. The objects and the operations of one set of modules once defined specifies the basis for Design_Agents, while those of the CoAgents' basis is defined by the dual module. The set of modules defining Design_Agents and CoAgents are synchronized  by cross operations and interact by some operations that are implemented by message communications between Design_Agents and CoAgents. These operations are defined to either inform the various processes that are mutually dependent or to take the system from an active state in Design_Agents to an active state in CoAgents. Note that when exceptional conditions occur the active state is CoAgents. However, both sets of modules are considered concurrently "running."

CoAgents’ major task is that of handling unexpected events, recovery from faults, and revision of actions. Thus CoAgents has to know what agents can become active to compute for APs and be designed to activate remedies for ontology revision. If  exception recovery takes place, in each module, the active module (a collection of agents) for a particular function, will be the Design_Agents' component, while the CoAgents component does concurrent checks for further exceptions should they be encountered. In each of the modules there are objects, processes defining the operations, and objects to which there is a corresponding function in the other module. Thus Design_Agents and CoAgents imply a set of objects and processes defined by  many-sorted OAR algebras. The objects O1 are many-sorted structures with the <pi>,<qi> and <ei> as the operations.  RNA and RFA define the algebras via relations.

Design_Agents := <{O1,<p1,...,pn>},{O2,q1,q2,..},...{On,...},RNA>

RNA is the set of relations on each object and cross objects.

CoAgents:= <{O1,<e1,...,en}>,{O2,<e11,e12,...,e1m>},...,{On,<...>},RFA>

RFA is the set of relations on each objects and cross objects.

Each of the processes can have a corresponding agent in the dual family. The <Design_Agents,CoAgents> pair in a computing system "run" as a concurrent family of processes. Various functions in Design_Agents and CoAgents are represented by agents that are mutually informable across the 

<Design_Agents,CoAgents> pair. For the fault model there is a predefined AP set and a corresponding functionality. The overall functionality of the system depends on the messages passed across from one agent to another. To each specification defined by Design_Agents there corresponds two modules running concurrent. The modules are defined by mediator instantiation for standard functioning and APs computing. There are facilitators shared by the mediators to accommodate heterogeneity. A facilitator is a component which routes messages and queries.The essential distinction between a mediator and a facilitator is one of automation and hence dynamics versus human responsibility.  The vision underlying mediators is one where domain experts, equipped with inter-operating software modules, provide value-added services for data access and processing over networks. The vision underlying facilitators is `one in which any system (software or hardware) can inter-operate with  any other system, without the intervention of human users or their programmers' Interoperability is the capability to interoperate, often used at the transport layer.

Figure 3- Designs and Implementation With Multiagent Design_Agents, Objects-Coobjects, Mediators, and Facilitators. Modules 1-n define a kernel. Two kernels are mediated and there is facilitator routing the mediated computations. The pilots are wearing wrappers.
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Both mediators and facilitators can provide control and routing, content

manipulation, and format conversion. Facilitators and mediators can interact within an information system: Facilitators may call on mediators to perform value-added tasks. Example of a facilitators in our designs are routing agent messages between the two system parts, e.g. formally between the structures A and F. On the above figure it is obvious there is a facilitator for routing agent messages between two kernels. A trivial example for the coffee-shop example is routing agent messages form the normal functions and fault and exception functions. 

6. Abstract Implementation By Computing Agents

The term implementation here refers to the process of transforming an abstract characterization of an AI or software system to concrete representations and executable code. Thus implementations express the relationship between two forms of representations. The notion of abstract implementation defined by this author in [1,4] are either algebraic or model-theoretic (algebraic logic) definitions. We refer to specifications of the form <O,A,R> as presentations. We also expect a presentation of the form <I[O],I[A],I[R]> for the implementing abstract or concrete machine.  The former could be the designer's conceptualization, and the latter the specification of the syntax and semantics of a programming language. This is similar to how the problem was viewed by our group in 1978-1980's, and there were many research papers that were developed by us and Ehrig et.al.[6] for the most part. 

Informally the process of implementation was defined by this author to be that of encoding the algebraic structure of the conceptualization of a problem onto the algebra that specified an implementing machine (a programming abstract machine). Thus the problem was that of defining such implementations by morphisms of algebras.  The problems we are proposing are to address are much more complex. It is because the implementations proposed for AI systems are by multiagent designs. Each of the functions defined by <O,A,R> are implemented by agents, that characterize the implementation function  

I:<O,A,R>   ( <I[O],I[A],I[R]>  is to be defining a mapping 

I: <Alg[A],Alg[F]> (  <Alg[I(A)],Alg[I(F)]>

We refer to Alg[A] and Alg [F] are what we call ontology algberas. The implementation mapping I defines wrappers to resources in a manner preserving the ontology algebra. Ontology algerbas are multi-sorted algerbas defining multiagent systems defined by formal agents, e.g., hysterectic or knowledge level agents and agent morphisms. A formal definition is provided in section 7.1

 The Ontology Preservation Principle The AII is correct only if it preserves the ontology algebras. It will be abbreviated by AIIOPP.

Widerhold’s domain knowledge base algebra DKB consists of matching rules linking domain ontologys. There are three operations defined for DKB. The operations are Intersection- creating subset ontology and keeping sharable entries. Union- creates a joint ontology merging entries. Difference- creates a distinct ontology and removing shared entries. Mapping functions must be shown to preserve ontologys. Applying AIIOPP we can state specific preservation principles as follows. The DKB Preservation Principle- AII implementations must preserve ontologys under Intersection, Union, and Difference operations.

7. Preservation Theorems 

Let us apply the definition for HA agents and HA morphisms to state a preservation theorem. Let A and B be I-algebras with the signature I containing HA agents. Let Alg[B] be an I-algebra defined from B implementing[1,4,5,6] a specified functionality defined by A. An AII is an implementation for Alg[A] by Alg[B]. 

Definition 7.10 Let A and B be I-algebras with intelligent signature I containing agents. An I-ontology is an I-algebra with axioms for the agents and functions on the signature.
Theorem 7.1 Let A and B be I-algebras with the signature I containing HA agents.  The AII with HA morphisms defined from A to B preserve I-ontology algerbas iff defined by HA-homorphisms.

Proof  The definition for ontoltogies,  HA morphism, definition 2.7 and 2.8, I-algebras and I-homorphisms entail the I-ontology axioms are preserved iff agents are carried by HA-homorphisms from A to B.
Theorem 7.2 Let A and B be I-algebras with the signature I containing KL agents. The AII with KL morphisms preserve I-ontology algerbas iff defined by KL-homorphisms.

Proof Similar to 7.1.  

There are precise statements for preservation principles and mappings in [32]. DKB mappings are specific AII's were the ontology algebra operations are the same at source and target. We prove in [32] DKB mappings are AIIOPP consistent.

8.  AIS  and AII 

The abstract specifications put forth for the systems to be implemented are expected at two levels.  Level 1 is in a specification language that only expresses the functionality of modules by names of objects and their message passing actions, for example by SLPX[11,34]. The implementing agents, their corresponding object in <O,A,R>, and their message passing actions can also be presented by SLPX. The models as individual programs can be specified with languages of the Compose[21] variety. An important technical point is that the agents are represented by function names that appear on the free syntax trees of implementing trees. This formulation will prove to be an important technical progress. The software development techniques which make use of the recent advances consist of several stages, a few of which are possibly iterated through, before the process of program production is completed. The stage of mapping the specifications onto computing agents is in part carried out by naming the computing agents, their corresponding objects in <O,A,R>, and their message passing actions presented in [1,4]. The further advanced methodology for synthesis of programs that this author has put forth [4,15] need a revisit in view of the present concepts. The characterization in [4,15] expresses a paradigm which is further developed and lifted to AI applications in the present paper to define AIS.
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