

 132 Int. J. Agent-Oriented Software Engineering, Vol. 2, No. 2, 2008

 Copyright © 2008 Inderscience Enterprises Ltd.

PASSIM: a simulation-based process for the
development of multi-agent systems

Massimo Cossentino
ICAR/CNR
Viale delle Scienze
90128 Palermo, Italy
E-mail: cossentino@pa.icar.cnr.it

Giancarlo Fortino*, Alfredo Garro,
Samuele Mascillaro and Wilma Russo
Dipartimento di Elettronica Informatica e Sistemistica (DEIS)
Università della Calabria
Via P. Bucci, 87036 Rende (CS), Italy
E-mail: g.fortino@unical.it
E-mail: garro@unical.it
E-mail: samuele.mascillaro@deis.unical.it
E-mail: w.russo@unical.it
*Corresponding author

Abstract: This paper presents the Process for Agent Specification, Simulation
and Implementation (PASSIM), a simulation-based development process
for Multi-agent Systems (MASs), which was obtained by integrating the
well-known and established Process for Agent Societies Specification and
Implementation (PASSI) methodology and a Statecharts-based simulation
methodology supporting functional and nonfunctional validation of the MAS
being developed. PASSIM can be effectively used as an experimental tool in
the context of Agent-Oriented Software Engineering (AOSE) for evaluating the
benefits of using simulation for MAS development. To exemplify this process
and demonstrate its effectiveness, a case study concerning the analysis, design
and simulation of a complex MAS implementing an agent-based e-marketplace
is defined and detailed.

Keywords: Multi-agent Systems; MASs; Agent-Oriented Software
Engineering; AOSE; discrete-event simulation; method engineering.

Reference to this paper should be made as follows: Cossentino, M.,
Fortino, G., Garro, A., Mascillaro, S. and Russo, W. (2008) ‘PASSIM:
a simulation-based process for the development of multi-agent systems’, Int. J.
Agent-Oriented Software Engineering, Vol. 2, No. 2, pp.132–170.

Biographical notes: Massimo Cossentino obtained his Master’s degree
in Electronics Engineering and his PhD in Computer Science Engineering
from the University of Palermo. He has been a Researcher of the Italian
National Research Council from 2001. In 2007 he was an invited Associate
Professor at the University of Belfort-Montbelliard (UTBM). He is currently
researching on Agent-Oriented Software Engineering (AOSE), more
specifically on agent-oriented design methodologies (he is the main author of

 PASSIM: a simulation-based process for the development of MASs 133

PASSI, a methodology for designing MASs), multi-agent systems metamodels,
agent patterns and design tools. He is the author of about 80 papers published
in international journals and proceedings of conferences/workshops. He has
chaired and co-chaired several scientific events and coordinated the activity
of several research/standardisation groups such as the FIPA Methodology
Technical Committee (2003) and the Agentlink III AOSE Technical Forum
Group (2004–2007).

Giancarlo Fortino is an Associate Professor of Computer Science at the
Department of Electronics, Computer and Systems Science (DEIS) of the
University of Calabria, Rende (CS), Italy. He received his Laurea degree in
Computer Science Engineering from the University of Calabria in 1995 and a
PhD in Computer Science and Systems Engineering from the same institution
in 2001. In 1997 and 1999 he was Visiting Researcher at the International
Computer Science Institute (ICSI), Berkeley (CA), USA. His current research
interests are agent-based systems, agent oriented software engineering,
streaming content distribution networks, wireless sensor networks, distributed
multimedia systems and GRID systems. He is the author of more than 80
papers in international journals, books and conferences. He is a member of
IEEE, IEEE Computer and Communications Society, and ACM.

Alfredo Garro received his Laurea degree in Computer Science Engineering
and his PhD in Computer Science and Systems Engineering from the
University of Calabria (Italy). From 1999 to 2001, he worked at CSELT (today
TILAB), the Telecom Italia Group R&D Laboratories. He is currently an
Assistant Professor of Computer Science at the Department of Electronics,
Computer and System Sciences of the University of Calabria. His research
interests include agent-oriented software engineering, game theory, logic
programming, and knowledge representation and reasoning. His list of
publications contains about 40 papers published in international journals, books
and proceedings of international and national conferences.

Samuele Mascillaro received his Laurea degree in Computer Science
Engineering from the University of Palermo (Italy) in 2006. He is a fellowship
PhD student in Computer Science and Systems Engineering at the Department
of Electronics, Computer and System Sciences, University of Calabria (Italy).
His research interests are in the field of agent-oriented software engineering
and, in particular, are focused on the definition of agent-based modelling
techniques and tools for the development of complex software systems.

Wilma Russo received her Laurea degree in Physics from the University of
Naples (Italy). She then moved to the University of Calabria (Italy), where she
held the position of Associate Professor of Computer Science starting 1986.
After a period with the University of Salerno, she returned to the University of
Calabria, where she is now full Professor of Computer Science at the
Department of Electronics, Informatics and Systems (DEIS). Her current
research interests are mainly focused on parallel and distributed computing and
systems, agent oriented software engineering, agent based modeling and
simulation, internet computing and content distribution networks. She is the
author of more than 80 papers in international journals, books and conferences.

 134 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

1 Introduction

Simulation is widely applied in many industrial fields, such as aerospace, automotive or
energy production, but its application in the support of software products and processes is
still underestimated to date. Despite its limited exploitation in software engineering,
simulation has been recognised to be an effective tool for supporting software
engineering experimentations involving requirements management, project management,
training, process improvement, architecture and Component Off-The-Shelf (COTS)
integration, product-line practices, risk management and acquisition management
(Christie, 1999; Mayrhauser, 1993).

With the emergence of Agent-Oriented Software Engineering (AOSE) as a new
discipline (Luck et al., 2004; Bernon et al., 2005) which aims at identifying and defining
models and techniques suitable for the development of complex software systems in
terms of Multi-agent Systems (MASs), we wonder if simulation could play a more
strategic role in the development of MASs than that which it played in the development
of traditional and/or conventional software systems, and, more specifically, if simulation
could provide a substantial added value when applied to support the development process
of MASs (Uhrmacher, 2002).

The answer to our first question lies in the complexity of MASs with respect to the
traditional software systems. A MAS is a system composed of several agents, capable of
reaching goals that are difficult to be achieved by an individual system (Wooldridge,
2002). MASs can manifest self-organisation and complex behaviours even when the
individual strategies of all their agents are simple. Thus, the use of simulation can be
crucial in the analysis of the MAS being developed at different scales of observation
(macro, micro and meso levels) (Zambonelli and Omicini, 2004) and, also, for the
discovery of emergent properties which were not taken into account or were not
considered at all in the design phase.

To answer the second question we need to quantify the claimed added value in
using simulation for MAS development through actual experimentations covering
the whole software development life cycle of MASs: requirements capture, analysis,
design, implementation, deployment and testing. To date a few MAS development
processes have been proposed in the literature, such as Electronic Institutions (Sierra
et al., 2004), DynDEVS/James (Rohl and Uhrmacher, 2004), CaseLP (Martelli et al.,
1999), GAIA/MASSIMO (Fortino et al., 2005b), TuCSon/pi (Gardelli et al., 2005) and
Joint Measure (Sarjoughian et al., 2001), which incorporate simulation to support the
design phase of the MAS development life cycle, with the main focus on the validation
and performance evaluation of the designed MAS model. However, to quantify the
benefits of using simulation for MAS development, further research work needs to be
carried out in the aforementioned direction and in further directions encompassing all
the phases of the MAS development life cycle. The major benefits would be product
quality improvement and project risk minimisation. These would derive from the use
of simulation in pinning down MAS requirements early in the development life
cycle, in testing out alternate modifications of requirements, in safely examining
alternate architectures and designs, and in gaining insights into timing, resource usage
and bottlenecking.

 PASSIM: a simulation-based process for the development of MASs 135

In this paper we propose the Process for Agent Specification, Simulation and
Implementation (PASSIM), a simulation-based process for the development of
MASs which incorporates a simulation phase for the prototyping of the MAS
being developed and for functional and nonfunctional validation. PASSIM was obtained
by integrating method fragments coming from two existing agent-oriented methodologies
according to a process-driven method engineering approach (Fortino et al., 2005b;
Cossentino et al., 2007). A method fragment is a portion of a software development
process which has two fundamental elements (Brinkkemper et al., 1999):

1 (work) products and their structures

2 procedures and their execution order for developing (work) products.

In particular, PASSIM was obtained by integrating method fragments from the Process
for Agent Societies Specification and Implementation (PASSI) methodology (Cossentino,
2005) for carrying out the analysis, design and coding phases, and the Distilled State
Charts (DSC)-based simulation method (Fortino et al., 2005a–b) for supporting the
simulation phase.

PASSIM is exemplified through a case study concerning the analysis, design
and simulation of a MAS which represents an Agent-based e-Marketplace (AeM).
In particular, the simulation phase allows for the functional validation of AeM
being developed and for the performance evaluation of different types of agents in terms
of completion time for searching and buying a product. The rest of the paper is organised
as follows: In Section 2 PASSIM is presented by describing how it was obtained through
an experiment of situational method engineering and by overviewing each of its
composing phases. Section 3 shows the adaptation process of some activities and related
work products of the design phase based on PASSI and the simulation phase based on the
DSCs. Section 4 proposes a complete case study concerning the modelling and
simulation of an AeM. Section 5 discusses some related agent-based design and
development approaches incorporating simulation. Finally, conclusions are drawn and
directions for future research briefly elucidated.

2 A process for agent specification, simulation and implementation

PASSIM is an agent-oriented software development process that uses simulation for
prototyping the MAS being developed and validating requirements. The creation
of the PASSIM process was carried out through the composition of parts coming from
two existing methodologies: PASSI (Cossentino, 2005) and the DSC-based simulation
methodology (Fortino et al., 2005b). The composition of this new process can be
regarded as an experiment of Situational Method Engineering (SME) (Harmsen and
Brinkkemper, 1995), which is currently supported by several approaches in the literature
(Brinkkemper et al., 1996; Henderson-Sellers, 2003; Ralyté and Rolland, 2001; Fortino
et al., 2005b; Cossentino et al., 2007). In particular, PASSIM was created according to a
process-driven approach (Fortino et al., 2005b; Cossentino et al., 2007) which involves:

• The choice or the definition of a software development life cycle suitable for the
specific problem and for the specific application domain.

 136 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

An iterative-incremental life cycle was chosen which is partly also derived from
Royce’s final waterfall model (Royce, 1970) and specifically introduces the
simulation phase to validate the system design before coding. In particular, the
chosen life cycle is articulated into five phases (see Figure 1):

1 Requirements Specification

2 Design

3 Simulation

4 Coding

5 Deployment.

After the Simulation phase, the designers can either proceed with the remaining part
of the process, if they want to implement the software’s final release, or use the
results of the simulation to feedback on the Design phase and/or the Requirements
Specification phase.

• The selection of suitable method fragments for carrying out each phase of the chosen
software development life cycle. Method fragments can be derived from already
existing methodologies or from ad hoc defined ones.

Table 1 reports the method fragments which were selected from both the PASSI
methodology and the DSC-based simulation methodology for carrying out each
phase of the chosen software development life cycle of Figure 1. For each method
fragment the table shows the related activities and delivered work products. The
selection of these fragments was easily performed since all the method fragments of
the two exploited methodologies were available and ready to use. The obtained
software development process (PASSIM) consists of five phases carried out by six
different method fragments.

• The adaptation of method fragments in order to allow their integration in the
new methodology.

The DSC-based Simulation method fragment has been modified to take as input the
work products produced by the Agent Implementation method fragment, selected
from PASSI. In particular, the modified version of the method fragment translates
the structural and dynamic diagrams produced by the Agent Implementation
fragment into a MAS model based on DSC.

Figure 1 The software development life cycle of PASSIM

Requirements
Specification Design

Simulation

Coding

Simulation
Work Product s

Coding
Work Products

Design
Work Products

Deployment

Deployment
Work Products

Phase

Work Products

[Next Iteration]

Requirements
Specification

Work Products

 PASSIM: a simulation-based process for the development of MASs 137

Table 1 The method fragments of PASSIM

Phase
Composed
method fragment

Atomic method
fragments Work product (kind)

Source
methodology

Requirements
Specification

System
requirements

Domain description

Agents
identification

Roles identification

Tasks specification

Domain description diagram
(use-case diagram)

Agents identification diagram
(use-case diagram)

Roles identification diagrams
(sequence diagram)

Tasks specification diagrams
(activity diagram)

PASSI

Agent society Domain ontology
description

Communication
ontology
description

Roles description

Protocols
description

Domain ontology description
diagram (class diagram)

Communication ontology
description diagram
(class diagram)

Roles description diagram
(class diagram)

Protocols description
(sequence diagram)

PASSI Design

Agent
implementation

Agent structure
definition

Agent behaviour
description

Single-agent structure
definition diagrams
(class diagram)

Multi-agent structure
definition diagram
(class diagram)

Single-agent behaviour
description diagrams
(activity/state diagram)

Multi-agent behaviour
description diagram
(activity/state diagram)

PASSI

Simulation DSC-based
simulation

Simulation model
definition

MAS code
generation

Simulation
implementation

Simulation
execution

Multi-agent System Distilled
StateChart simulation model
(MASDSC diagram)

MAS Code (C(MASDSC)
diagram)

Simulator program

Simulation results

DSC-based
simulation

Coding Code Code reuse

Code refinement

Code for the target
agent platform

PASSI

Deployment Deployment Deployment
configuration

Deployment diagrams PASSI

 138 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

The phases of PASSIM, which are carried out by the method fragments selected from
PASSI, are fully supported by the PASSI Toolkit (PTK), developed as a Rational Rose
plug-in, whereas the Simulation is supported by a DSC Visual Toolset (Fortino et al.,
2007), developed as an Eclipse plug-in, which allows for DSC-based visual modelling
and automatic code generation.

Although our concept of method fragments is related to the OMG SPEM Process
Component (SPEM, 2006), we adopt the method fragment meta-model defined in
Cossentino et al. (2007) where each method fragment is composed of:

• a portion of a process that delivers a significant work product (e.g., a class, a
sequence diagram, a system analysis document including several diagrams and
the description text)

• the produced work product

• some preconditions (such as required inputs)

• a list of components of the MAS meta-model that are defined/refined by the work
done in the fragment

• some guidelines (best practices on how to perform the prescribed work)

• a glossary of terms used in the fragment

• some composition guidelines (for reusing the fragment in a new process)

• aspects of the fragment regarding specific application fields

• dependency relationships with other fragments.

Since method fragments can be composed of finer-grained ones, we introduce here three
different levels of granularity for them:

1 smaller fragments (also called Atomic) which deliver diagram-size work products

2 bigger fragments (also called Composed) which deliver complex documents
obtained by the composition of several smaller work products in order to obtain a
larger scope document

3 phases collecting several composed fragments belonging to the same
conceptual/design area.

The list of fragments used in PASSIM is reported in Table 1. Composed method
fragments are clustered in the System Requirements, Design, Simulation, Coding and
Deployment phases. In the following subsections each phase of PASSIM is described
with reference to the method fragments selected for carrying it out.

2.1 Requirements Specification

The Requirements Specification phase is carried out by the System Requirements method
fragment selected from PASSI, which produces a model of system requirements in terms
of agency and purpose. This method fragment is composed of four atomic fragments:
Domain (Requirements) Description, Agents Identification, Roles Identification and
Tasks Specification.

 PASSIM: a simulation-based process for the development of MASs 139

The Domain Description produces a use-case diagram that represents actors and
use cases (a functional description of the system) identified for the system using a
hierarchical decomposition if it is required by the problem complexity. In the Agents
Identification, agents are identified by assigning a responsibility to each agent for a part
of the functionalities of the whole system; this fragment produces a use-case diagram,
called Agents Identification diagram (AId). In particular, the designer clusters some of
the use cases within a package and gives it the name of the agent that will be responsible
for accomplishing the specific functionalities of the clustered use cases. Once all the use
cases have been assigned to the identified agents, the designer can define scenarios in
which the agents will be involved (Roles Identification). Such scenarios are modelled
through a set of UML sequence diagrams which show that each agent may be involved in
several different activities and may appear more than once in each scenario playing
different roles. Finally, in the Tasks Specification, the tasks of each agent are specified
through UML activity diagrams.

2.2 Design

The Design phase is carried out by two (composed) method fragments extracted from
PASSI: the Agent Society and the Agent Implementation.

2.2.1 The Agent Society fragment

The Agent Society composed method fragment includes four atomic method fragments:
Domain Ontology Description, Communication Ontology Description, Roles Description,
and Protocols Description.

In the Domain Ontology Description the design of the domain ontology is performed
by means of a class diagram (DOD diagram) that describes the ontology in terms of
concepts (categories, entities of the domain), predicates (assertions on properties of
concepts) and actions (performed in the domain). This diagram can also be regarded as an
XML schema that can be used to obtain a Resource Description Framework (RDF)
(FIPA, 2001; RDF, 1999) which encodes the ontological structure.

The Communication Ontology Description produces a class diagram (COD diagram)
that shows all the agents and all their communications (relationships among agents). This
diagram is drawn on the basis of the AId (see Section 2.1). A class is introduced for each
agent, and an association is introduced for each communication between two agents. As
communication is a way to exchange knowledge, it is also important to introduce
the proper data structure (coming from the entities described in the DOD diagram)
in each agent. The association line that represents each communication is drawn from
the initiator of the conversation to the other agent (participant) as can be deduced
from the description of their interaction performed in the Roles Identification. Each
communication is characterised by three attributes, (Ontology, Agent Interaction Protocol
and Content Language), which are grouped into an association class. The roles, initially
identified in the Agents Identification, are completely defined in the Roles Description
that produces a UML class diagram in which classes are used to represent roles. In
particular, each role uses several elementary tasks to implement its complex behaviour
and, finally, roles are grouped in packages representing agents.

The Protocols Description is required only when the FIPA standard protocols are not
sufficient to solve some communication problems and new protocols must be introduced.

 140 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

2.2.2 The Agent Implementation fragment

The Agent Implementation method fragment is composed of two different atomic
fragments, each of them carried out at both the multi- and single-agent level of
abstraction. The multi-agent level models the overall structure of the system (MAS
structure and behaviour, interagent communications, etc.). The single-agent level of
abstraction focuses on the implementation details of each agent.

In particular, the following two atomic method fragments are carried out at the
multi- and single-agent levels:

• Agent Structure Definition (ASD), which uses conventional class diagrams to
describe the structure of agents (represented by classes) and produces both the
Single-Agent Structure Definition (SASD) diagrams and the Multi-Agent Structure
Definition (MASD) diagram

• Agent Behaviour Description (ABD), which uses activity diagrams or statecharts
to describe the behaviour of agents and produces the Single-Agent Behaviour
Description (SABD) diagrams and the Multi-Agent Behaviour Description
(MABD) diagram.

The MASD diagram represents the multi-agent system from the structural point of view.
Agents are represented as classes with their behaviours in the operation compartment and
attributes specifying the agent knowledge.

The agent behaviour at the multi-agent level is described by the MABD diagram.
This is a UML activity diagram used to illustrate the dynamics of the system during the
agents’ life cycle. In this diagram, the involved agents and their tasks are represented
with swim-lanes, operations are displayed as activities, and transitions among activities
represent events like method invocations (when relating activities in the same
swim-lane), new behaviour instantiations/invocations (when relating activities of the
same agent but in different swim-lanes) or messages (when activities from two different
agents are involved).

In the SASD diagram one class diagram is used for depicting the internal structure of
each agent. This is a very detailed diagram, reporting attributes and methods of both the
agent class and the classes of the tasks. The details of the behaviour of each agent are
specified in the SABD diagram.

2.3 Simulation

The simulation phase is carried out by a (composed) method fragment, DSC-based
Simulation, which is composed of four atomic method fragments: Simulation Model
Definition, MAS Code Generation, Simulation Implementation and Simulation Execution.

The Simulation Model Definition is enabled by the Distilled StateCharts (DSCs)
formalism (Fortino et al., 2004), which supports the specification of the behaviour of the
agent types and the interaction protocols among the agent types of a MAS. DSCs were
derived from Statecharts (Harel and Gery, 1997) and allow for the specification of the
behaviour of Event-driven Lightweight Agents (ELAs), which are single-threaded entities
capable of transparent migration and executing chains of atomic actions.

 PASSIM: a simulation-based process for the development of MASs 141

The DSC-based specification of a MAS, denoted as MASDSC, is expressed as:

MASDSC = {Beh(AT1), …, Beh(ATn)},

where Beh(ATi) = <SBeh(ATi), EBeh(ATi)> is the DSC specification of the dynamic
behaviour of the i-th agent type. In particular, SBeh(ATi) is a hierarchical state machine
incorporating the activity and the event handling of the i-th agent type, and EBeh(ATi)
is the related set of events to be handled triggering state transitions in SBeh(ATi). In
particular, SBeh(ATi) is designed on the basis of a template compliant with the FIPA agent
life cycle (FIPA, 2002) (see Figure 3). The Active Distilled StateChart (ADSC), inside
the Active state, is to be refined by the agent designer. The deep history connector (H*)
inside the Active state allows for agent migration based on a coarse-grained strong
mobility model (Fortino et al., 2004). In particular, the presence of the H* allows an
agent to reenter in the state most recently exited by retaining the previous global state.
The transition originating from the H* targets a state of the ADSC named Default History
State (DHS).

Figure 2 The DSC-based simulation method fragment

Simulation
Model: MASDSC

MAS Code:
C(MASDSC)

Simulation Model
Definition

MAS Code
Generation

Simulation
Execution

Simulation
Results

SASD, SABD, MASD, MABD
(From Agent Implementation phase)

Simulation
Implementation

Simulator
Program

Work Definition

UML Model

Document

Functional and
Non Functional Requirements

(from System Requirements phase)

The Simulation Model Definition is an adapted fragment which takes as input the
structural and dynamic diagrams (SASD, SABD, MASD and MABD diagrams) produced
by the Agent Implementation, which are semiautomatically translated into a MASDSC as
described in Section 3.

The MAS Code Generation is supported by the Mobile Active Object Framework
(MAO Framework) (Fortino et al., 2004), currently implemented in Java. Given the
MASDSC, it produces C(MASDSC) representing the code of MASDSC. Beh(ATi) is
translated into a composite object, which is the object-based representation of SBeh(ATi),
and into a set of related event objects of the MAOEvent type which represent EBeh(ATi).

 142 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

Figure 3 The FIPA-compliant DSC template

INITIATED

Top State

ACTIVE

H*Invoke

Execute

Move Wait

Wake_UP

Resume

Suspend

QuitDestroy

ADSC

SUSPENDED

WAITINGTRANSIT

The Simulation Implementation and Simulation Execution are supported by MASSIMO
(Multi-Agent System SIMulator framewOrk) (Fortino et al., 2005a), a Java-based
discrete-event simulation framework for MASs which allows for the validation and
evaluation of:

• the dynamic behaviour (computations, communications and migrations)
of individual and cooperating agents

• the basic mechanisms of the distributed architectures supporting agents, namely
agent platforms

• the functionalities and emergent behaviours of applications and systems based
on agents.

In particular the architecture of MASSIMO is composed of four basic layers:

1 Low-level simulation framework, which provides the basic classes (Agent,
MetaAgent, Message and Timer) and the discrete-event simulation engine to
program and simulate general-purpose agent-oriented systems

2 Agent platform, which is built atop the low-level simulation framework layer and
provides two basic abstractions: the AgentServer, which represents the infrastructure
where event-driven lightweight DSC-based agents (ELAs) run, and the
VirtualNetwork, which represents a network of hosts on which AgentServers can be
mapped. AgentServers interact with each other through signalling messages (MSG)

3 ELA adapter, which extends the Mobile Agent Adaptation Framework (MAAF)
(Fortino et al., 2004) and allows the mapping of ELAs, programmed through the
MAO Framework, onto the agent platform layer

4 User, which makes available two abstract classes – UserAgent and
UserAgentGenerator – which are extensions of Agent. UserAgent represents a user
directly connected to an AgentServer who can create, launch and interact with ELAs.
UserAgentGenerator models the generation process of UserAgents.

 PASSIM: a simulation-based process for the development of MASs 143

Moreover, the Start message allows for the activation of a UserAgent or a
UserAgentGenerator, whereas the Reporting message, which targets a UserAgent,
contains a report sent from an ELA owned by the UserAgent.

On the basis of functional and nonfunctional requirements and the MAS code,
a simulator program can be implemented by using MASSIMO in the Simulation
Implementation.

In the Simulation Execution the simulator program is executed to obtain the
simulation results containing validation traces and performance parameter values. The
validation of agent behaviours and interactions is carried out by automatically generated
execution traces, whereas the performance evaluation relies on the specific MAS to be
analysed; the performance evaluation parameters are therefore set ad hoc. The simulation
results can be used to feed back the Simulation Model Definition.

2.4 Coding

The Coding phase is carried out by the Code (composed) method fragment selected from
PASSI which produces the code of the MAS being developed. The Code is composed of
two atomic method fragments:

1 Code Reuse, in which code generation is directly supported by the PTK. In
particular, it is possible to generate not only the skeletons but also largely reusable
parts of the methods implementation based on a repository of reused patterns and
associated design descriptions. Currently, the pattern repository includes a set of
reusable portions of JADE and FIPA-OS agents and corresponding behaviours;
a more detailed description of the pattern repository can be found in Cossentino
et al. (2003) and Chella et al. (2003).

2 Code Refinement, where code is manually completed by the programmer.

2.5 Deployment

The Deployment phase is carried out by the Deployment (composed) method fragment
selected from PASSI, which specifies the distribution of the parts of the system
(agents) across the available agent platforms. The Deployment is composed of only the
Deployment Configuration atomic method fragment, which produces the deployment
diagrams describing the allocation of agents to the available agent platforms and any
constraints on agent migration. In particular, these diagrams also specify the libraries or
hardware devices (sensors or actuators) that should be available on the agent platforms in
order to ensure the proper system functionalities.

3 Adapting the design for the simulation

As introduced in Section 2, in order to simulate the MAS being developed, the work
products of the Agent Implementation carried out in the Design phase must be translated
into a Multi-Agent System Distilled StateChart Simulation Model (MASDSC), which
represents the work product of the Simulation Model Definition (see Table 1). The input
to the translation process consists of the SASD, SABD, MASD and MABD diagrams,
whereas the output of the translation process is represented by a MASDSC.

 144 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

The translation process is semiautomatic, which means that these diagrams are first
automatically translated into a MASDSC skeleton, and then the MASDSC skeleton
is manually refined through programming. In particular, the following steps are
carried out:

Step 1 The agent types of the MASDSC are directly derived from the agent types of the
MASD diagram through a one-to-one mapping.

Step 2 The interactions in terms of events exchanged between the agent types of the
MASDSC are directly derived from the MABD diagram.

Step 3 The ADSC of an agent type is based on the SASD and the SABD diagrams
of the agent type. As a SASD is a platform-dependent diagram (e.g.,
FIPA-OS-based or JADE-based), the SASDs are designed to be DSC-oriented.
In particular, attributes and methods of the agent type are inserted into the
ADSC as state variables and supporting functions, respectively. These state
variables and supporting functions need to be manually finalised, i.e., the
specific type of all the state variables is defined and the methods are
implemented. The activities reported in the SABD diagram become states of
the ADSC and the transitions among activities become transitions among the
states corresponding to these activities. Finally, the ADSC is to be refined
through manual programming, which is needed for model consistency and
optimisation purposes. This refinement step involves the introduction/deletion
of states, transitions, transition labels (event[guard]/action), state variables and
supporting functions.

In the following we use a simple example to show how the semiautomatic translation
from the work products of the Agent Implementation to a MASDSC can be obtained. The
example MAS we considered is composed of two agent types:

1 an Information Retrieval Agent (IRA) whose task is to visit a given number of
locations to retrieve information through a query

2 an Information Provider Agent (IPA) whose task is to process the query received
from the IRA and to provide it with the query result.

The work products produced by the Agent Implementation activities are shown in
Figures 4, 5, 6 and 7.

Figure 4 The MASD of the example MAS

User

InformationRetrievalAgent
itinerary : Itinerary
query : Query
data : Vector

archiveQueryResult()
moveNextLocation()
submitQuery()

InformationProviderAgent
dataSource

searchForInformation()
provideQueryResult()

 PASSIM: a simulation-based process for the development of MASs 145

Figure 5 The MABD of the example MAS

Figure 6 The (a) SASD and (b) SABD of the IRA

(a)

SubmitQuery

StoreInfoRetrieved

MigrateNext
Location

[itineraryNotCompleted]

InformationRetrievalAgent.
Searching

ProvideInfo

InformatonProviderAgent.
Providing

ReportData[itineraryCompleted]

InformationRetrievalAgent.
Reporting

DSCAgent
(from DSC)

ADSC
(from DSC)

DSCBehavior
(from DSC)

IRA_ADSC
itinerary : Itinerary
query : Query
data : Vector

archiveQueryResult()
submitQuery()
moveNextLocation()

IRA_Behavior

DSCQueue
(from DSC)

DSCAgentID
(from DSC)

InformationRetrievalAgent

 146 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

Figure 6 The (a) SASD and (b) SABD of the IRA (continued)

(b)

Figure 7 The (a) SASD and (b) SABD of the IPA

IPA_ADSC
dataSource

searchForInformation()
provideQueryResult()

IPA_Behaviour

ADSC
(from DSC)

DSCAgent
(from DSC)

DSCAgentID
(from DSC)

DSCQueue
(from DSC)InformationProviderAgent

DSCBehavior
(from DSC)

(a)

InformationRetrievalAgent.
Searching

SubmitQuery

StoreInfoRetrieved

MigrateNext
Location

InformationRetrievalAgent.
Reporting

ReportData
[ItineraryNotCompleted]

[ItineraryCompleted]

 PASSIM: a simulation-based process for the development of MASs 147

Figure 7 The (a) SASD and (b) SABD of the IPA (continued)

(b)

Given the MASD of the example MAS (Figure 4), the agent types of the MASDSC are
INFORMATIONRETRIEVALAGENT and INFORMATIONPROVIDERAGENT.

Given the MABD of the example MAS (Figure 5), the events exchanged between
the two agent types are: QUERYREQUEST(QUERY) and QUERYINFORM(QUERYRESULT), which
correspond to the two main messages of the FIPA Query Protocol, which was selected for
the communication between the two agents.

Given the SASD and SABD diagrams of the INFORMATIONRETRIEVALAGENT (see
Figure 6), the ADSC skeleton of the INFORMATIONRETRIEVALAGENT of the MASDSC
reported in Figure 8 was obtained. The names of the states of the ADSC have as
suffix the names of the activities of the SABD diagram and as postfix ‘Done’, which
means that the activity corresponding to the state has been carried out. The event
labelling the transition from SubmitQueryDone to StoreInfoRetrieveDone corresponds
to the message QueryInform sent from the IPA agent. The events labelling the
transitions from StoreInfoRetrieveDone are derived from the guards of the selection
block of the IRA SABD diagram (see Figure 6b). The event labelling the transition
from MigrateNextLocationDone to SubmitQueryDone assumes the name of the activity
corresponding to the target state as each transition of a DSC must be labelled by
an event.

ProvideInfo

InformatonProviderAgent.
Providing

WaitForQuery

[stop]

[continue]

 148 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

Figure 8 The ADSC skeleton of the IRA

Figure 9 The refined ADSC of the IRA

ac0: generate(new QueryRequest(self(), IPA, query));
ac1: QueryInform qi = (QueryInform)evt;

archiveQueryResult(qi.getInfo());
if (itinerary.hasNextLocation())

generate(new ItineraryNotCompleted(self()));
else

generate(new ItineraryCompleted(self()));
ac2: Location nextLoc = itinerary.getNextLocation();

generate(new Move(self(), bextLoc));
generate(new SubmitQuery(self()));

ac3: reportData();
ac4: ac0;

 PASSIM: a simulation-based process for the development of MASs 149

The ADSC of the INFORMATIONRETRIEVALAGENT which was obtained after refinement
is shown in Figure 9. The actions have been purposely defined ‘by programming’ on
the basis of the state variables and supporting functions derived from the SASD diagram
(see Figure 6a).

Given the SASD and SABD diagrams of the INFORMATIONPROVIDERAGENT (see
Figure 7), the ADSC skeleton of the INFORMATIONPROVIDERAGENT of the MASDSC was
obtained (see Figure 10). Two states are derived: WaitForQueryDone, referring to the
end of the WaitForQuery activity, and ProvideInfoDone, referring to the end of
the ProvideInfo activity. The event labelling the transition from WaitForQueryDone to
ProvideInfoDone corresponds to the message QueryRequest sent from the IRA agent.
The Continue event labelling the transition from ProvideInfoDone to WaitForQueryDone
is derived from the guard of the selection block of the IPA SABD diagram (see
Figure 7b).

Figure 10 The ADSC skeleton of the IPA

The ADSC of the INFORMATIONPROVIDERAGENT which was obtained after refinement is
shown in Figure 11.

Figure 11 The refined ADSC of the IPA

ac1: QueryRequest qr=(QueryRequest)evt;
Result r = searchForInformation(qr.getQuery());
generate(new QueryInform(self(), qr.getSource(), r));
generate(new Continue(self(), self()));

 150 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

4 A case study: from the analysis to the validation of an
agent-based e-marketplace

An electronic marketplace (e-marketplace) is a platform for buyers and sellers
exchanging products and services (Feldman, 2000; Ripper et al., 2000):

• Buyers specify the items they want to buy, along with their desired price ranges.

• The e-marketplace then matches trading partners for the buyers and provides the
Request for Quotation (RFQ).

• On the basis of the specification and price range, sellers return the quotation to the
buyers and wait for the confirmation.

• After receiving all quotations, buyers can select the best offer and issue a purchase
order to the selected sellers.

Nowadays, many e-marketplaces are based on software agents which are capable of fully
supporting and automating the stages of the Consumer-Buying Behaviour (CBB) model
(Guttman et al., 1998; Maes et al., 1999). The CBB model defines the decision process
which consumers undergo when purchasing a product. Such a process is articulated in
six stages:

Stage 1 Need identification: This stage characterises the buyer, who becomes aware of
some unmet/desired need. Within this stage, the buyer can be stimulated
through product information.

Stage 2 Product brokering: This stage comprises the retrieval of information to help
determine what to buy. This encompasses the evaluation of product alternatives
based on buyer-provided criteria. The result of this stage is the ‘consideration
set’ of products.

Stage 3 Merchant brokering: This stage combines the ‘consideration set’ from the
previous stage with merchant-specific information to help determine who
to buy from. This includes the evaluation of merchant alternatives based
on buyer-provided criteria (e.g., price, warranty, availability, delivery
time, reputation).

Stage 4 Negotiation: This stage is about how to settle on the terms of the transaction.
The negotiation varies in duration and complexity depending on the market.

Stage 5 Purchase and delivery: The purchase and delivery of a product can either
signal the termination of the negotiation stage or occur sometime afterwards.

Stage 6 Product service and evaluation: This postpurchase stage involves product
service, customer service and an evaluation of the satisfaction of the overall
buying experience and decision.

The objective of our case study is to apply PASSIM to the design and validation of an
AeM which supports Stages 3, 4, and 5 through the following specific consumer-buying
process (Fortino et al., 2005b):

 PASSIM: a simulation-based process for the development of MASs 151

• Request Input. When users wish to buy a product, they identify a set of product
parameters (product description, maximum price PMAX), log into the e-marketplace
and submit a request containing the product parameters. The e-marketplace checks if
users are trustworthy (i.e., from a commercial and security viewpoint) and decides
if requests can be accepted. If so, the Consumer Assistant System (CAS) of the
e-marketplace starts satisfying the user request.

• Searching. The CAS obtains a list of locations of vendors by using the Yellow
Pages Service (YPS) of the e-marketplace. The YPS is a federation of autonomous
components at which vendors register to advertise their products. In particular the
following YPS organisations were established:

a Centralised: Each YPS component stores a complete list of vendors.

b One-Neighbor Federated: Each YPS component stores a list of vendors and
keeps a reference to only one other YPS component.

c M-Neighbors Federated: Each YPS component stores a list of vendors and keeps
a list of at most M YPS components.

• Contracting and evaluation. The CAS interacts with the vendors found to request an
offer (POFFER) for the desired product, evaluates those received, and selects an offer
for which the price is acceptable (i.e., POFFER ≤ PMAX), if any.

• Payment. The CAS purchases the desired product from the selected vendor using a
given amount of e-cash (or bills). The following steps are performed to execute the
money transaction between the CAS and the vendor:

Step 1 The CAS gives the bills to the vendor.

Step 2 The vendor sends the bills to its bank.

Step 3 The bank validates the authenticity of the bills, exempts them from
reuse, and, finally, issues to the vendor an amount of bills equal to that
previously received.

Step 4 The vendor notifies the CAS.

• Reporting. The CAS reports the buying result to the user.

This description can be considered an initial requirements document on the basis of
which the Requirements Specification phase is carried out. In the following subsections
selected work products of the first four phases of PASSIM (see Section 2) are shown and
described. In particular, Section 4.1 presents the Requirements Specification work
products, Section 4.2 shows the Design work products, and, finally, Section 4.3 shows
the establishment and the results of the Simulation phase, which allow for both functional
validation and performance evaluation of the MAS being developed.

4.1 The Requirements Specification phase

From the previously reported description of the system to be designed, the AId
(see Section 2.1) was drawn, which reports three actors (User, Vendor and Bank) and the
use cases coming from the Domain Description, which were packaged into the following
six agents:

 152 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

1 User Assistant Agent (UAA) is associated with a user and assists her/him in looking
for a specific product that meets her/his needs and in buying the product according to
a specific buying policy.

2 Yellow Pages Agent (YPA) represents an entry point of the federated yellow pages
service (or ‘Yellow Pages’) which provides the location of agents selling a
given product.

3 Vendor Agent (VA) represents the vendor of specific goods.

4 Mobile Consumer Agent (MCA) is an autonomous mobile agent dealing with
searching, contracting, evaluation and payment of goods.

5 Access Point Agent (APA) represents the entry point for the e-marketplace, accepts
requests for buying a product from a registered UAA and fulfils them by generating
a specific MCA.

6 Bank Agent (BA) represents a reference bank of MCA and VA.

It is worth noting that the <<communicate>> relationship shown in Figure 12 represents
agent interactions.

Figure 12 The AId for the proposed case study

UserAssistantAgent
<<Agent>>

AccessPointAgent
<<Agent>>

MobileConsumerAgent
<<Agent>>

YellowPagesAgent
<<Agent>>

BankAgent
<<Agent>>

VendorAgent
<<Agent>>

Evaluate_Offer

Request_an_Offer

Search_for_Vendors

Authenticate_User

Negotiate_Offer

<<include>>

<<include>>

Pay_for_Goods

Search_for_Vendors

<<communicate>>

Login

<<communicate>>

Manage_Transaction

<<include>>

<<include>>

<<include>>

User

Validate_User_Request

<<communicate>>

Look_for_goods

<<communicate>>

Register_Vendors_and_
Goods

Propose_an_Offer

Vendor

Register_Vendor_Data

<<communicate>>

Bank

Manage_Vendors

<<include>>

<<include>>

Supervise_Money_Trans
action

Do_Bank_Transaction

<<include>>

<<communicate>>

 PASSIM: a simulation-based process for the development of MASs 153

On the basis of the AId, the Roles Identification diagram (RId) was designed.
A portion of the obtained RId is shown in Figure 13 where the APA
(UserRequestValidatorAndForwarder role), after validating the order, forwards it to the
MCA (Searcher role); afterwards the MCA asks the YPA (VendorListProvider role) for
the vendors list. After getting the list, the MCA (Contr&Eval role) contacts all the VAs
(OfferProposer role) and asks them for their offers. Finally, the MCA selects the best
offer and pays for the product (Payer role).

Figure 13 A portion of the RId regarding a search scenario

Searcher :
MobileConsumerAgent

UserRequestValidator
AndForwarder : AccessPointAgent

VendorListProvider :
YellowPagesAgent

Contr&Eval :
MobileConsumerAgent

OfferProposer :
VendorAgent

Payer :
MobileConsumerAgent

12: SelectBestOffer

1: ValidateOrder

2: ForwardProductRequest

3: RequestVendorList

4: CreateList

5: ReturnVendorsList

6: * [for each vendor] MoveToVendorLocation
7: SendMeYourOffer

8: GenerateOffer

9: ReturnOffer

10: EvaluationOffer

11: ContactNextVendor

An initial definition of the dynamic behaviour of each agent is the work product produced
by the last atomic method fragment of this phase (Tasks Specification). The Tasks
Specification produces a set of Tasks Specification diagrams (one for each identified
agent), which are UML activity diagrams representing the agent tasks. Each diagram is
composed of two swim-lanes (see Figure 14): the right-hand side highlights the roles of
the agent which the diagram refers to and the activities the agent performs in playing
these roles, whereas the left-hand side reports the roles played by other agents interacting
with the agent on the right-hand side.

In Figure 14, the Tasks Specification diagram of the MCA is shown. In particular, the
MCA is involved in:

• searching the list of vendors through a query to the YPA (Searcher role)

• contracting with VAs and evaluating their offers (Contr&Eval role)

• buying the product from the VA proposing the best offer (Payer role)

• reporting the transaction results to the UAA (Reporter role).

Afterwards the MCA can either play the Searcher role again or be terminated.

 154 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

Figure 14 The tasks specification diagram for the MCA

YellowPagesAgent.
VendorListProvider

VendorAgent.
OfferProposer

VendorAgent.Biller

UserAssistantAgent.
ProductBuyer

AccessPointAgent.
UserRequestValidatorandForwarder

Interacting Agents

Searcher

Contr&Eval

Payer

Reporter

Mobile Consumer Agent

4.2 The Design phase

The Agent Society method fragment (see Section 2.2.1) produces diagrams which
represent social interactions and dependencies among the identified agents (see
Section 4.1). A portion of the DOD diagram is reported in Figure 15 in which some
concepts, predicates and actions used to define the problem domain are shown. For
instance, the Vendor concept (representing the vendor of the real-world scenario) is
related with the Product(s) it sells. A vendor registers its products in the agent-based
yellow pages service by executing the RegisterProduct action, which is performed by the
VA (action Actor), and its outcome is received by the YPA (action Receiver).

A portion of the COD diagram is reported in Figure 16. It shows three
identified agents (APA, VA, MCA) and two communications among them
(Forward_Product_Request, Offer_Request). In particular, the Offer_Request
communication happens when the MCA asks the VA for the best offer (see the scenario
reported in Figure 13). This communication refers to the OfferPrice predicate from the
ontology of Figure 15 and adopts the FIPAQuery agent interaction protocol and the RDF
content language. Roles played by agents during the interaction (as described in the RIds)
are reported at the beginning and the end of the association line.

The Agent Implementation method fragment (see Section 2.2.2) produces
work products representing the MAS architecture. In particular, a portion of the
MASD diagram, which describes the structure of the VA, MCA and APA agents,
is shown in Figure 17. It is worth noting that the VA is in relationship with a human
actor this is an extension of UML that is useful for representing all the possible
agent relationships (communications and GUI-based interactions with the user) in a
unique diagram.

 PASSIM: a simulation-based process for the development of MASs 155

Figure 15 A portion of the DOD diagram

OfferPrice
Theproduct : Product

<<predicate>>

RegisterProduct
Actor = VendorAgent
Receiver = YellowPagesAgent

<<act>> Register()

<<action>>

BuyProduct
Actor = MobileConsumerAgent
Receiver = AccessPointAgent

<<act>> Negotiate_and_buy()

<<action>>

Offer
Quantity : int
Price : int
DeliveryDate : Date

<<concept>>VendorsList
Theproduct : Product

<<predicate>>

Product
Name : String
Type : String
Quantity : int

<<concept>>

TheProduct

TheProduct

11..n 11..n

Vendor
Social_Name : String
Personal_Name : String
Personal_Surname : String
Country : String
Address : String
CAP : String

<<concept>>

1..n

1

1..n

1

Figure 16 A portion of the COD diagram

Forward_Product_Request
Ontology : BuyProduct
Language : RDF
Protocol : FIPARequest

<<Communication>>

Offer_Request
Ontology : OfferPrice
Language : RDF
Protocol : FIPAQuery

<<Communication>>

AccessPointAgent
UserData
ProductParameters
LoginUser
FindProduct

<<Agent>>

MobileConsumerAgent
ProductParameters
UserData
VendorList
Offer
Bill
FindProduct
CreateVendorList
NegotiateOffer
SendBill

<<Agent>>

UserRequestValidatorAndForwarder

Searcher
VendorAgent

Vendor
Product
Offer
Bill
RegisterProduct
DoTransaction
NegotiateOffer
SendBill
User
UserData
Transaction

<<Agent>>

Contr&Eval OfferProposer

 156 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

Figure 17 A portion of the MASD diagram

Vendor

VendorAgent
Vendor
Product
Of f er
Bill
RegisterProduct
DoTransaction
NegotiateOf f er
SendBill
User
UserData
Transaction

ProposeOf f er()
Billing()
RegisterData()

<<Agent>>

AccessPointAgent
UserData
ProductParameters
LoginUser
FindProduct

ValidateAndForwardUserRequest()
ValidateAuthentication()

<<Agent>>

MobileConsumerAgent
ProductParameters
UserData
VendorList
Of f er
Bill
FindProduct
CreateVendorList
NegotiateOf f er
SendBill

Searching()
Contr&Ev al()
Pay For()
Reporting()

<<Agent>>

A portion of the obtained MABD diagram is reported in Figure 18, which illustrates the
activities occurring during the Vendor_Request communication between MCA and YPA
and the Offer_Request communication between MCA and VA. In particular, this portion
of the MABD diagram describes the request for the VA list from the MCA to the YPA,
the migration of the MCA to the retrieved VA location and the contracting phase carried
out by the MCA with the VA.

Figure 18 A portion of the MABD diagram with some interactions among MCA, YPA and VA

Figure 19 shows the SABD diagram for the MCA, which provides a high-level
specification of the behaviour of the MCA. In particular, the MCA plays four different
roles in the following sequence: Searching, Contr&Eval, PayFor and Reporting. They
also correspond to the phases of the MCA life cycle. In particular, in the Searching phase,
the MCA moves to the location of the next YPA (YPATarget), requests the list of
vendors (VAList) and processes the reply (YPA_Reply). If the Searching phase is not
completed ([Searching] is evaluated to be true), the MCA continues searching. If the
guard [Contracting] holds (i.e., the VAList is not empty), the MCA passes into the
Contr&Eval phase. If the guard [Reporting] holds (i.e., the VAList is empty), the MCA
directly goes into the Reporting phase. In the Contr&Eval phase, the MCA moves to
the location of a vendor in the VAList (VATarget), requests an offer (VAOffer) and

Request_VAList

MoveToVendor
Location

Process_YPA_
Reply

[Contracting]

MobileConsumerAgent. Searching

Return_List

(Request; VendorsList; RDF)

(Inform; VendorsList; RDF)

YellowPagesAgent.
ProvideVendorsList

Request_An_Offer_
From_VATarget

Evaluate_
VAOffer

MobileConsumerAgent.Contr&Eval

GenerateOffer

(Query; OfferPrice; RDF)

(Inform; OfferPrice; RDF)

VendorAgent.ProposeOffer

...

 PASSIM: a simulation-based process for the development of MASs 157

evaluates it. If the MCA decides to accept the received VAOffer (i.e., the guard
[BuyingSoon] holds) or another received VAOffer (i.e., the guard [MovingAndBuying]
holds), it passes into the PayFor phase. If the MCA desires a new offer, it keeps
contracting (i.e., guard [Contracting] holds true). If no offer is selected the MCA goes
into the Reporting phase (i.e., guard [Reporting] holds true). Finally, in the Reporting
phase, the MCA moves to the APA location and reports to its UAA.

Figure 19 The SABD diagram for the MCA

Figure 20 shows the SASD diagram for the MCA and its derived agents. In particular,
two specific MCAs are derived:

1 the ItineraryConsumerAgent (or ICA), which performs the Searching and
Contr&Eval phases (see Figure 19) by sequentially moving from one location to
another within the e-marketplace

2 the ParallelConsumerAgent (or PCA), which performs the Searching and
Contr&Eval phases (see Figure 19) by means of the support of a set of mobile
agents: the ItinerarySearcherMobileAgent or the SpawningSearcherMobileAgent for
carrying out sequential or parallel searching of vendors during the Searching phase;
and the ContractorMobileAgent for carrying out parallel negotiation during the
Contr&Eval phase.

MoveTo_Next_
YPATarget

Request_VAList

Process_YPA_
Reply

MobileConsumerAgent.
Searching

Request_An_Offer
_from_VATarget

Evaluate_
VAOffer

MobileConsumerAgent.
Contr&Eval

MoveTo_Next_
VATarget

Pay_VATarget_
ForProduct

MobileConsumerAgent.
PayFor

MoveTo_VATarget_
Location

MoveTo_APA_
Location

ReportTo_UAA

MobileConsumerAgent.
Reporting

[Searching] [Contracting]

[Reporting]

[Contracting]

[BuyingSoon]

[MovingAndBuying]
[Reporting]

 158 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

Figure 20 The SASD diagram for the MCA and derived agents

ADSC
(from DSC)

DSCAgent
(from DSC)

DSCBehavior
(from DSC)

PCA_ADSC

CMA_ADSC

SSMA_ADSC

PCA_Behavior

ISMA_ADSC

ItineraryConsumerAgent

ISMA_Behavior

SSMA_Behavior

ParallelConsumerAgent

CMA_Behavior

DSCQueue
(from DSC)

MobileConsumerAgent

ItinerarySearcherMobileAgent
0..10..1

SpawningSearcherMobileAgent
0..n0..n

DSCAgentID
(from DSC)

ContractorMobileAgent

1..n1..n

4.3 The Simulation phase

The aim of the Simulation phase is the functional validation of the designed AeM and
the performance evaluation of different types of MCAs for optimisation purposes. In
particular, the functional validation is carried out on the basis of simple simulation
scenarios aiming at validating the behaviour of the agent types, the agent interaction
protocols and the global behaviour of the AeM. The performance evaluation is carried out
to evaluate the completion time of the buying task of different types of MCAs.

In the following subsections, first the refined DSC-based MCAs derived from the
Simulation Model Definition are described (Section 4.3.1); then, the functional validation
(Section 4.3.2) and the performance evaluation (Section 4.3.3) are presented.

 PASSIM: a simulation-based process for the development of MASs 159

4.3.1 DSC-based MCAs

Two types of DSC-based MCAs were obtained according to the adapting Simulation
Model Definition (see Section 3): ICA and PCA. Both ICA and PCA are equipped with
policies for searching and buying (see Table 2) during the Searching and the Contr&Eval
phases, respectively.

Table 2 Searching and buying policies of MCA

Searching Policy (SP) Description

ALL All YPA agents are contacted.

PA-PARTIAL A subset of YPA agents are contacted.

OS-ONE-SHOT Only one YPA agent is contacted.

Buying Policy (BP) Description

MP-Minimum Price The MCA first interacts with all the VA agents; then, it buys the
product from the VA offering the best acceptable price.

FS-First Shot The MCA interacts with the VA agents until it obtains an offer for the
product at an acceptable price, then it buys the product.

FT-Fixed Trials The MCA interacts with a given number of VA agents and buys the
product from the VA which offers the best acceptable price.

RT-Random Trials The MCA interacts with a random number of VA agents and buys the
product from the VA which offers the best acceptable price.

In the following, we focus on the PCA, as the ICA possesses a more simple behaviour,
which is encompassed by the PCA. Figure 21 shows the refined ADSC of the
PCA, which was derived from the MASD, MABD, SASD and SABD diagrams (see
Figures 17–20) of the MCA and from the SABD diagram specific to the PCA (not
reported here for the sake of brevity), which is a specialisation of the SABD diagram of
the MCA.

The messages that the MCA exchanges with the YPA, VA and UAA during its life
cycle, reported in the MABD diagram, are implemented through external events in the
ADSC; the association between messages and events is reported in Table 3 for the
interactions with YPA and VA.

The names of the composite states of the ADSC correspond to the names of the
phases of the MCA shown in the related SABD diagram (see Figure 19). For the sake of
modularity the Searching and Contr&Eval states are embodied in the Search&Buy state.

The activities reported in the SABD diagram are implemented by the action chains of
the ADSC; the association between activities of the SABD diagram and action chains is
reported in Table 4.

 160 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

Figure 21 The ADSC of the PCA

Table 3 Association between the messages of the MABD diagram of the MCA and the ADSC
events of the PCA

MABD message Sender Receiver ADSC event

(Request, VendorsList, RDF) MCA YPA VAListRequest

(Inform, VendorsList, RDF) VA YPA VAListInform

(Query, OfferPrice, RDF) MCA VA OfferPriceQuery

(Inform, OfferPrice, RDF) VA MCA OfferPriceInform

(Request, Payment, RDF) MCA VA PayForRequest

(Inform, Payment, RDF) VA MCA PayForInform

Table 4 Association between the activities of the SABD diagram of the MCA and the ADSC
action chains of the PCA

SABD activity ADSC action chain

MoveTo_Next_YPATarget ac1, ac2

Request_VAList ac3

Process_YPA_Reply ac4

MoveTo_Next_VATarget sa1

Request_An_Offer_From_VA_Target ac5

Evaluate_VAOffer ac6

MoveTo_VATarget_Location ac11

Pay_VATarget_ForProduct ac7, ac8

MoveTo_APA_Location ac9

ReportTo_UAA ac10

 PASSIM: a simulation-based process for the development of MASs 161

The PCA fulfils the searching phase in the Searching state. In particular, as soon as the
PCA is created, it moves (ac1) to the first YPA location and locally interacts (ac2) with
the YPATarget by sending it the VAListRequest event. The YPATarget replies to the PCA
with the VAListInform event, which can contain a list of VAs with the linked YPAs. After
processing the reply (ac3), the PCA can do one of the following:

• Create an Itinerary Searcher Mobile Agent (ISMA), which sequentially moves from
one YPA location to another, if the YPS organisation is of the One-Neighbor
Federated type, and pass (ac4) into the contracting phase as soon as a PList event
sent by the ISMA is received.

• Create M Spawning Searcher Mobile Agents (SSMAs), if the YPS organisation is of
the M-Neighbors Federated type, and pass (ac4) into the contracting phase when all
the PList events sent by the directly created SSMAs are processed. In particular, an
SSMA moves to the assigned YPA and, in turn, creates a child SSMA for each
reachable YPA. This parallel searching technique generates a spawning tree, with
SSMAs as nodes, which is rooted in the PCA. If an SSMA interacts with a YPA
which has already been visited by an SSMA belonging to the same spawning tree,
the YPA notifies the SSMA, which then returns to its parent.

• Directly pass into the contracting phase if the YPS organisation is of the
Centralised type.

• Report an unsuccessful search to the UAA.

The contracting phase accomplished in the Contr&Eval state involves the creation
(ac5) of a Contractor Mobile Agent (CMA) according to the modes reported below. Each
CMA is able to move to the assigned VA location, contract with the VA, and report the
obtained offer. The VA offers (PPrice events) reported by the CMAs are evaluated and a
decision about when and from which VA to purchase is therefore taken (ac6). In the
PayFor state the PCA pays (ac7) the VA using the PayForRequest event, which contains
the bills. After receiving the PayForInform event, the PCA passes (ac8) to the Reporting
state from where it moves back (ac9) to the original APA location and finally reports
(ac10) to its UAA.

When using agent techniques in e-marketplaces, a large number of agents are
generated in the e-marketplace network, which could lead to many problems such as
server loading, network congestion and, more generally, scalability of the whole system
(Leung et al., 2004). So to optimise the performance of the PCA during the Contr&Eval
phase with respect to time and resources, two types of CMAs (see Figure 22) have
been defined:

1 Full Parallel CMA (CMA_FP): The PCA spawns an instance of the CMA_FP for
each VA location so that the CMA_FP contracts with the assigned VA and returns
the obtained offer to the PCA. The advantage of this solution is that CMAs, once
created by the PCA, can soon move to the assigned VA location and contract with
the VA, thus minimising waiting times. However, the creation of a large number of
CMAs on a single agent server can increase the agent server load as well as the
network congestion in the proximity of the agent server. Moreover, if the buying
policy is of the MP type, such a solution is effective; otherwise, such a solution
would create more CMAs than needed.

 162 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

2 Binary CMA (CMA_BIN): After organising the list of the VAs retrieved in the
Search phase as a binary tree, the PCA spawns a CMA_BIN to the VA location, the
root of the tree. A CMA_BIN, in turn, spawns at most two other CMA_BIN agents if
the left and/or right branches/leaves exist. In this operational mode, at most two
agents are created on a single-agent server, reducing the server load due to agent
creation and the network congestion due to agent migration (Wang et al., 2002).
According to the way the CMA_BIN returns the results of the negotiation with the
VA to the PCA, the following types of CMA_BIN have been modelled:

• CMA_BIN_FW_R2PCA: The agent directly reports to the PCA through an
external event. The advantage of this solution rests on its simplicity, whereas if
the number of CMAs created is high, there would be a high number of external
events targeting the PCA, which would become a bottleneck.

• CMA_BIN_FW_R2O: The agent reports to its owner (i.e., the CMA agent that
has spawned it) through an external event. In this way, only the root CMA
reports to the PCA. In this mode, the disadvantage of the previous solution
is avoided.

• CMA_BIN_BW_R2O: The agent reports to its owner (i.e., the agent that has
spawned it) by moving to its site. Also in this case, only the root CMA reports to
the PCA. This operational mode preserves the same advantage as the previous
one and, in addition, can be effectively exploited in case the agents can only
communicate through local interactions (e.g., based on tuple-based systems).

Figure 23 shows the ADSC of the CMA_BIN_FW_R2PCA; the ADSCs of the other
CMA_BINs are variants of the ADSC of the CMA_BIN_FW_ R2PCA. Migration and
child spawning are carried out in the Migrate_And_Create state, whereas negotiation is
carried out in the Contract state. In particular, after its creation the CMA moves to the
location of the assigned VA (ac0), where it tries to spawn two other CMAs, and goes into
the Contract state (ac1). In this state, the CMA sends the OfferPriceRequest event to the
VA (ac2), processes (ac3) the offer contained in the OfferPriceInform event and, finally,
reports to the PCA (ac4).

 PASSIM: a simulation-based process for the development of MASs 163

Figure 22 The SASD of the CMA

ADSC
(f rom DSC)

DSCAgent
(f rom DSC)

DSCBehavior
(f rom DSC)

DSCQueue
(f rom DSC)

DSCAgentID
(f rom DSC)

ContractorMobileAgent

BinaryContractorMobileAgentFullParallelContractorMobileAgent

CMA_FP_Behavior

CMA_FP_ADSC

CMA_BIN_FW_R2PCA

CMA_BIN_BW_R2O

CMA_BIN_FW_R2O

CMA_BIN_FW_R2PCA_Behavior

CMA_BIN_FW_R2PCA_ADSC

CMA_BIN_FW_R2O_Behavior

CMA_BIN_FW_R2O_ADSC

CMA_BIN_BW_R2O_Behaviour

CMA_BIN_BW_R2O_ADSC

Figure 23 The ADSC of the CMA_BIN_FW_R2PCA

 164 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

4.3.2 Functional validation

Functional validation is supported by MASSIMO through the generation of event traces,
which can be analysed off-line to validate agent behaviours, agent interaction protocols
and the behaviour of the whole MAS.

Validation of a single agent type behaviour relies on a simple simulation scenario,
which allows for the generation of the response of the agent behaviour to all
its admissible events. Validation of agent interaction protocols is based on a simple
simulation scenario, which allows for the generation of the flow of events exchanged
between the involved agents. Validation of the whole system is carried out by
setting more complex simulation scenarios. In particular, the simulation scenario for the
validation of the global behaviour of the AeM, also used during the performance
evaluation phase, was set up as follows:

• Each stationary agent (UAA, APA, YPA, VA, BA) executes in a different
agent server.

• Agent servers are mapped onto different network nodes, which are completely
connected through links having the same characteristics and modelling the
communication delay (δ) as a log-normally distributed random variable.

• Each VA is reachable from any YPA and sells the same set of products.

• Each product is always offered by a VA at a fixed price, which is an integer number
uniformly distributed between a minimum (PPMIN) and a maximum (PPMAX).

• The user is willing to pay, for a desired product, a maximum price PMAX, which is an
integer value between PPMIN and PPMAX.

An indirect functional validation of the AeM was carried out by defining the following
index, calculating it through both analytical methods and simulation, and comparing
the results:

• the Probability of Successful Buy (PSB), which is defined as the probability of
successfully buying a desired product within the e-marketplace.

On the basis of the assumptions made for the simulated e-marketplace, PSB can be easily
calculated as follows:

PSB = 1 – [(PPMAX – PMAX)/(PPMAX – PMIN + 1)]V,

where:

V = the number of VAs contacted by the MCA for buying the
 product

PPMAX – PMAX = represents the number of prices that exceed PMAX (i.e., that are
 not acceptable to the user)

PPMAX – PPMIN + 1 = represents the number of all the possible prices for the product.

V depends on the BP adopted by the MCA; in particular, if BP is of the MP type or of
the FS type, V = NVA; if BP is of the FT type, V is VFT = NVA/2 + 1, as in the simulations
the MCA always performs NVA/2 + 1 trials; if BP is of the RT type, V belongs to the
range [1..NVA].

 PASSIM: a simulation-based process for the development of MASs 165

The values of PSB calculated both analytically and through simulation for each
defined BP and with PPMAX = 200, PPMIN = 100, PMAX = PPMIN and NVA = 100 are
reported in Figure 24. It is worth noting that the analytical value for BP = RT
is calculated by using the mean value of the uniform distribution defined in the
range [1..NVA].

Figure 24 Evaluation of PSB for the defined BPs with PPMAX = 200, PPMIN = 100, PMAX = PPMIN
and NVA = 100

Such results confirm that the global behaviour of the AeM is correct and this
confirmation also provides an indirect functional validation of the AeM.

4.3.3 Performance evaluation

The aim of the performance evaluation phase is to evaluate and compare the efficiency
of the five types of MCA (ICA, PCA/CMA_FP, PCA/CMA_BIN_FW_R2PCA,
PCA/CMA_BIN_FW_R2O, PCA/CMA_BIN_BW_R2O) in terms of the following
performance index:

Buy Task Completion Time (TBTC) = TCREATION – TREPORT

where TCREATION is the creation time of the MCA and TREPORT is the reception time of the
MCA report.

Given the scenario described in Section 4.3.2, the evaluation of the TBTC performance
index is focused on an MCA adopting a Searching Policy (SP) of the ALL type and a
Buying Policy (BP) of the MP type (see Table 2); moreover it is supposed that
PMAX = PPMAX, thus always guaranteeing a successful purchase at the best price.

The results, obtained by adopting a YPA organisation in which the YPAs are
logically connected as a binary tree, are reported in Figure 25(a–b) with NYPA = 10 and
varying NVA, where NYPA is the number of the YPAs and NVA is the number of the VAs.

The results show that the PCA outperforms the ICA and that the PCA/CMA_FP
is the better solution from the point of view of time efficiency, even though it suffers
from the resource consumption issues highlighted in Section 4.3.1. It is worth saying that

0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0,40
0,45
0,50
0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95
1,00

MP FS FT RT
BP

PS
B Analytical

Simulation

 166 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

the simulated PCA/CMA_FP is only an ideal implementation and that the obtained
curve is a lower bound for a real implementation of the PCA/CMA_FP. Among the
PCA/CMA_BINs, the PCA/CMA_BIN_FW_R2PCA exhibits better performance even
though it could cause bottleneck issues at the PCA site.

Figure 25 (a) Evaluation of TBTC for the five types of MCA with SP = ALL, BP = MP, NYPA = 10
and variable NVA; (b) Zoom in of the TBTC curves of the PCA/CMA_BIN agents

10000

100000

1000000

10000000

10 100 1000

n° VA

T

ICA
PCA/CMA_FP
PCA/CMA_BIN_FW_R2PCA
PCA/CMA_BIN_FW_R2O
PCA/CMA_BIN_FW_BW_R2O

(a)

(b)

PCA/CMA_BIN_FW_R2PCA

PCA/CMA_BIN_FW_R2O

PCA/CMA_BIN_FW_BW_R2O

13500

14500

15500

16500

17500

18500

19500

20500

21500

10 100 1000

n° VA

T

 PASSIM: a simulation-based process for the development of MASs 167

5 Related work

In the following, we briefly describe some interesting approaches for the development
of agent-based systems which explicitly incorporate simulation (see Table 5). In Sierra
et al. (2004) an integrated development environment for the engineering of MASs as
Electronic Institutions (EIs) is presented. This includes SIMDEI, a simulation tool which
allows for the animation and analysis of the specification of the rules and protocols in an
EI. In Rohl and Uhrmacher (2004) a modelling and simulation framework (DynDEVS)
for supporting the development process of MASs from specification to implementation is
proposed. The exploited simulation framework is JAMES, a Java-Based Agent Modelling
Environment for Discrete Event Systems Specification (DEVS)-based Simulation, which
aims at exploring the integration of the agents paradigm within a general modelling and
simulation formalism for discrete-event systems. In Martelli et al. (1999) a logic-based
prototyping environment for MASs, Complex Application Specification Environment
Based on Logic Programming (CaseLP), is presented. CaseLP integrates simulation tools
for visualising the prototype execution and for collecting the related statistics. In Fortino
et al. (2005a; 2005b) an integrated approach, centred on GAIA and MASSIMO, for the
development and validation through simulation of MASs is proposed and exemplified. In
Gardelli et al. (2005) the authors make a preliminary study on methodological aspects of
the engineering of self-organising MASs. They promote the use of formal tools, such as
stochastic π-calculus process algebra, for simulating the dynamics of MASs at the early
stages of design. The tool is exploited to evaluate different scenarios of an intrusion
detection infrastructure for MASs based on TucSon, which detects malicious agents in an
open context. Sarjoughian et al. (2001) presents a layered architectural framework to
support agent-based system development in a collaborative, multidisciplinary engineering
setting. The framework supports incremental specification, design, implementation and
simulation of agent-based systems. The simulation phase is enabled by Joint Measure
(JM), which is built upon DEVS/HLA, a generic HLA-compliant distributed simulation
environment. Although JM affords a baseline to consider the requirements for agent
development simulation environments, it is not intended to focus on agents per se. In
Pavon et al. (2006) a simulation phase based on the agent-based simulation toolkit Repast
is defined and introduced in the INGENIAS agent-oriented methodology for the
development of MASs. The main objective is to support modelling and simulation of
social systems.

Although the overviewed methodologies offer different approaches to the
modelling and simulation of MAS, all of them use simulation to validate and evaluate
the design of the MAS being developed. Moreover, few of them represent a
full-fledged methodology (i.e., covering all the MAS development life cycle) for
the simulation-driven development of general-purpose MASs as PASSIM. Finally
only PASSIM, Ingenias and EI offer visual modelling tools for supporting the
development process.

 168 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

Table 5 Comparison of simulation-based methodologies for MAS development

Features

Methodology Simulation purpose
Full-fledged
methodology Modelling tools

EI Design support Yes Yes

DynDEVS Design support No No

GAIA/Massimo Design support Yes No

JM-DEVS/HLA Design support No No

Ingenias/Repast Design support Yes Yes

CaseLP Design support No No

Tucson/pi Design support No No

PASSIM Design support Yes Yes

6 Conclusion

This paper has proposed PASSIM, an agent-oriented process for the simulation-driven
development of MASs. PASSIM was created through an experiment in situational
method engineering according to a process-driven approach which allowed to integrate
method fragments deriving from PASSI and the DSC-based simulation methodology.

The proposed case study, which is concerned with an AeM, has highlighted the
efficacy of PASSIM both for the analysis and design of complex MASs and, specifically,
for their simulation-oriented prototyping, which allows for the validation of functional
requirements (agent behaviours and protocols) on the basis of event traces and of
alternative design solutions on the basis of ad hoc defined performance indices.

PASSIM represents a novel contribution to the AOSE research area as it represents a
new tool which promotes experimenting with the prototyping of complex MASs through
simulation, to support the development of higher-quality agent-based software systems.

Currently, research efforts are underway to:

• apply PASSIM in larger case studies in order to prove the efficacy and scalability of
the methodology

• enhance PASSIM for prototyping self-organising MASs

• support PASSIM in the Metameth tool, which is a method engineering tool for
designing and deploying agent-oriented software development methodologies
supporting collaborative and distributed design processes (Cossentino et al., 2006).

 PASSIM: a simulation-based process for the development of MASs 169

References

Bernon, C., Cossentino, M. and Pavón, J. (2005) ‘Agent Oriented Software Engineering’,
Knowledge Engineering Review, Vol. 20, No. 2, pp.99–116.

Brinkkemper, S., Lyytinen, K. and Welke, R. (1996) ‘Method engineering: principles of method
construction and tool support’, International Federation for Information Processing.

Brinkkemper, S., Saeki, M. and Harmsen, F. (1999) ‘Meta-modelling based assembly techniques
for situational method engineering’, Information Systems, Vol. 24, pp. 209–228.

Chella, A., Cossentino, M. and Sabatucci, L. (2003) ‘Designing Jade systems with the support of
case tools and patterns’, Exp Journal, Vol. 3, No. 3, pp.86–95.

Christie, A.M. (1999) ‘Simulation – an enabling technology in software engineering’, Technical
Article, The Software Engineering Institute (SEI), Carnegie Mellon University, http://www.sei
.cmu.edu/publications/articles/christie-apr1999/christie-apr1999.html.

Cossentino, M. (2005) ‘From requirements to code with the PASSI methodology’, in
B. Henderson-Sellers and P. Giorgini (Eds.) Agent-Oriented Methodologies, Hershey, PA:
Idea Group Inc.

Cossentino, M., Garro, A., Gaglio, S. and Seidita, V. (2007) ‘Method fragments for agent
design methodologies: from standardization to research’, Int. J. Agent-Oriented Software
Engineering, to appear.

Cossentino, M., Sabatucci, L. and Chella, A. (2003) ‘A possible approach to the development of
robotic multi-agent systems’, Proc. of IEEE/WIC Conf. on Intelligent Agent Technology
(IAT’03), Halifax, Canada.

Cossentino, M., Sabatucci, L., Seidita, V. and Gaglio, S. (2006) ‘An agent oriented tool for new
design processes’, Proc. of Fourth European Workshop on Multi-Agent Systems (EUMAS’06),
Lisbon, Portugal.

Feldman, S. (2000) ‘Electronic marketplaces’, IEEE Computing, Vol. 4, July–August, pp.93–95.

Fortino, G., Garro A., Mascillaro, S. and Russo, W. (2007) ‘ELDATool: a statecharts-based tool for
prototyping multi-agent systems’, Proc. of the Workshop on Objects and Agents (WOA’07),
Genova, Italy, 24–25 September.

Fortino, G., Garro, A. and Russo, W. (2005a) ‘A discrete-event simulation framework for the
validation of agent-based and multi-agent systems’, Proc. of the Workshop on Objects and
Agents (WOA’05), Camerino, Italy, 14–16 November.

Fortino, G., Garro, A. and Russo, W. (2005b) ‘An integrated approach for the development and
validation of multi agent systems’, Computer Systems Science & Engineering, Leicester, UK:
CRL Publishing Ltd., July, Vol. 20, No. 4, pp.94–107.

Fortino, G., Russo, W. and Zimeo, E. (2004) ‘A statecharts-based software development process
for mobile agents’, Information and Software Technology, Amsterdam, the Netherlands:
Elsevier, Vol. 46, No. 13, pp.907–921.

Foundation for Intelligent Physical Agents (FIPA) (2001) FIPA RDF Content Language
Specification. Foundation for Intelligent Physical Agents, Document FIPA XC00011B
(2001/08/10), http://www.fipa.org/specs/ fipa00011/XC00011B.html.

Foundation for Intelligent Physical Agents (FIPA) (2002) FIPA Agent Management Support for
Mobility Specification, Document FIPA DC00087C (2002/05/10).

Gardelli, L., Viroli, M. and Omicidi, A. (2005) ‘On the role of simulation in the engineering of
self-organising systems: detecting abnormal behaviour in MAS’, Proc. of Workshop on
Objects and Agents (WOA’05), Camerino, Italy, pp.85–90.

Guttman, R.H., Moukas, A.G. and Maes, P. (1998) ‘Agent-mediated electronic commerce:
a survey’, The Knowledge Engineering Review, Vol. 13, pp.147–159.

Harel, D. and Gery, E. (1997) ‘Executable object modelling with statecharts’, IEEE Computer,
Vol. 30, No. 7, pp.31–42.

 170 M. Cossentino, G. Fortino, A. Garro, S. Mascillano and W. Russo

Harmsen, F. and Brinkkemper, S. (1995) ‘Design and implementation of a method base
management system for a situational CASE environment’, Proceedings of the 2nd
Asia-Pacific Software Engineering Conference (APSEC’95), Brisbane: IEEE CS Press,
pp.430–438.

Henderson-Sellers, B. (2003) ‘Method engineering for OO systems development’, Communications
of the ACM, Vol. 46, No. 10, pp.73–78.

Leung, C.S., Sum, J., Shen, H., Wu, J. and Young, G. (2004) ‘Analysis and design of an agent
searching algorithm for e-marketplaces’, Cluster Computing, Vol. 7, pp.85–90.

Luck, M., McBurney, P. and Preist, C. (2004) ‘A manifesto for agent technology: towards
next generation computing’, Autonomous Agents and Multi-Agent Systems, Vol. 9, No. 3,
pp.203–252.

Maes, P., Guttman, R. and Moukas, A. (1999) ‘Agents that buy and sell: transforming commerce as
we know it’, Communications of ACM, Vol. 42, No. 3, pp.81–91.

Martelli, M., Mascardi, V. and Zini, F. (1999) ‘Specification and simulation of multi-agent systems
in CaseLP’, in M.C. Meo and M. Vilares-Ferro (Eds.) Proc. of Appia-Gulp-Prode Joint Conf.
on Declarative Programming, L’Aquila, Italy, pp.13–28.

Mayrhauser, A. (1993) ‘The role of simulation in software engineering experimentation’,
Experimental Software Engineering Issues: Critical Assessment and Future Directions,
Proceedings of the International Workshop, LNCS 706, Dagstuhl Castle, Germany,
14–18 September 1992.

Pavon, J., Sansores, C. and Gomez-Sanz, J. (2006) ‘Modeling of social systems with Ingenias’,
Proc. of 1st Workshop on Multi-Agent Systems and Simulation (MAS&S’06), Palermo, Italy.

Ralyté, J. and Rolland, C. (2001) ‘An assembly process model for method engineering’,
Proceedings of the 13th Conference on Advanced Information Systems Engineering, CAISE01,
Interlaken, Switzerland, pp.267–283.

Resource Description Framework (RDF) (1999) Model and Syntax Specification, W3C
Recommendation, 22 February, http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

Ripper, P.S., Fontoura, M.F., Maia Neto, A. and de Lucena, C.J.P. (2000) ‘V-Market: a framework
for agent e-commerce systems’, World Wide Web, Vol. 3, pp.43–52.

Rohl, M. and Uhrmacher, A.M. (2004) ‘Controlled experimentation with agents – models and
implementations’, Proc. of 5th Int’l Workshop Engineering Societies in the Agents World,
Toulouse, France, 20–22 October.

Royce, W. (1970) ‘Managing the development of large software systems’, Proceedings of IEEE
WESCON, 26 August, pp.1–9.

Sarjoughian, H.S., Zeigler, B.P. and Hall, S.B. (2001) ‘A layered modeling and simulation
architecture for agent-based system development’, Proceedings of the IEEE, Vol. 89, No. 2,
pp.201–213.

Sierra, C., Rodríguez-Aguilar, J.A., Noriega, P., Esteva, M. and Arcos, J.L. (2004) ‘Engineering
multi-agent systems as electronic institutions’, Novática, Vol. 170.

Software Process Engineering Metamodel Specification (SPEM) (2006) Version 2.0, 06-11-03,
Object Management Group Inc.

Uhrmacher, A.M. (2002) ‘Simulation for agent-oriented software engineering’, Proc. of
1st Int’l. Conference on Grand Challenges for Modeling and Simulation, San Antonio, Texas,
USA, 27–31 January.

Wang, Y., Tan, K-L. and Ren, J. (2002) ‘A study of building internet marketplaces on the basis of
mobile agents for parallel processing’, World Wide Web: Internet and Web Information
Systems, Vol. 5, No. 1, pp.41–66.

Wooldridge, M. (2002) An Introduction to Multiagent Systems, John Wiley & Sons Ltd.

Zambonelli, F. and Omicini, A. (2004) ‘Challenges and research directions in agent oriented
software engineering’, Autonomous Agents and Multi-Agent Systems, Vol. 9, No. 3,
pp.253–284.

