A Goal-Oriented Approach for Self-Configuring
Mashup of Cloud Applications

Luca Sabatucci*, Salvatore Lopes*and Massimo Cossentino*
* ICAR-CNR, Palermo, Italy
Email: {sabatucci,s.lopes,cossentino } @pa.icar.cnr.it

Abstract—This paper presents a general approach for auto-
matic composing mashups of applications distributed over the
cloud. The approach implies to wrap existing services in smart
and autonomic entities, namely cloud capabilities. These are
able to interact and coordinate themselves in order to establish
different ways to orchestrate their contained services. The main
enabler of this technology is based on an explicit distinction
between user’s goals and the way to address them. A couple of
language has been adopted to describe respectively the mashup
logic in terms of goals and the available functionalities in terms of
capabilities. A running example has been developed for extending
B2B business processes of a fashion enterprise.

I. INTRODUCTION

The market turbulence of recent years is an indication of a
new phase of globalization, one in which the ability to satisfy
customer expectations in a quickly changing environment is
the core differentiator for enterprises [1]. Companies require
ways to make their processes more flexible opening, at the
same time, their business process to the direct access of users.

Technology can play an important supporting role in en-
abling organizations to become more agile. In particular, Cloud
computing focuses on maximizing the effectiveness of shared
resources and information (that are provided to users on-
demand) reducing the overall cost by using less power, air
conditioning, rack space, etc.

Despite the fact that Cloud computing is a model for
enabling ubiquitous, convenient, on-demand network access,
Cloud applications are currently developed as monolithic so-
lutions tethered to proprietary stack architectures in which the
provider typically runs all elements of the service [2]. These
architectures may represent a barrier for third-part developers
to mix and match services freely from diverse cloud service
levels to configure them dynamically to address application
needs [2].

The objective of Cloud Application Mashup is to enable
easier customization and composition of SaaS applications
from several providers by providing a cohesive solution that
offers improved functionality to clients. The mashup task
involves complex protocols with an automatic data and process
integration, and preserves global application consistency.

So far, mashup is mainly intended as an instrument for web
developers for integrating content from more than one source
in a new single graphical interface. A representative example
is HousingMaps (http://www.housingmaps.com), which com-
bines rental listings from a popular advertisements website
with Google Maps for providing a visual representation of

local apartments for rent. Other common examples are online
magazine that include buttons for social sharing (for instance:
The New York Times (http://www.nytimes.com), CNN.com
(www.cnn.com), BBC (http://www.bbc.com).

Now we are moving towards a variety of web service that
run over the Cloud as SaaS. Notable examples are: Google
Applications, Dropbox, Microsoft Office365, the mashup tech-
nology is evolving for mixing processes together with data and
user interfaces.

This paper presents an approach for automatically generat-
ing Cloud Application Mashup. The vision is that Mashups
are created for the consuming user, often directly by the
users themselves, so that they can take advantage of soft-
ware licensing and billing model based on the pay-per-use
concept. Therefore users will establish or modify situational
collaborations for integrating services from a variety of cloud
providers. Cloud services should be available on public cloud
marketplace in which providers store their offerings. Clients
can discover and buy the needed services to use for their
own mashup. Therefore, a mashup self-composition engine
should act as a run-time mediator between user’s goals and
atomic cloud services in order to realize the desired mashup
application.

In recent works we have adopted GoalSPEC [9], a goal-
oriented [3] language in order to describe the expected be-
havior of a complex distributed system in terms of states to
be addressed. The algorithm for automatically selecting and
aggregating services in order to address user’s goals has been
presented in [11]. However the main limit of that algorithm
relies on the centralized logic and in particular it is the
difficulty in scaling up for an increasing number of goals and
services.

The main contribution of the paper is a three-layer ar-
chitecture for implementing Cloud Capability and supporting
cloud application mashup. A cloud capability is a smart
and autonomous container of traditional web services. It is
a lively application, running at SaaS level, inspired by the
principle of autonomic computing: sensing the environment,
making proactive decisions and interacting with other cloud
capabilities in order to organize a coordinated behavior. To
enable the automatic composition of services, these must be
available together with relevant aspects for their integration
and usage through ad-hoc description languages. We adopted a
capability description language that exploits predicate logic in
order to specify when and how to use a service. Decoupling the

specification of what the system has to do (user’s goals) from
how it will be done (capabilities) allows the self-configuration
engine to compose the expected behavior on the occurrence.

As a running example we report the case of cloud mashup
built for a fashion enterprise. The B2B process is described
through a set of goals that are introduced into the system thus
to become a stimulus for self-configuring ad-hoc solution.

The marketplace has been instrumented with a sufficient set
of services for addressing the request. Therefore, by exploiting
their self-configuration protocols, it is responsibility of the
corresponding cloud capabilities to configure the expected
B2B mashup.

We envisage this approach could have substantial impact
for IT by improving the return-on-assets of the existing
systems. Self-configured Mashup is a facilitator for fast and
flexible B2B collaboration (short development cycles, cheap
development) whereas existing B2B collaboration solutions
focus on long-term business relationships [4]. Short and cheap
development cycles make B2B solutions available for small
and medium enterprises.

The paper is organized as follows: Section II presents the
main concepts of the approach: state, goal, capability and
configuration. Section III presents a real scenario occurred
during a research project and introduces the elements for
enabling the self-configuration. Section IV illustrates details
of the self-configuration module: the three layer-architecture
and the cloud capability. Section V focuses on the self-
configuration distributed process, whereas Section VI explains
the dynamic workflow generation related to a mashup. Related
works are discussed in Section VII whereas conclusions are
given in Section VIIL

II. PRELIMINARY DEFINITIONS AND CONCEPTS

In this subsection we introduce some of the main concepts
that are used along the paper.

A State of the World is an abstraction made to let the
system reasoning at the knowledge level [5]. It arises from the
consideration that a software system has (partial) knowledge
about the environment in which it runs. The classic way for
expressing this property is (Bel a) [6] that specifies that
a software agent a believes ¢ is true, where ¢ is a fact
that describes a generic state of affair. This is similar to the
concept of fluent found in situation calculus. The definition of
relevant and coherent states of the world requires a preliminary
analysis of the domain that is perfectly captured in a ontology
describing classes, properties and individuals of interest. The
proposed approach is independent on the specific instrument
chosen to model the domain (e.g. OWL-S [7], POD [8]).

Definition 1 (State of the World): The state of the world
in a given time ¢ is a set Wy C S where S is the set of all
the non-negated facts s1, S2 ... s, that can be used in a given
domain.

W, has the following characteristics:

Wy ={s; € S|(Bel a s;)} (1)

where a is the subjective point of view (i.e. the execution
engine) that believes all facts in W, are true at time ¢.

A Capability is a self-contained process, which can access
and modify the current state of the world. These are used
as wrappers for coordinating existing cloud applications and
services. The capability also has the advantage of being
composable in order to address a complex result.

Definition 2 (Capability): A capability (evo,pre,post) is
an atomic and self-contained action the system may inten-
tionally use to address a given evolution of the state of the
world. The evolution, denoted as evo : W — W is an
endogenous change of the state of the world that takes a
state of the world W; and produces a new different state
of the world W;;; by manipulating statements in W;. The
capability may be executed only when a given pre-condition
is true (pre(W}) = true). Moreover, the post-condition is a
run-time helper to check if the capability has been successfully
executed (post(Wi41) = true).

The concept of Goal is often used in the context of business
processes for representing enterprise strategic interests that
motivate the execution of a specific workflow [3]. It is “a
desired change in the state of the world an actor wants to
achieve”.

Definition 3 (Goal): A goal is a pair: (tc, fs) where tc and
fs are conditions to be evaluated over a state of the world.
Respectively the tc describes when the goal should be actively
pursued and the fs describes the desired state of the world.
Moreover, given a W; we say that

the goal is addressed iff tc(Wy) A fs(Wiyr) where k > 0
2

i.e. a goal is addressed if and only if, given the trigger
condition is true, then the final state must be eventually hold
true somewhere on the subsequent temporal line.

The user should specify his mashup application by means
of a goal-set.

A Configuration is defined as a set of tuples of type
(g, h) that fully address the goal-set specified by the user,
where for each goal g of the goal-set, h is a simple or
composed capability selected for addressing it. In other words
a configuration associates each goal of the goal-set with
a simple or composed capability. The main property of a
configuration is that executing its capabilities will address
the whole goal set. Section VI provides details about how
to convert a configuration into a executable workflow.

Section V illustrate the central part of the paper, i.e. how
system may generate configurations as response to user’s
goals.

III. AN EXAMPLE OF CLOUD APPLICATION MASHUP

This section provides an overview of the self-configuration
process by means of a running example extracted from the
activities conducted in the OCCP research project'.

I'The OCCP project web-page is available at http:/aose.pa.icar.cnr.it/ OCCP/

OrderPortal

T o | LA ST) AT o
<

1 ovos0s [6

[] T T T
o «

1 0/09/201

= i > D R

3 soroc-ms o 12as: KN
2l

CARDIGAN VENETICO

o
S
=

Rosa

o1 I [F Ao070c - mis 70 12111

Fig. 1. Screenshot of the website hosted and managed by the OrderPortal
Capability.

A. A B2B Cloud Application for Fashion Firms

A world known fashion enterprise, here named FashionFirm
for privacy reason, uses a legacy system (IBM AS/400) for
managing its information system. In order to enlarge its
commercial network, FashionFirm designated a small software
house, denoted as SWHouse, for handling its B2B processes.
SWHouse developed a system on a set of services running on
a cloud stack. That is, a set of scalable backend services able
to interact with the legacy system from one side and with
a SaaS eCommerce platform (OrderlPortal) from the other
side. SWHouse is demanded also to enrich the FashionFirm
business process by adding new services for customer man-
agement.

These new services are conceived as mashup of cloud
application with the aim to improve the costs-benefit ratio.
In fact, this allows SWHouse to fast prototype the solution
reusing already existing cloud application provided by third
parts (Cloud Calendar, File Storage, Voicemail ...). The result-
ing mashup application that will be used as running example
in this paper is designed for supporting customers during
the order management process. In particular, RetailStore is
a retailer of FashionFirm products. When RetailSore requests
for a product stock through the OrderPortal, the system merges
the legacy services with external applications provided by
cloud computing providers: a Cloud Storage system is used
for storing and delivering receipts to RetailSore, Voicemail
for communicating the delivery status and, finally, a Cloud
Calendar service for annotating the delivery status.

B. Elements for Self-Configuration

The domain expert has to choose the entities and the
related properties necessary to model the above scenario. This
conceptual model of a domain is rendered as an ontology and
it is composed of entities, entity’s properties and is-a, has-a
relationships. The entities and related properties used in the
running example are reported in the following list:

entities:

role, document,

user [is-a role],
storehouse_manager [is-a role],
order [is-a document],

invoice [is-a document],
delivery_order [is-a order],
rxfile [is—a URL]

unary user’s properties:
registered,
has_cloud_space

unary document’s properties:
uploaded_on_cloud

unary order’s properties:
available, accepted, refused

binary properties:
notified(document,user),

mailed_perm_link (document,user) [is—-a notified]

For instance the class user denotes FashionFirm’s users,
whereas the class order denotes a complex description of items
and quantity that a user wants to buy from FashionFirm.

The developer uses the ontological description of the sce-
nario for defining the desired mashup by means of a set of
goals to pursue. An automatic tool for deriving the Goal
decomposition from an ontological model is reported in [8],
whereas a language for describing GOAL is reported in
[9]. The corresponding GoalSPEC definition for the running
example is reported in the following list:

GOAL to_wait_order:
WHEN MESSAGE order RECEIVED FROM THE user ROLE
THE SYSTEM SHALL ADDRESS available (order)

GOAL to_notify_invoice:
WHEN available (user) AND available (invoice)
THE SYSTEM SHALL ADDRESS
MESSAGE invoice SENT TO THE user ROLE

GOAL to_deliver_order:
WHEN MESSAGE invoice SENT TO THE user ROLE
THE SYSTEM SHALL ADDRESS
MESSAGE deliveryorder SENT TO THE storehouse_manager
ROLE

GOAL to_notify_ failure:
WHEN available (order) AND refused(order)
THE SYSTEM SHALL ADDRESS
MESSAGE failure SENT TO THE user ROLE

In the above listing, all the words in upper case are keywords
of GOALSpec language whereas the word in lower case are
entities or properties anchored to the ontological description.
The GOALSpec description specifies what should be done
for ensuring the correct execution of the order management
process.

It is clear that there must be a cloud application or a
combination of cloud applications that effectively satisfies
each single goal. In order to automatically select and bind
services to user’s goals, the self-configuration requires addi-
tional information about available services. This meta-data is
provided by means of the capability language.

First, the order must be processed via the eCommerce web-
site (order_portal). The OrderPortalMonitor Capability
is responsible of hosting the website and to wait for new orders
from users.

CAPABILITY OrderPortal:
Pre-Condition: —-—

Post-Condition: available (order)
Evolution: [add(available (order))]

A screenshot of the eCommerce website managed by this
capability is shown in Figure 1.

The availability of products in the FashionFirm storehouse
must be controlled by means of the CheckStoreHouse capa-
bility.

CAPABILITY CheckStorehouse:
Pre-Condition: available (order)

Post-Condition: accepted(order) OR refused(order)
Evolution: [add(accepted(order)),add(refused(order))]

If the requested products are available, the corresponding
invoice should be delivered through the UploadOnCloudStor-
age. In alternative, the invoice is stored locally and a link
will be communicated to the user via mail). Figures 2 and
3 show respectively the UploadOnCloudStorage working with
the commercial Dropbox API? and the ShareFileLink that uses
Google Drive services® to send the notification.

CAPABILITY UploadOnCloudStorage:
Pre-Condition: available (invoice)

Post-Condition: uploaded_on_cloud(invoice)
Evolution: [add(uploaded_on_cloud(document))]

CAPABILITY ShareFileLink:
Pre-Condition: uploaded_on_cloud (document)
Post-Condition: mailed_perm_link (document,email)
Evolution: [add(mailed_perm_link (document,email)),
add (sent (document, user))]

23 FashionFirm Service - Dr.

= i Upload On Cloud Storage |

& Dropbox, Inc [US] https://www.dropbox.com/

> < . . .
%> FashionFirm Service

invoice_20151127101750.pdf 33 secs ago

Fig. 2. Screenshot of the front-end of the UploadOnCloudStorage Capability
implemented through the Dropbox services.

“« a (1] [} [7] L Y More.

Share File Link |
-

nvoice notification inbox x
FashionFirm Customer Service <= T == —= 10:21 (2 minutes ago) «
tome [~

https://www.dropbo; 49779806 pdf?dI=0

Terms - Privacy

0GB (0%) of 15 GB used
Manage Last account activity: 2 minutes ago
Details

Fig. 3. Screenshot of the front-end of the ShareFileLink Capability realized
through the Google Apps service.

Zhttps://www.dropbox.com/developers-v1/core/docs
3https://developers.google.com/drive/v2/reference/

~a
<= request(order)
<-

timeout
o pre: available(order)
! retrieve_user_data(order,user)

!register_user(user)

pre: registration_sent(user)
<= user_data(user)

pre: available(order)
AND registered(user)
! check_storehouse(order)

pre: new(user)
! send_reg_form(user)

pre: accepted(or_der)

X) pre: refused(order)
! generate_invoice(order, invoice)

! notify_stock_failure(order)

pre: available(invoice)
AND NOT has_cloud_space(user)

pre: available(invoice) AND has_cloud_space(user) 1 upload_on_cloud(invoice, system_space)

! upload_on_cloud(invoice,email)

pre: uploaded_on_cloud(invoice)
! share_link_file(rx_file,email)

pre: notified(invoice,user)
! notify_storehouse_manager(order)

Fig. 4. Transition system for the B2B scenario. Transitions are due to cloud
capabilities. Prefixes ! and <= indicate respectively an internal event (i.e. the
execution of a service) and and external event (i.e an incoming message).

It is worth to detail the link between capabilities and web
services. During the self-configuration phase all the available
capabilities in the repository are automatically checked against
their compatibility to the requested goal. The way the au-
tomatic self-configuration happens is reported in Section V.
The chosen capabilities are linked to the corresponding web
services during the orchestration phase (Section VI).

C. Resulting Configurations

The self-configuration phase consists in building the state
transition system by exploiting available capabilities. A state
transition system is a common model used to formally depict
the behavior of discrete systems. The self-configuration phase
manages the dynamic binding between goals and capabilities
by building a state transition system. This transition system
is exploited for configuring a suitable system behavior for the
assigned goal-set.

A relevant part of the transition system for the B2B scenario
is reported in Figure 4. This graph’s nodes represent possible
(stable) states of the system. The transition from a state to
another state is either due to an external event (denoted with
<=) or due to the execution of a web service (internal event,
denoted with !). Initially the system is in a state in which it
waits for user orders from the order_portal service. When
an order incomes then the system retrieves user’s data from a
database. Here, if the user is not already registered then the
system initializes a registration procedure (send_reg_form
and register_user services), otherwise the order is
checked over the storehouse database (check_storehouse
service) thus to be processed until the ordered products are
ready to be delivered (notify_storehouse_manager
service).

An interesting part of Figure 4 is that in which the invoice
is ready to be sent (after the generate_invoice service)

and the system must send it to the user. Here, combining
the available capabilities, the system has two choices: ei-
ther to directly upload the file on the user’s cloud storage
(upload_on_cloud service) or to locally store the file and
to send a mail containing the file’s url (obtained by comb-
ing the upload_on_cloud and the share_link_file
services).

We highlighted this situation because in points like this the
system is able to generate different behaviors for addressing
the same goals. Configurations capture this kind of variability
that is fundamental to customize the final system.

For instance, the self-configuration phase for the running
example results in three different configurations, each of them
resolving the order management process by employing a
different set of capabilities. These are extracted as subset of
the reported graph and listed below.

Configurationl
to_wait_order <-- !wait_order,
!retrieve_user_data
to_notify_invoice <-- !check_storehouse,
!generate_invoice,
'upload_on_cloud
to_deliver_order <-- !notify_ storehouse_manager
to_notify failure <-- !notify_stock_failure
Configuration2
to_wait_order <-- !wait_order,

!retrieve_user_data,
!'send_reg_form,
'wait_user_data
to_notify_invoice <-- !check_storehouse,
!generate_invoice,
'upload_on_cloud
to_deliver_order <-- !notify_storehouse_manager
to_notify_failure <-- !notify_stock_failure

Configuration3
to_wait_order <-- !wait_order,
!retrieve_user_data

to_notify_invoice <-- !check_storehouse,
!generate_invoice,
'upload_on_cloud,
!'share_file_link

to_deliver_order <-- !notify_storehouse_manager

to_notify_failure <-- !notify_stock_failure

IV. THE PROPOSED MODEL FOR SELF-CONFIGURATION

This section illustrates an approach to domain-independent
self-configuration of cloud applications. Self-configuration is
intended as the ability to automatically aggregate and con-
figure a set of services thus to ensure the correct global
functioning with respect to defined user’s goals [10].

A. A Three-Layered Architecture for Self-Configuration

The proposed approach is structured in three inter-operating
functional layers: the goal layer, the capability layer and the
service layer.

The uppermost layer of this architecture is the Goal Layer
in which the user may specify the expected behavior of the
system in terms of high-level goals. Goals are not hard-
coded in a static goal-model defined at design time. The goal
injection phase allows the introduction of user-goals defined
at run-time. Goals are interpreted and analyzed and therefore
trigger the need of the system to generate a new configuration.

The second layer is the Capability Layer, based on solving
at run-time the problem of Proactive Means-End Reason-
ing [11]. It aims at selecting the capabilities (and configuring
them) as a response to requests defined at the top layer.
This corresponds to a strategic deliberation phase in which
decisions are made according to the (often incomplete) system
knowledge about the environment. The output is the selection
of a set of capabilities that will form a correct and effective
business process. This is obtained by instantiating system
capabilities into business task and associating capability pa-
rameters with data objects. In this phase the procedure also
specifies dependencies among tasks and how data items are
connected to task input/output ports.

The third layer is the Service Layer, it manages and inter-
connects autonomous blocks of computation thus generating a
seamless integration for addressing the desired result specified
at the first layer. Section VI describes the run-time orchestrator
that executes the business process generated at the second layer
by interacting with the corresponding cloud applications and
web-services.

B. Implementing the Cloud Capabilities

The aforementioned high-level architecture is actually de-
ployed though a distributed system of software entities namely
Cloud Capabilities.

Whereas traditionally services and cloud applications are
passive entities that act when receive the control [7], [12],
cloud capabilities are lively cloud applications (running at
SaaS) inspired to the principles of autonomic computing. Each
cloud capability keeps its own control, it is able of sensing
the surrounding environment, making proactive decisions, and
interacting with other capabilities for organizing a common
behavior [11], [13].

From the developer’s point of view, a cloud capability is a
facilitator for quickly implementing cloud applications with
high level features such as autonomy, proactiveness, self-
organization and logic reasoning. In a mashup, a capability
acts as a stateful wrapper for a specific web service or a cloud
application.

We implement a cloud capability through two components
as shown in Figure 5: a general-purpose reusable core and a
service customized part. The core provides a generic set of
APIs to support the three-layered architecture shown in the
previous section:

« Goal Management: some facilitators to handle the inter-
pretation of single goals in GoalSPEC and to manage the
whole goal-set;

o a Self-Configuration module that exploits a logic-based
reasoner (to handle the matching between goals and
capabilities) and some self-organization protocols (to
collaboratively generate configurations);

o an Adaptive Orchestrator responsible of translating a
configuration into an operative plan and to enact the
corresponding workflow in a dynamic environment.

The customizable part of a capability allows to set up the

generic ‘core’ for working with a specific service (either web-

Cloud Capability Customization
Service Service Protocols
Semantic Interface
o L to Use
Description Description
Cloud Capability Facilities
Self-Configuration
User’s Goal Adaptive
Management Logic Reasoner Orchestration
Self-Organization

Fig. 5. Internal Architecture of a Cloud Capability.

service or cloud application). The Service Interface Descrip-
tion allows to specify how to manage the service wrapping
(service input/output ports), including how to maintain a state
for the correct functioning of stateful services. The Protocol
to Use (HTTP/ HTTPS/ SOAP ...) may be selected among
pre-defined ones, even if new ones may be programmed
from scratch to occurrence. Finally, the Service Semantic
Description allows to specify information related to the self-
configuration phase such as pre/post conditions and evolution
(as described in Section II).

For instance, UploadOnCloudStorage is a wrapper for
a generic REST file storage service on the cloud
(upload_on_cloud(file,user_account)) that re-
quires defined parameters and produces a remote clone of
a local file by returning a unique id that identifies that
remote object. The following first-order predicate represent
the cloud capability customization part for the aforementioned
capability.

capability (upload_on_cloud_storage,

% semantic description

precondition (available (document)),
postcondition (uploaded_on_cloud (document)),
evolution (add (uploaded_on_cloud(document))),

% service interface

method (https, put),

address (https://content.dropboxapi.com/1/files_put/

auto/),

input ([
param(local_file,file),
param(remote_file_path,rxfile)]),

output ([param(metadata, json_file_descriptor)l]),

% protocols
service_protocol (rest),
require_auth (ocauth20)

The first compartment (semantic description) contains ex-
actly information already discussed in Section III-B: pre/post
conditions and evolution. The second compartment (service
interface) specifies which method to use for the service invoca-
tion, the address for reaching the service and any input/output
ports to provide for a correct invocation. Finally the latter
compartment (protocols) indicates that the service call must
follow the REST protocol and the consequent request should
be signed (it requires a preliminary OAuth authentication).

V. SELF-CONFIGURING A MASHUP

This section focuses on the central layer of the presented
architecture, and in particular on the strategy adopted for
automatically establishing run-time links between user’s goals
and the available capabilities. Please, refer to [9] and [13] for
more details about GoalSPEC (goal layer) and self-adaptation
(service layer), respectively.

Here the problem is, for each goal g;, to discover which
sequence of capabilities may be employed for satisfying
Equation 2.

In other words, invoking a single service produces changes
in the state of the world that are specified in the corresponding
capability’s property evolution. This describes the expected
changes in terms of add and delete operators that respectively
add new statements to the state of the world, or delete existing
statements, for producing the resulting state.

Consequently, executing a sequence of capabilities pro-
duces a multi-step evolution of the state of the world i.e
e = {Wy,Ws,...,W,}. Such evolution e satisfies a goal
when the goals’ trigger condition is satisfied in Wy, € e,
and the final state eventually holds later in some subsequent
state: Wyo € e: k2 > k1.

A. The Proposed Strategy for Self-Configuration

The possible evolution paths of a system are modeled as
a state transition system (Figure 4) where nodes are states
of the world and transitions are due to the execution of
capabilities. We refer to this structure with the name of world
transition system (WTS, hereafter). The WTS is built with the
contribution of a subset of the available cloud capabilities.

The WTS is implemented as a blackboard cloud service, i.e.
accessible by all the capabilities, so that every cloud capability
may add new nodes and transitions in a collaborative fashion.
However, in order to avoid the concurrent modification of
the same WTS, cloud capabilities enforce a blind auction
protocol [14] for deciding the priority of write access, as
described herein.

The blackboard service allows users to register a new goal-
set. When this happens it creates a new shared WTS that only
contains the initial state of the world node. Subsequently it
starts a cycle of auctions, playing the role of auctioneer, and
it periodically sends a call-for-bids to any potentially interested
capability.

At the same time, each cloud capability starts an expand-
and-evaluate cycle, working on the portion of WTS already
available. They concurrently produce new states and transi-
tions that are privately stored. These new states are evaluated
with respect to the goals, according to a global scoring
function. This is used for predicting how much the new state
is promising with respect to the goal-set.

Periodically, when a new call-for-bid incomes, each cloud
capability selects the most promising state it has generated
during past expand-and-evaluate iterations. The state score is
used for setting a bid for participating to the auction. Who
wins the auction gains the permission to update the WTS.

b) generating
new nodes

a) selection of
the
highest
scored node

()
()

“’@ Visited
score = 2,5
1 (o)
Wi
[WTS blackboard]

[private data structure]

evaluatmg and again
score = a)
7 score -3,1 AUCTION
G1’TC PHASE score = 3,1
15 sat utility 1
4,1 !
Yor‘e =1 Wi
[private data structure] [WTS blackboard]

Fig. 6. Steps of the Expand and Evaluate Strategy.

This strategy rewards those capabilities that promise to
improve the WTS by increasing the global goal satisfaction.

B. The Expand-and-Evaluate Cycle

When a user specifies a goal-set to address, cloud capa-
bilities enters in an expand-and-evaluate cycle, working with
the WTS in read-only access. The cycle is described in the
following.

1) The capability selects those nodes of the WTS that satisfy
its pre-conditions;

The capability picks the most promising node, among the
selected ones (Figure 6.a);

The capability simulates the effects of its wrapped service
by generating new states through the evolution property
(Figure 6.b).

The capability generates a score for each new node and
stores them in a private data structure. The more the state
of the world is close to addressing some goals, the higher
is the score assigned to it (Figure 6.c); a node is also
marked as T'C'_holds; or F'S_holds; if the node satisfies
respectively the triggering condition 7T'C}; or the final state
F'S; of the goal g;.

2)

3)

4)

C. The Global Scoring Function

The aim of the scoring function is to predict how much a
state of the world is near to the final state where a goal is
satisfied. The principle is that a state of the world is described
by a set of numerable statements. We defined a function that
evaluates the potential impact of each of these statements for
addressing a goal. To the aim of producing a quantitative
measurement, the function rewards statements that provide a
positive impact to a goal and it penalizes statements that do
not provide a positive impact to a goal.

The function is defined as follows:

>

9i

1+ num_rel_stats(W, g;)
num_stats(W)

score(W) 3)

where, given a state W, num_rel_stats(W, g;) is defined
as the number of statements contained in W N (T'C, U
F'S,,), whereas num_stats(WV) is the cardinality of W, i.e.
the number of statements contained in W. For instance, if

W = {s1,52,83,84,85} and ¢ (sa N 83,84 V s5) then
num_stats = 5 and num_rel_stats = 3 because {sa, S4, 55}

are relevant for g.

The SCORE function

1.0

num relevant

statements
N — o0
--1
\ . N 2
. ~ e 3

0.8

N L ~< -4

score
0.6

0.4

0.2
|

num statements

Fig. 7. Line chart of the score function highlights trends of the value when
making either num_stats(W) or num_rel_stats(W, g) constant.

Figure 7 illustrates Function 3 plotted as a stacked line
chart for highlighting the score trends. Setting to constant the
num_stats in the formula, the score is higher the more the
statements are relevant for the goal satisfaction. Conversely,
making the num_rel_stats constant, the score increases when
the total number of statements in ¥ decreases.

This may be interpreted as follows: a state is interesting if it
promises to quickly converge to exactly the desired final state.
Clearly the prediction based on this heuristic is not guaranteed
to be neither optimal or perfect, but empirically it revealed
sufficient for the specific purpose of speeding the exploration
of the graph.

D. The Auction Cycle

The auctioneer launches a new blind auction with a constant
time interval. The auction starts when a call-for-bid is sent to
the capabilities. They have a fixed deadline to reply with a
bid.

Each participant selects the node —from its private expand
list— with the highest utility, calculated as follows: the node’s
score plus the number of TC_holds and FS_holds for that state.

The highest utility is the bid to send back to the auctioneer
(see Figure 6).

There is not counter-offer, the auction closes when all
capabilities replied or at a predefined deadline. The capability
with the highest bid wins the auction and therefore it updates
the WTS consequently. In practice, it copies the selected
node from its private data structure to the global WTS, also
reporting eventual transitions with pre-existent nodes. For
instance, Figure 6 shows that the new node f is connected
with its predecessor d from which it originated.

The procedure cycles again with a new auction until a MAX
number of configurations is discovered or if the auctioneer
receives only empty offers for a number of times (expanding
the WTS is no more possible).

Figure 8 reports an example of WTS generated for the
fashion firm running example where these conditions hold:

)
) ATCo(Ws) = tru
) ATC(Wy) = tru
) ATCo(Ws) = tru
) ATCo(We) = tru
) A FSy(Wr) = tru
) ATCy(Ws) = tru
)) A

TC’g(Wg) = true

The final phase is the extraction of configurations from the
final WTS. A configuration associates each goal of the goal-set
to a simple or composed capability.

The procedure we report searches for paths between states
where T'C; holds and states where F'S; holds, for each goal
gi. Since graph transitions are associated to capabilities, a path
represents a simple or composed capability for addressing g;.
Therefore, the resulting capability is obtained by aggregat-
ing the capabilities corresponding to the transitions of the
discovered path. In the example, a path is detected for the
goal [to_notify_invoice]. In Figure 8 this path —from 7'C5 to
FS5— is highlighted with a thicker line and the correspond-
ing capabilities are annotated. Consequently the composition
CheckStorehouse, Generatelnvoice and UploadOnCloudStor-
age represents a solution for the goal [to_notify_invoice].

The whole set of configurations is obtained as a combination
of the capabilities discovered for each goal. The configurations
for the FashionFirm running example are shown in Figure 9.
The proposed approach has been also employed in the Et-
naValley project*.

VI. FROM CONFIGURATION TO MASHUP

This section describes how a configuration, extracted from
the WTS, is transformed in an effective workflow in order to
operationalize the cloud application mashup.

The transformation follows two principles:

4Another example of cloud application mashup involving different capabil-
ities may be found at http://ecos.pa.icar.cnr.it/etnavalley.

W1
O OrderPortalMonitor

CheckUserInfo
@ RegisterNewUser

FS1(Ws) ATCy(Ws) = true

RetrieveUserData

@ RequestUserData

FS1(We) NTCy(We) = true

CheckStorehouse

@ SendAlert @

Generatelnvoice

FSy (W) ATCy(Ws) = true

UploadOnCloudStorage

UploadOnCloudStorage
W10

ShareFileLink
Notify Task
@ otly’as FS1(Wy) A FSa(Wy) ATC3(Wy) = true

Fig. 8. Example of navigation of the WTS for identifying goal-satisfaction.
Transitions are annotates with the corresponding capability responsible of
adding the arc. A thicker line highlights a path for goal g that corresponds
to [to_notify_invoice] in the FashionFirm running example. Thicker nodes are
annotated with the logic expressions that are true in the corresponding state
of world (from Wy to W11). T'C; and F'S; respectively denote the triggering
condition and final state of the goal g;. So, for instance, the final state of g1
and the trigger condition of g4 are satisfied in Wg.

confl conf2 conf3
wait_order

retrieve_user_data

send_reg_form

wait_user_data

print_invoice

check_storehouse

generate_invoice

upload_on_cloud

share_file_link

notify_storehouse_manager

notify_stock_failure

supervise_document

Fig. 9. Example of set of configurations.

e Principle 1: Dynamic Association between Capability
and Goals. Each capability — selected for addressing
a goal — will be executed according to the lifecycle
represented in Figure 10.

o Principle 2: Distributed Control. All the capabilities act
autonomously (in parallel) and interact to the aim of
coordinating their behavior. Interactions are driven by the
current state of the world and by the need of exchanging
some data objects.

The Principle 1 arises from the fact that each capability

Check
Capability
pre-condition

0
Goal is active
Check
Data Objects

exist

<F>" Execute Check Capability Check Goal .
Capability post-condition final-state

Fig. 10. Flow of activities corresponding to the execution schema related to a generic association (goal,capability).

Check

pted (order) OR
J refused (order) J

trigger capability failure

(Check Check

S>—O

—>
Wait [1 [
Order data object check_
exists —-»»“"L
Order
Check S *{
() » registered (user) Check L
W AND V7 accepted (order) L g _Invoice J
available (order) :
Invoice \ Invoice
4 /" [uploaded _on_cloud]
> Check Check
ploaden.cloud storege
9
>

avauame(invoice)]_" +>—> MESSAGE invoice SENT

TO THE user ROLE

trigger capability failure trigger unexpected state

trigger capability failure

Fig. 11. Overview of the resulting workflow equivalent to a full-parallel execution model. Each branch of the workflow corresponds to a capability. It is built
by instantiating and optimizing the lifecycle presented in Figure 10 with specific goal and capability properties.

contributes to address one of the goals. A triggering-condition
(TC) is associated to each goal and specifies when the goal
becomes ready. This is the first condition that must hold for
executing the related service. However, the capability also
requires a pre-condition must hold. At the same way, the post-
condition reveals the success or failure of the service. Finally,
the goal’s final state (FS) asserts when the goal has been
successfully addressed. Figure 10 summarizes a schema of
the typical flow of activities associated to a generic capability.

When several capabilities are requested for addressing the
goal-set then all the capability functional schemes must be
merged.

Principle 2 states schemes must be combined though a
parallel gateway (see Figure 11) thus generating a workflow in
which each branch represents a different service (Figure 10).
Different branches interact by two different synchronization
approaches. Implicit mode: a branch waits until a condition of
the state of the world is true. This state is generally generated
as the final state of a prior service of the workflow. This model
is implemented by means of a shared blackboard that stores
the current state of the world. Explicit mode: a branch requires
to process some data object that is produced as output by
another branch. In this case a Query Interaction protocol [15]
is employed to enable the direct exchange of data.

Figure 11 reports an exemplar slice of the workflow
(using the BPMN 2.0 notation) obtained by applying the
two transformation principles to the configuration 1 (shown
in Figure 9). We highlight the branches corresponding
the [to_notify_invoice] goal that involves three capabilities:
CheckStorehouse, Generatelnvoice and UploadOnCloudStor-
age. The first condition available(order) A available(user)
is the same for the three branches because it is the goal’s

triggering condition. For the sake of clarity the workflow
has been simplified to avoid duplicate activities, as shown in
Figure 11.

Therefore, when an order has been received from a reg-
istered user, the workflow waits for three possible events:
i) an order data object to be processed, ii) a notifi-
cation that the order has been accepted, or iii) an in-
voice to deliver. These are the entry points for the
branches corresponding to the three capabilities that ex-
ecute check_storehouse, generate_invoice and
upload_on_cloud_storage respectively.

For example, after check_storehouse service is exe-
cuted, the capability’s post-condition and the goal’s final state
are checked. An example of explicit synchronization happens
between the second and the third branches: the invoice data
object is produced by the Generatelnvoice and consumed by
the UploadOnCloudStorage.

Figure 12 reports the aforementioned scenario of execution
with some screenshots concerning the front-end parts of the
exploited capabilities.

VII. RELATED WORK

The current state of the art in cloud computing delineates
mashup as an innovative technology for the integration of
cloud applications [2], [16], [17]. Compared to traditional
‘developer-centric’ composition technologies, mashup is in-
spired to principles of flexibility and user-friendliness.

OpenCloudware [18] and FIWARE [19] represent a couple
of worldwide initiatives that have began implementing this
vision through a backend infrastructure.

OpenCloudware [18] is a project coordinated by France
Telecom Orange. It aims at building an open software engi-

Q OrderPortalMonitor
W1

heck Inf
CheckUserInfo @
CheckStorehouse &

Generatelnvoice

[Recn- 1234 ‘Cuslomer 5o
E-mail ——

[Date |Article |Quantity
2015-12-25 BLOUSE SAVIORE 150
2015-12-25 IJACKET ASCEA 270 1
2015-12-25 IJAKET DONJE POKET |190 i
2015-12-25 SKIRT SEDINI 185

2015-12-25 CARDIGAN 234
VENETICO
[JEANS BLACK 342

Unit price
27

2015-12-25

Total price

@9 UploadOnCloudStorage

£ Fashionirm service - Dro. x

£ Dropbox, Inc [US]| https:/ /www.dropbox.com/horir& vice

ey
“e

FashionFirm Service

Files
invoice_20151127101750.pdf 33secsago

W9
NotifyTask E |::>r'B
Fig. 12. Execution of a scenario for the fashion firm running example.

Some screenshots of the cloud application mashup have been attached to
the capabilities of configuration 1.

neering platform (PaaS) for the collaborative development of
distributed applications to be deployed on multiple cloud in-
frastructures (IaaS). OpenCloudware support mashup through
a set of tools to manage the lifecycle of such applications from
many point of views: modelling, developing, deployment and
orchestration.

Conversely, FIWARE is an open architecture and a reference
implementation of a service infrastructure [19] whose mission
is: “to build an open sustainable ecosystem around pub-
lic, royalty-free and implementation-driven software platform
standards that will ease the development of new Smart Appli-
cations (SaaS) in multiple sectors”. It offers an application

mashup platform allowing end users without programming
skills to easily create web applications by manually integrating
heterogeneous data, application logic, and Ul components
sourced from the Web.

Our approach for self-configuring mashups provides an
alternative vision respect to the classic workflow model defini-
tion. It aims at decoupling the technical skills for developing
a service from the analytic skill of describing mashup compo-
sitions.

Helin and Laukkanen [20] present an approach for com-
posing worflows that is based on semantic type matching. As
well as our approach, authors highlight the importance of on-
tology for creating semantically annotated services. The main
difference is that their approach mainly automatizes finding
and matching semantically similar web services, whereas the
composition still requires the human intervention during the
composition process.

In [21] authors model web service composition as a
planning problem and use non-deterministic transition systems
where composition is achieved by model checking. Despite
there exist similarities with our work, their strategy for build-
ing the transition system is not specifically suitable for running
in a distributed fashion, requirement that is necessary in the
Cloud environment.

Another related work is Colombo [22] a framework for
automatic web service composition that exploits relational
database schema, atomic processes, message passing and a
finite state transition system. As well as our approach, they
introduce the goal service, i.e. they make explicit that a
composite service is aggregated for addressing a goal. The
main difference is that in Colombo a service goal is directly
represented as a transition system, that demands a user to learn
very technical skills.

In [16] authors explicitly focus on the composition of
cloud components and highlight the need for self-controlled
service components. They adopt a MAPE-K loop [23] to
provide autonomic behavior at component level. However the
composition is still modeled at design-time by developers.

VIII. CONCLUSIONS

In this paper, we describe our approach to the develop-
ment of Cloud Application Mashup. This approach has been
exploited in the context of a research project whose some
characteristics have been presented as running example.

Our approach is based on the decoupling of what to do from
how to do it. To this aim we used a three levels architecture
where the user specify his problem and automatic tools build
the resulting application.

On the developer side, services must be encapsulated within
Cloud Capabilities, lively and autonomous SaaS applications
that provide reasoning and composition facilities.

On the final-user side, she has to define the business
logic of the mashup in the form of goal-set as GoalSPEC
specifications. There is indeed the need of some minimal skill
in order to specify the problem to be resolved. Goals must

be specified adopting some ontological formality and conflict-
free. In order to reduce the complexity of this work, off-line
tools — such as that presented in [24] — may help the user in
defining his desired application.

Service providers could have their own goals too. We are
still working at integrating a third component close to goals
and capabilities: norms. Norms are rules that must hold during
all the phases of self-configuration but also during service
orchestration and execution. To date this is yet an ongoing
work.

When both capabilities and goals are specified, then we
can build a new mashup application just composing available
cloud applications or web services exploiting the proactive
characteristic of cloud capabilities as long as these exist in
the repository. Capabilities can be figured out as proactive
entities that bind an abstract description of some action to
a real web service or cloud application. The main feature of
cloud capabilities is to be ‘social’ i.e. able to interact in order
to generate a shared solution to the set of user’s goals.

The novelty of our approach lies in the fact that the user
does not need to know how his mashup application will
be composed or which components will be assembled. Each
capability corresponds to specialized web services or cloud
applications. Furthermore, redundant capabilities can make the
resulting application safe from any service failure.

All these features are implemented in a middleware [13] that
offers a whole architecture for monitoring goal injections, self-
configuring ad-hoc solutions and finally to orchestrate Cloud
components. The approach is not tied to a specific application
domain. Indeed the specification of a domain ontology is
a fundamental step for customizing the middleware for the
specific working context. Examples of different customizations
can be found in the website®. To date the middleware has been
adopted for implementing a document sharing solution, a cloud
mashup platform (the running example reported in this paper),
a risk management system and a smart travel agency.

IX. ACKNOWLEDGMENT

The research was partially funded by the Autonomous
Region of Sicily, Project OCCP (Open Cloud Computing
Platform), within the Regional Operative Plans (PO-FESR) of
the EU Community.

REFERENCES

[1] J. L. Zhao, M. Tanniru, and L.-J. Zhang, “Services computing as
the foundation of enterprise agility: Overview of recent advances and
introduction to the special issue,” Information Systems Frontiers, vol. 9,
no. 1, pp. 1-8, 2007.

[2] M. P. Papazoglou and W.-J. van den Heuvel, “Blueprinting the cloud,”
IEEE Internet Computing, vol. 6, pp. 74-79, 2011.

[3] E. Yu and J. Mylopoulos, “Why goal-oriented requirements engineer-
ing,” Proceedings of the 4th International Workshop on Requirements
Engineering: Foundations of Software Quality, vol. 15, 1998.

[4] R. Siebeck, T. Janner, C. Schroth, V. Hoyer, W. Worndl, and F. Urmetzer,
“Cloud-based enterprise mashup integration services for b2b scenarios,”
in Proceedings of the 2nd workshop on mashups, enterprise mashups
and lightweight composition on the web, Madrid, 2009.

Shttp://aose.pa.icar.cnr.it/MUSA/

[5]

[6]
[7]

[8]

[9]

(10]

[11]

(12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Newell, “The knowledge level,” Artificial intelligence, vol. 18, no. 1,
pp. 87-127, 1982.

M. J. Wooldridge, Reasoning about rational agents. MIT press, 2000.
D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. Mcll-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne et al., “Owl-s:
Semantic markup for web services,” W3C member submission, vol. 22,
pp- 2007-04, 2004.

M. Cossentino, D. Dalle Nogare, R. Giancarlo, C. Lodato, S. Lopes,
P. Ribino, L. Sabatucci, and V. Seidita, “Gimt: A tool for ontology and
goal modeling in bdi multi-agent design,” in Workshop” Dagli Oggetti
agli Agenti”, 2014,

L. Sabatucci, P. Ribino, C. Lodato, S. Lopes, and M. Cossentino,
“Goalspec: A goal specification language supporting adaptivity and
evolution,” in Engineering Multi-Agent Systems. Springer, 2013, pp.
235-254.

D. Sykes, W. Heaven, J. Magee, and J. Kramer, “From goals to
components: a combined approach to self-management,” in Proceedings
of the 2008 international workshop on Software engineering for adaptive
and self-managing systems. ACM, 2008, pp. 1-8.

L. Sabatucci and M. Cossentino, “From Means-End Analysis to Proac-
tive Means-End Reasoning,” in Proceedings of 10th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, Florence, Italy, May 18-19 2015.

B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Composing web
services on the semantic web,” The VLDB Journal—The International
Journal on Very Large Data Bases, vol. 12, no. 4, pp. 333-351, 2003.
L. Sabatucci, C. Lodato, S. Lopes, and M. Cossentino, “Highly
customizable service composition and orchestration,” in Service
Oriented and Cloud Computing, ser. Lecture Notes in Computer
Science, S. Dustdar, F. Leymann, and M. Villari, Eds. Springer
International Publishing, 2015, vol. 9306, pp. 156-170. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-24072-5_11

V. Krishna, Auction theory. Academic press, 2009.

F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent
systems with a fipa-compliant agent framework,” Software-Practice and
Experience, vol. 31, no. 2, pp. 103-128, 2001.

T. Aubonnet, L. Henrio, S. Kessal, O. Kulankhina, F. Lemoine, E. Made-
laine, C. Ruz, and N. Simoni, “Management of service compositionbased
on self-controlled components,” Journal of Internet Services and Appli-
cations, vol. 6, no. 1, pp. 1-17, 2015.

S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi,
“Cloud computing—the business perspective,” Decision support systems,
vol. 51, no. 1, pp. 176-189, 2011.

T. Aubonnet and N. Simoni, “Self-control cloud services,” in Network
Computing and Applications (NCA), 2014 IEEE 13th International
Symposium on. 1EEE, 2014, pp. 282-286.

A. Glikson, “Fi-ware: Core platform for future internet applications,” in
Proceedings of the 4th Annual International Conference on Systems and
Storage, 2011.

M. Laukkanen and H. Helin, “Composing workflows of semantic web
services,” in Extending Web Services Technologies. Springer, 2004, pp.
209-228.

M. Carman, L. Serafini, and P. Traverso, “Web service composition as
planning,” in ICAPS 2003 workshop on planning for web services, 2003,
pp. 1636-1642.

D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella,
“Automatic composition of transition-based semantic web services with
messaging,” in Proceedings of the 31st international conference on Very
large data bases. VLDB Endowment, 2005, pp. 613-624.

B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. An-
dersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic et al., Software
engineering for self-adaptive systems: A research roadmap. Springer,
2009.

L. Sabatucci, C. Lodato, S. Lopes, and M. Cossentino, “Towards self-
adaptation and evolution in business process.” in AIBP@ AIl* IA.
Citeseer, 2013, pp. 1-10.

