
Goal-Oriented Development of BDI Agents: the PRACTIONIST Approach

Vito Morreale, Susanna Bonura, Giuseppe Francaviglia, Fabio Centineo
R&D Lab - ENGINEERING Ingegneria Informatica S.p.A.

Viale R. Siciliana, 7275 - Palermo - ITALY
{morreale, bonura, giuseppe.francaviglia, fabio.centineo}@eng.it

Massimo Cossentino
ICAR - Italian National Research Council

Viale delle Scienze - Palermo - ITALY
cossentino@pa.icar.cnr.it

Salvatore Gaglio
DINFO - University of Palermo

Viale delle Scienze - Palermo - ITALY
gaglio@unipa.it

Abstract

The representation of goals and the ability to reason
about them play an important role in goal-oriented re-
quirements analysis and modelling techniques, especially
in agent-oriented software engineering, as goals are more
stable than other abstractions (e.g. user stories).

In PRACTIONIST, a framework for developing agent
systems according to the Belief-Desire-Intention (BDI)
model, goals play a central role. Thus, in this paper we de-
scribe the structure of the goal model in the PRACTIONIST
framework and how agents use their goal model to reason
about goals, desires, and intentions during their deliber-
ation process and means-ends reasoning as well as while
performing their activities.

1 Introduction

With the increasing management complexity and main-
tenance cost of advanced information systems, in recent
years attention has been turned towards self-* systems and
particularly the autonomic computing approach and auto-
nomic systems. In [6] authors argue that one of the ways
to make a system autonomic concerns with the adoption of
a design approach that supports the definition of a space of
possible behaviours related to the same function. Then the
system should be able to select at runtime the best behav-
iour on the basis of the current situation. Goals can be used
as an abstraction to model the functions around which the
systems can autonomously select the proper behaviour.

In this view, the explicit representation of goals and the
ability to reason about them play an important role in sev-
eral requirements analysis and modelling techniques. The
abstraction of goal could be particularly useful and appro-

priate, especially when adopting the agent-oriented para-
digm, which provides interesting abstractions related to au-
tonomous entities for the development of software systems
whose requirements are not entirely known at design time
(e.g. when running in rapidly changing environments).

One of the most popular and successful agent models is
the Belief-Desire-Intention (BDI) [9], which derives from
the philosophical tradition of practical reasoning first de-
veloped by Bratman [1]. It states that agents decide, mo-
ment by moment, which actions to perform in order to pur-
sue their goals. Practical reasoning involves a deliberation
process, to decide what states of affairs to achieve, and a
means-ends reasoning, to decide how to achieve them.

Most of existing BDI agent platforms (e.g. JACK [3],
JAM [5]) generally use goals instead of desires. Moreover,
the actual implementations of mental states differ from their
original semantics: desires (or goals) are treated as event
types (such as in AgentSpeak(L) [8]) or procedures (such as
in 3APL [4]) and intentions are executing plans. Therefore
the deliberation process and means-ends reasoning are not
well separated, as being committed to an intention (ends) is
the same as executing a plan (means). As a result, there is a
gap between BDI theories and implementations [10].

Moreover, some available BDI agent platforms do not
support the explicit representation and implementation of
goals or desires with their properties and relations. As a re-
sult, while such an explicit representation of goals provides
useful and stable abstractions when analysing and designing
agent-based systems, there is a gap between the products of
those phases and what development frameworks support.

Actually, several authors have argued the importance of
declarative representations of goals in agent deliberation
processes, especially in dynamic environments. Among
them, Winikoff et al. [10] stated that ”by omitting the
declarative aspect of goals the ability to reason about goals

is lost”. What is actually lost is the ability to know if goals
are impossible, achieved, incompatible with other goals,
and so forth. This in turn supports the commitment strate-
gies of agents and the capability to autonomously drop, re-
consider, replace or pursue goals.

However, some other BDI agent platforms deal with
declarative goals. Indeed, in JADEX agent platform, goals
are explicitly represented according to a generic model, en-
abling the agents to handle their lifecycle and reasoning
about them [2]. Nevertheless, the model defined in JADEX
does not deal with relations among goals.

Our PRACTIONIST framework [7] adopts a goal-
oriented approach to develop BDI agents and stresses the
separation between the deliberation process and the means-
ends reasoning, with the abstraction of goal used to formally
define both desires and intentions during the deliberation
phase. In PRACTIONIST a goal is considered as an analy-
sis, design, and implementation abstraction compliant to the
semantics described below. In other words, PRACTIONIST
agents can be programmed in terms of goals, which then
will be related to either desires or intentions according to
whether some specific conditions are satisfied or not.

This paper, after a brief overview of the general struc-
ture of PRACTIONIST agents and their execution model
(section 2), addresses the definition of the goal model (sec-
tion 3). We also describe how PRACTIONIST agents are
able to reason about available goals according to their goal
model, current beliefs, desires, and intentions (see section
4). Section 5 describes how the aforementioned concepts
are implemented in the PRACTIONIST framework, while
in section 6 we present a simple example that illustrates how
to define and use goals and their relations.

2 The PRACTIONIST framework

The PRACTIONIST framework supports programmers
in developing BDI agents (i) endowed with a symbolic rep-
resentation about their internal states and the external envi-
ronment, (ii) able to plan their activities in order to pursue
some objectives, and (iii) provided with the ability of both
proactively and reactively performing activities. We chose
to define our framework on top of JADE 1.

A PRACTIONIST agent is a software component en-
dowed with the following elements: a set of perceptors that
listen to some relevant external stimuli (perceptions); a set
of beliefs representing the information the agent has got
about both its internal state and the external environment;
a set of goals the agent wishes or wants to pursue, which
represent some states of affairs to bring about or activities
to perform and can be related to either desires or intentions;
a set of goal relations the agent uses during the delibera-
tion process and means-ends reasoning; a set of plans that

1http://jade.tilab.com

are the means to achieve the intentions; a set of actions the
agent can perform to act over its environment; and a set of
effectors that actually execute the actions.

Beliefs, plans, and the execution model are briefly de-
scribed in this section, while goals are the subject of this
paper and are presented in the following sections. For a de-
tailed description of PRACTIONIST agents, refer to [7].

Each PRACTIONIST agent is endowed with a prolog be-
lief base, where beliefs are asserted, removed, or entailed
through inference on the basis of KD45 modal logic rules
and user-defined formulas. Currently the PRACTIONIST
framework supports two prolog engines, i.e. SWI-Prolog2

and one that was derived from TuProlog3.
In the PRACTIONIST framework plans represent an im-

portant container in which developers define the actual be-
haviours and strategies of agents. Each agent may own a
declared set of plans (the plan library), each specifying the
course of acts the agent will undertake in order to pursue its
intentions, or to handle incoming perceptions, or to react to
changes of its beliefs.

PRACTIONIST plans have a set of slots, which are used
by agents during the means-ends reasoning and the actual
execution of their activities. Some of these slots are: the
trigger event, which defines the event (i.e. goals, percep-
tions, and belief updating) each plan is supposed to han-
dle; the context, a set of conditions that must be believed
true before performing the plan; the body, which include
the acts the agent performs during the execution of the plan.
Within the body several acts are possible, such as sending
messages, desiring to bring about some states of affairs or
perform some action, modifying beliefs, and so forth.

The agent main cycle is implemented within a cyclic be-
haviour, in which the following steps are executed (fig. 1):

1. through the perceptors, it searches for perceptions
from the environment and transforms them into (exter-
nal) events, which in turn are put into the Event Queue;

2. it selects and extracts an event from the queue, accord-
ing to a proper Event selection logic;

3. it handles the selected event through the following
means-ends reasoning process: (i) the agent figures out
the practical plans, which are those plans whose trig-
ger event matches the selected event (Options in fig-
ure 1); (ii) among practical plans, the agent detects the
applicable ones, which are those plan whose context
is believed true, and selects one of them (main plan);
(iii) it builds the intended means, which will contain
the main plan and the other alternative practical plans,
and updates the intended means stack set (i.e. in case
of goal event the new intended means is put on top of
an existing stack, otherwise a new stack is created).

2http://www.swi-prolog.org
3http://tuprolog.alice.unibo.it

Figure 1. PRACTIONIST Agent Architecture.

It should be noted that every intended means stack can
contain several intended means, each able to handle a given
event, possibly through several alternative means. More-
over all intended means stacks are concurrently executed.

3 The goal model

In the PRACTIONIST framework a goal is a description
of an objective to pursue and an abstraction to make the
distinction between the state of affairs to be achieved and
the way to achieve it. Besides, we use goals as a mean to
transform desires into intentions through the satisfaction of
some properties. Therefore PRACTIONIST agents are pro-
grammed in terms of goals, which then will be related to
either desires or intentions according to whether some spe-
cific conditions are satisfied or not.

In this section we provide a model of PRACTIONIST
goals, in terms of their success conditions and other prop-
erties, such as possibility, inconsistency with other goals,
entailment between goals, and so forth. Formally, a goal g
is defined as follows:

g = 〈σg, πg, γg〉 (1)

where σg is the success condition, πg is the possibility con-
dition stating whether g can be achieved or not, and γg is
the cancel condition stating whether the agent should give
up to pursue the goal g or not.

Since we consider such elements as local properties of
goals, in the PRACTIONIST framework we defined them
as operations that have to be implemented for each kind of
goal (as shown in figure 2 in the interface Goal).

In order to describe the goal model, we first provide
some definitions about the properties of goals.

Definition 1 A goal g1 is inconsistent with a goal g2

(g1⊥g2) if and only if when g1 succeeds, then g2 fails.

Definition 2 A goal g1 entails a goal g2 or equivalently
g2 is entailed by g1 (g1 → g2) if and only if when g1

succeeds, then also g2 succeeds.

Definition 3 A goal g1 is a precondition of a goal g2

(g1 �→ g2) if and only if g1 must succeed in order to be
possible to pursue g2.

Definition 4 A goal g1 depends on a goal g2 (g1 ↪→ g2)
if and only if g2 is a precondition of g1 and g2 must be
successful while pursuing g1.

Therefore the dependency is a stronger form of precon-
dition. Now, given a set G of goals and on the basis of
the previous definitions, it is also possible to define some
relations between those goals.

Definition 5. The binary symmetric relation Γ ⊆ G×G
defines pairs of inconsistent goals that belong to G. For-
mally, Γ = {(gi, gj) i, j = 1, ..., |G| : gi⊥gj}.

When two goals are inconsistent with each other, it
might be useful to specify that one is preferred to the other.
We denote that gi is preferred to gj with gi � gj . It should
be noted that, since in PRACTIONIST several goals can be
pursued in parallel, there is no need to prefer some goal to
another goal, if they are not inconsistent each other.

Definition 6. The relation Γ
′ ⊆ Γ defines the pair of

goals (gi, gj) such that gi⊥gj and gi � gj . Formally,
Γ′ = {(gi, gj) ∈ Γ : gi � gj}.

Therefore if there is no preference between two incon-
sistent goals, the corresponding pair does not belong to Γ

′
.

Definition 7. The binary relation Ξ ⊆ G × G
defines which goals entail other goals. Formally,
Ξ = {(gi, gj) i, j = 1, ..., |G| : gi → gj}.

Definition 8. The binary relation Π ⊆ G × G defines
which goals are precondition of other goals. Formally,
Π = {(gi, gj) i, j = 1, ..., |G| : gi �→ gj}.

Definition 9. The binary relation ∆ ⊆ G × G
defines which goals depend on other goals. Formally,
∆ = {(gi, gj) i, j = 1, ..., |G| : gi ↪→ gj}.

Finally, on the basis of the above properties and relations
we can define the structure of the goal model of PRAC-
TIONIST agents as follows

GM = 〈G, Γ, Γ′, Ξ, Π, ∆〉 , (2)

where G is the set of goals the agent could pursue, Γ is the
inconsistency relation among goals, Γ′ is the preference re-
lation among inconsistent goals, Ξ is the entailment relation
among goals, Π is the precondition relation among goals,
and ∆ is the dependence relation among goals.

4 Reasoning about goals

PRACTIONIST agents use the goal elements previously
defined during their deliberation process and the means-
ends reasoning. In this section we present the actual re-
lationships between goals and mental attitudes.

As already mentioned, since PRACTIONIST agents are
compliant to the BDI model, goals and their properties are
defined according to what agents believe. Thus, as an in-
formal example, an agent will believe that a goal has suc-
ceeded if it believes that its success condition is true. The
same holds for the other properties.

It is important to note that in our view desires and inten-
tions are mental attitudes towards goals. Thus an agent can
just relate a goal to a desire, which it is not committed to
because of several possible reasons (e.g. it believes that the
goal is not possible). On the other hand, a goal can be re-
lated to an intention, when the agent is actually and actively
committed to pursue it.

Thus, given a goal model GM = 〈G, Γ, Γ′, Ξ, Π, ∆〉
and fixed a goal g belonging to the set G, it is possible to
figure out the set Γg of goals that are inconsistent with g,
the set Γ′

g of goals that are inconsistent with and preferred
to g, the set Γ′′

g of goals inconsistent with g, which in turn
is preferred to them, the set Ξg of goals that entail g, the set
Πg of goals that are precondition for g, and the set ∆g of
goals which g depends on. Formally,

Γg = {gi, i = 1, ..., |G| : (gi, g) ∈ Γ}, (3)

Γ′
g = {gi, i = 1, ..., |G| : (gi, g) ∈ Γ′}, (4)

Γ′′
g = {gi, i = 1, ..., |G| : (g, gi) ∈ Γ′}, (5)

Ξg = {gi, i = 1, ..., |G| : gi → g}, (6)

Πg = {gi, i = 1, ..., |G| : gi �→ g}, (7)

∆g = {gi, i = 1, ..., |G| : g ↪→ gi}. (8)

For any goal g, some elements of Γg might not belong
to either Γ′

g or Γ′′
g . Formally, ∀g ∈ G, Γ′

g ∪ Γ′′
g ⊆ Γg .

Moreover, no element of Γg can belong to both Γ′
g and Γ′′

g ,
that is Γ′

g ∩ Γ′′
g = �. Finally, it turns out that ∆g ⊆ Πg .

Thus, let GM be the goal model of a PRACTIONIST
agent α and, at a given time, G′ ⊆ G be the set of goals
which the agent is already committed to (i.e. active goals).

Suppose that α starts its deliberation process and gener-
ates a goal g as an option, that is it would like to commit to
g. Therefore its desire is to bring about the goal g. How-
ever, since any agent will not be able to achieve all its de-
sires, α performs the following process in the context of its
deliberation phase: it checks if it believes that the goal g is
possible and not inconsistent with active goals (belonging
to G′). The goal g is not inconsistent with current active
goals if and only if G′ ∩ Γg = ∅.

If both conditions hold the desire to pursue g will be pro-
moted to an intention. On the other hand, in case of incon-
sistency among g and some active goals,

1. if the goal g is preferred to all active goals that are in-
consistent with it (formally, G′ ∩ Γg = G′ ∩ Γ′′

g), the
agent will give up pursuing them and will drop the cor-
responding intentions and the desire related to g will
become a new intention;

2. otherwise, if either the goal g is not preferred to all
active goals inconsistent with it (G′ ∩ Γg = G′ ∩ Γ′′

g),
or some of active goals inconsistent with g is preferred
to it (G′ ∩ Γ′

g = �), or in case of no preferences (G′ ∩
Γ′

g = G′ ∩ Γ′′
g = �), the agent will prefer its current

intentions and drop g (which will just remain related
to a desire).

In any case, if the desire to pursue g is promoted to an in-
tention, before starting the means-ends reasoning, the agent
α checks if it believes that the goal g succeeds or whether
the goal g is entailed by some of the current active goals.
The goal g is entailed by some current active goal if and
only if G′∩Ξg = �. Indeed, if the goal g succeeds or is en-
tailed by some current active goals (i.e. some other means
is working to achieve a goal that entails the goal g), there is
no reason to pursue it. Therefore, α does not need to make
any means-ends reasoning to figure out how to pursue g.

In case of above conditions do not hold, the agent can
perform the means-ends reasoning, by either selecting a
plan from the plan library or dynamically generating a plan
and finally executing it (details on this can be found in [7]).
However, before then, if some declared goals are precon-
ditions for g, that is Πg = �, the agent will first desire to
pursue such goals and then the goal g.

Related to the issue of reasoning about goals are inten-
tion commitment strategies, which concern with the recon-
sideration ability of agents. In PRACTIONIST, as a default,

an agent will continue to maintain an intention until it be-
lieves that either such an intention has been achieved or it is
no longer possible to achieve it. This commitment strategy
to intention is called single-minded commitment.

In order to behave according to such a commitment strat-
egy, during the execution of the intended means built to
bring about the success of a given goal g, the agent con-
tinuously checks (i) if it believes that the goal g has just
succeeded, (ii) if it believes that the goal g is still possible,
and (iii) if it believes that the goal should be cancelled for
any other reason. Meanwhile the agent also checks if some
dependee goals do not succeed. If so, it will desire to pursue
such goals and then continue pursuing the goal g.

Each PRACTIONIST agent is also able to recover from
plan failures and try other means to achieve an intention,
when the selected plan fails or is no longer appropriate.
Thus, it selects one of applicable alternative plans within
the same intended means and executes it.

If none of the alternative plans was able to successfully
pursue the goal g, the agent takes into consideration other
goals that entail g. Thus it selects one of them and considers
it as an option, processing it in the way described in this
section, from deliberation to means-ends reasoning.

If there is no plan to pursue alternative goals, the
achievement of the intention has failed, as there is no way
to pursue that intention. Thus, according to the beliefs, the
goal was possible, but the agent was not able to pursue it.

5 The goal model in the PRACTIONIST
framework

Within the PRACTIONIST framework we included the
support for the definition/handling of agent goal models
and the capabilities for reasoning about goals. Specifically
the framework provided facilities for the registration of the
goals that each agent could try to pursue during his life
cycle, the registration of the relations among such goals,
checking whether two goals are inconsistent and which the
preferred one is (if any), getting the list of goals that entail
or are precondition of a given goal, getting the list of goals
which a given goal depends on.

Some of the above features affect the design activity,
while others are exploited by the agent in a transparent way
during its life cycle. The goal registration features are di-
rectly used by agent developers, who define goals and re-
lations for each agent before inserting them into the goal
model during the agent initialization phase (see the goal
model of the example reported in section 6).

In order to fulfil the above requirements, a proper ad-
hoc search algorithm explores the goal model and answers
the queries, on the basis of existing relations. More-
over, implicit relations (especially inconsistence and entail-
ment) can be inferred from the semantics of some built-

in state goals (e.g. achieve(ϕ), cease(ϕ), maintain(ϕ),
and avoid(ϕ), where ϕ is a closed formula of FOL).
Therefore, the goal reasoner also takes into account
implicit relations such as achieve(ϕ) ⊥ achieve(¬ϕ),
achieve(ϕ) ⊥ cease(ϕ), maintain(ϕ) ⊥ avoid(ϕ),
maintain(ϕ) → achieve(ϕ), and so forth.

Figure 2 shows the actual structure of the GoalModel
that each agent owns (PRACTIONISTAgent is the ab-
stract class to extend when developing PRACTIONIST
agents). Such a model stores information about de-
clared goals (with their success, possibility, and can-
cel conditions) and the relations these goals are in-
volved in. GoalRelation is the super inter-
face for all goal relations supported by the frame-
work (i.e. EntailmentRel, InconsistencyRel,
DependencyRel, and PreconditionRel) and de-
fines the operation verifyRel to check each relation.

In order to exploit the features provided by the goal
model and understand if a given goal that the agent de-
sires to pursue is inconsistent with or implied by some ac-
tive goals, the agent itself must have information about such
active goals and whether them are related to either desires
or intentions. Therefore, each PRACTIONIST agent owns
an ActiveGoalsHandler component, which, with the
aid of the GoalModel, has the responsibility of keeping
track of all executing intended means stacks with the corre-
sponding waiting and executing goals. Thus, at any given
time, the ActiveGoalsHandler is aware of the current
desires and intentions of the agent.

6 An example

In this section we present the Tileworld example to illus-
trate how to use the goal model presented in this paper and
the support provided by the PRACTIONIST framework.

The Tileworld example was introduced to simulate
highly parameterized environments and test the meta-level
reasoning of agents. The environment consists of a grid of
cells on which tiles, obstacles and holes (of different size
and value) can exist. Every agent can move up, down left
or right within the grid to pick up and move tiles in order to
fill the holes. Each hole has an associated score, which is
awarded to the agent that has filled the hole. The main goal
of the agent is to score as many points as possible.

Tileworld simulations are dynamic and the environment
can continually change over time, as several parameters
can be manually modified. Such an application can ben-
efit from the adoption of a goal-oriented design approach,
where the abstraction of goal is used to declaratively rep-
resent agents’ objectives and states of affairs that can be
dynamically achieved through some means.

In our Tileworld demonstrator two types of agents were
developed, i.e. the Tileworld Management Agent (TWMA)

Figure 2. The structure of the support for the goal model in the PRACTIONIST framework.

and the Tileworld Player Agent (TWPA). The former is the
agent that manages and controls the environment, by creat-
ing and destroying tiles, holes and obstacles, according to
the parameters set by the user. The latter aims at maximiz-
ing its score by filling holes with tiles.

The TWPA adopts the best strategy on the basis of the
current state of the environment (e.g., static, dynamic, very
dynamic, etc.). All strategies are implemented through
plans that share the same goal and differ for their operative
conditions (i.e. the context).

It should be also noted that, since PRACTIONIST agents
are endowed with the ability of dynamically building plans
starting from a given goal and a set of available actions,
some strategies could be generated on-the-fly to face emerg-
ing situations.

The player agent has beliefs about the objects that are
placed into the grid, its position, its score, the state of the
environment, etc. We designed the TWPA by adopting the
goal-oriented approach described in this paper and directly
implemented its goal-related entities (i.e. goals and rela-
tions) thank to the support provided by the PRACTIONIST
framework. In figure 3 a fragment of the goal model of the
TWPA is shown as a UML class diagram where dependen-
cies are stereotyped with the name of the goal relations. Ac-
tually some relations only hold under certain conditions and
the diagram does not show such details. According to the
diagram, the TWPA has to be registered with the TWMA
before increasing its score (the goal ScorePoints de-
pends on the goal RegisterWithManager).

Moreover, in order to score points, the TWPA has to
fill as many holes as possible (the goal FillHole en-
tails the goal ScorePoints). But, in order to fill a hole,
the TWPA has to hold a tile and to find a hole (the goal
FillHole depends on the goal HoldTile and requires
the goal FillHole as a precondition); finally, the TWPA
has to find the tile to hold it (the goal HoldTile has the
goal FindTile as a precondition).

According to the above-mentioned description, the fol-

lowing source code from the TWPAgent class shows how to
create the goal model in terms of goals and relations among
them, which are added to the agent:

protected void initialize() {
...
GoalModel gm = getGoalModel();

// Goal declaration
gm.add(new RegisterWithManager());
...
gm.add(new ScorePoints());

// Relations among goals
gm.add(new Dep_ScorePoints_RegisterWithMan());
gm.add(new Ent_ScorePoints_FillHole());
...
gm.add(new Pre_FillHole_FindHole());
...

}

In order to better understand how the above-mentioned
relations are implemented, the following source code shows
a simple implementation of the dependency relation among
the goals FillHole and HoldTile:

class Dep_FillH_HoldT implements DependencyRel {
public Goal dependsOn(Goal g1, Goal g2) {
if((g1 instanceof FillHole) &&

(g2 instanceof HoldTile)) {
return g2;

}
return null;

}
}

When the TWPA desires to pursue a goal, it checks if
this goal is involved in some relation and reasons about that
during the deliberation, means-ends, and intention recon-
sideration processes. Thus, at the design time developers
only need to specify goals and relations among them.

As an example, when the TWPA desires to fill a hole (i.e.
FillHole), according to the defined goal model and the
semantics described in section 4, it will automatically check

Figure 3. TWPA’s goal model.

if it just holds a tile (i.e. HoldTile); if not, such a goal
will be desired. On the other hand, the agent will check if it
has found a hole (i.e. FindHole) and again, if not, it will
desire that. Moreover, when pursuing the goal FillHole,
the agent will continuously check the success of all goals
which FillHole depends on (i.e. HoldTile) and main-
tain them in case of failure. Therefore the plans to pursue
any goal g do not need to include the statements to desire
either its dependee or precondition goals.

7 Conclusions and future work

In our framework, desires and intentions are mental at-
titudes towards goals, which are in turn considered as de-
scriptions of objectives. In this paper we presented how
a declarative representation of goals can support the defi-
nition of desires and intentions in PRACTIONIST agents.
Such an approach also supports the detection and the reso-
lution of conflicts among agents’ objectives and activities.

Thus, we defined the structure of goals and some rela-
tions among them (i.e. inconsistency, entailment, depen-
dence, precondition). Then we described how goals and
relations are used by PRACTIONIST agents during their
deliberation process and the execution of their activities.

The main contribution of our work is that, unlike sev-
eral BDI and non-BDI agent platforms, the PRACTIONIST
framework supports the declarative definition of goals and
the relations among them. This provides the ability to be-
lieve if goals are impossible, already achieved, incompatible
with other goals, etc. and supports the commitment strate-
gies of agents and their ability to autonomously drop, recon-
sider, replace or pursue intentions related to active goals.

The ability of PRACTIONIST agents to reason about
goals and the relations among them lets programmers

implicitly specify several behaviours for several circum-
stances, without having to explicitly code such behaviours,
letting agents figure out the right activity to perform on the
basis of the current state and the relations among its poten-
tial objectives. As an informal result, the code of the Tile-
world with the goal model is 30% less than the one without
the goal model. As a part of our future strategy, we aim at
evaluating more scientifically this potential benefit.

Obviously, the usage of the goal model at run-time
is a little time-consuming and decrease the performance
of agents. However, programmers can disable some of
the capabilities discussed in this paper according to the
expected environment and operational conditions. On the
other hand, our approach can better exploit a goal-oriented
approach when designing complex systems.

Acknowledgments. This work is partially supported by
the Italian Ministry of Education, University and Research
(MIUR) through the project PASAF.

References

[1] M. E. Bratman. Intention, Plans, and Practical Reason. Har-
vard University Press, Cambridge, MA, 1987.

[2] L. Braubach, A. Pokahr, W. Lamersdorf, and D. Moldt. Goal
representation for BDI agent systems. In Second Interna-
tional Workshop on Programming Multiagent Systems: Lan-
guages and Tools, pages 9–20, 7 2004.

[3] P. Busetta, R. Rnnquist, A. Hodgson, and A. Lucas. Jack
intelligent agents - components for intelligent agents in java,
1999.

[4] K. V. Hindriks, F. S. D. Boer, H. W. van der, and J. J.
Meyer. Agent programming in 3APL. Autonomous Agents
and Multi-Agent Systems, 2(4):357–401, 1999. Publisher:
Kluwer Academic Publishers, Netherlands.

[5] M. J. Huber. Jam: A BDI-theoretic mobile agent architec-
ture. In Agents, pages 236–243, 1999.

[6] A. Lapouchnian, S. Liaskos, J. Mylopolous, and Y. Yu. To-
wards requirements-driven autonomic systems design. Pro-
ceedings of the 2005 workshop on Design and evolution of
autonomic application software, pages 1–7, 2005. ACM
Press, New York, NY, USA.

[7] V. Morreale, S. Bonura, G. Francaviglia, M. Cossentino,
and S. Gaglio. PRACTIONIST: a new framework for BDI
agents. In Proceedings of the Third European Workshop on
Multi-Agent Systems (EUMAS’05), page 236, 2005.

[8] A. S. Rao. AgentSpeak(L): BDI agents speak out in a log-
ical computable language. In R. van Hoe, editor, Seventh
European Workshop on Modelling Autonomous Agents in a
Multi-Agent World, Eindhoven, The Netherlands, 1996.

[9] A. S. Rao and M. P. Georgeff. BDI agents: from theory to
practice. In Proceedings of the First International Confer-
ence on Multi—Agent Systems, pages 312–319, San Fran-
cisco, CA, 1995. MIT Press.

[10] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.
Declarative & procedural goals in intelligent agent systems.
In KR, pages 470–481, 2002.

