
A Possible Approach to the Development of Robotic Multi-Agent Systems

Massimo Cossentino
Consiglio Nazionale delle Ricerche(CNR)

Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
Viale delle Scienze, 90128 -Palermo- Italy

cossentino@pa.icar.cnr.it

Luca Sabatucci
Consiglio Nazionale delle Ricerche(CNR)

Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
Viale delle Scienze, 90128 -Palermo- Italy

sabatucci@csai.unipa.it

Antonio Chella
University of Palermo

Dipartimento di Ingegneria Informatica (DINFO)
Viale delle Scienze, 90128 -Palermo- Italy

chella@unipa.it

Abstract

The design of a an agent system for robotics is a problem
that involves aspects coming from many different disciplines
(robotics, artificial intelligence, computer vision, software
engineering). The most difficult part of it often consists in
producing and tuning the algorithms that incorporates the
robot behavior (planning, obstacle avoidance, ) and abili-
ties (vision, manipulation, navigation, ). It is frequent that
the reuse of this parts is left to a copy and paste proce-
dure from previous applications to the new one. In so doing
many problems could arises. We propose a comprehensive
approach for multi-agent systems oriented to robotics appli-
cations that uses a complete design methodology supported
by a specific design tools and a pattern repository that inter-
acting each other and with the designer allow the produc-
tion of a coherent design that easily incorporates patterns
coming from previously experienced features and automati-
cally produces a large part of the final code

1. Introduction

In recent years, robotic systems have been used for in-
creasingly complex activities, such as industrial applica-
tions that would otherwise involve physical risks to human

operators, and those where a high degree of precision is re-
quired for complex assemblies. Performance in such com-
plex activities requires sophisticated skills, obtained by de-
veloping articulated behaviors in response to the complex
perceptual stimuli provided by the environment.

An important engineering challenge in all cases of these
applications is the design of tasks and interactions among
tasks that preserve the global requirements of the activity.
Complex behaviors can emerge from interactions among
robots, but they also arise from the interaction of basic be-
haviors exhibited by a single robot. In this context, the en-
gineering design of cooperative behaviors both within and
between robots is the marshaling of architectural abstrac-
tions that deal with interactions and coordination. Yet this
topic of architectural design of robotic systems has only re-
cently been addressed by the research community. Previ-
ously, the research agenda emphasized the more urgent but
local issues of intelligent navigation, obstacle avoidance, vi-
sion and sensor data fusion, and so on.

With the increasing complexity of modern operating sce-
narios, interest is shifting toward a more global perspective
on the design process for robotic systems. The starting point
for design is a description of the whole robot mission. This
is a formal, goal-oriented requirement for the system. The
end point of the process is the generation of code in a suit-
able programming language. This process allows design-



Figure 1. The architecture of a single robot
from the cognitive point of view

ers to model the hardware, and regards the robot, or the
robot fleet, as a system intended to satisfy some require-
ments thus leaving the architect free to decide if it has to be
implemented in a single entity or in a collection of hardware
platforms.

Designing a robotic architecture implies not only mod-
eling the robot hardware and managing its sensor outputs,
but also modeling its knowledge about the environment, and
providing it with the ability to perform intelligent behaviors.
Several works both from AI and Software Engineering ad-
dress this topic, in particular with regards to the possibility
of designing ontologies (models for bodies of knowledge
about a particular domain and the relationships between
them) for an agent-based system using formal descriptions
that are typical of Software Engineering [10],[2]. All these
approaches take UML (Unified Modeling Language) as the
design formalism able to represent knowledge in a multi-
agents system, due to its wide diffusion in the SE commu-
nity, its status of standard graphic notation, the possibility of
deriving specific ontology-oriented diagrams, and the ease
to implement CASE tools.

Several other scientific works addressing the topic of the
MAS (Multi-agent systems) design can be found in litera-
ture; it is possible to note that again they come from dif-
ferent research fields: some come from Artificial Intelli-
gence (Gaia [19]) others from Software Engineering (MaSE
[11], Tropos [4]) but there are also methodologies coming
directly from Robotics (Cassiopeia [8]). They give different
emphasis to the different aspects of the process (for exam-
ple the design of goals, communications, roles) but almost
all of them deal with the same basic elements although in a
different way or using different notations/languages.

At present, agent-based architectures seem to be the most
natural framework to develop a rigorous design methodol-
ogy for the autonomous robots software. In fact, agents are

Figure 2. The structure of a generic multi-
robot and multi-agent system from the func-
tional point of view

the natural way to implement autonomous functional units
that communicate using dedicated protocols and cooperate
to solve complex tasks. ”Agents” may refer to the logi-
cal description of autonomous robots, or functional compo-
nents or faculties within a robot. This independence from
hardware and physical architecture is a necessary feature of
an engineering process in which the mission of the system,
or the global requirements, take priority over details about
the implementation and deployment platforms.

The aim of this paper is to present a possible approach to
the development of robotics applications based on the use
of a design methodology (PASSI, Process for Agents Spec-
ification and Implementation [16]). For the robotic archi-
tecture we refer to the Dynamic Conceptual Spaces (DCS)
theory that has been previously published by some of the au-
thors [5]. The different design and implementation phases
are supported by a specifically conceived tool (an add-in for
Rational Rose) that incorporates a pattern repository allow-
ing an high level of reusability. As a consequence, the most
important results of our approach consists in the traceabil-
ity of the process, the economy of time in code production
and the robustness of the final code. The code generation
stage uses FIPA [17] an emerging international standard for
agent-based software, as the target architecture. FIPA al-
lows very flexible architectures, not requiring the designer
to employ a restricted set of communication schemas and



letting the designer delay decisions about whether and to
what extent the software should be split across many hard-
ware components.

The rest of the paper is arranged as follows. Section 2
describes in detail the DCS paradigm. In section 3, the var-
ious stages of the design process, and the motivation for our
architectural choices are explained. In Section 4, the exper-
imental setup regarding the construction of a surveillance
robotic application will be reported. Finally, in Section 5,
the obtained results will be evaluated and some conclusions
drawn.

2. The Robotics Architecture

Our main focus is to describe a method for developing
agent-based robotic systems. Consequently, in the next sec-
tion, which deals with the stages of the PASSI method, we
are mainly concerned with the elaboration and refinement of
designs. Before describing the process, however, we need
to explain the principal abstractions in terms of which such
system designs are described and out of which they are com-
posed. Our starting point is the cognitive architecture shown
in Figure 1. There are three main types of components in
a robotic system design, distinguished by their cognitive
functions (hence their representation in functional terms as
UML use cases, coherent units of functionalities provided
by the system):

1. Perception, or the mapping of raw data streams into
an intermediate form that is neither a raw sensory rep-
resentation, nor an application-relevant symbolic rep-
resentation (e.g. via sensor fusion or depth computa-
tion).

2. The cognitive faculties, such as deliberative behav-
iors, which we assume involve symbol manipulation.
Perceptual strategies such as analysis-by-synthesis are
supported by the two-way interaction between percep-
tion and cognition. Thus, cognition can direct percep-
tion by focusing attention on those external stimuli that
are judged to be most relevant to the current task.

3. Actuators, which drive the robot hardware during per-
ception tasks, and the focusing of attention. The
perception-action link (by-passing cognition) allows
reactive behaviors.

This architecture has already been adopted in several
works [6],[7],[1]. In supporting robot system performance,
the main goal of such an architecture is to go beyond the
classical behavior-based model, and to provide the robot
with true ”symbol grounding” capabilities due to the inter-
mediate representation of sensory data, that is used to in-
stantiate pieces of knowledge at the symbolic component.

Through this mechanism, it is argued, the robot is able to
act in a deliberative fashion more effectively.

In the present paper, however, we will take the ade-
quacy or intelligence of system behavior and performance
for granted and pay attention instead to the role of the con-
ceptual architecture in the engineering of robotic systems.
The three-way classification of agent-based functionality as
perception, cognition and actuation use-cases forms the top
level of a typology of possible agents. In other words Fig-
ure 1 is the highest level of abstraction in the system de-
sign, without taking into consideration the implementation
details. In this context, it does not matter whether the agent
instances reside in a single agent or multiple collaborating
robots or other devices. In the first case, we have a poten-
tial architecture for the single robot, and in the second, we
address the interaction between the external actors and the
whole team in order to perform cooperative tasks.

Our approach suggests a possible abstraction from the
single robot architecture to a multi robot team: the robot
that is itself a multi agent system, can be viewed as a sin-
gle agent in the multi robot context in which it cooperates
with the others in order to reach the goals of the entire sys-
tem. In Figure 2, we can see a representation of such a
structure. Each robot contains several agents; some of them
interact with the external environment, while others issue
commands to the robot’s hardware or communicate with the
agents of other robots.

While it is possible to abstract from a single agent at one
level of abstraction to multiple interacting agents at a lower
level, our work also supports the description of agents in
terms of the tasks for which they are responsible. For de-
sign reasons, an agent is described as a colony of tasks, and
these determine the role played by the agent in terms of the
general architecture of Figure 1. We suppose that there is a
one-to-many (but not many-to-many) relation between each
one of these three areas and the agents of the system as de-
picted in Figure 2. Thus each agent may be classified as a
perceptual, cognitive, or actuator agent, but there may be
several instances of each type in a particular system.

3. The Development Process

A robotic application architecture has not been fre-
quently developed following a rigorous and rationale pro-
cess from design to code. The experimental character of
these types of applications does not justify the demanding
work required from the design methodology activities. Al-
though a software engineering approach would be desirable
because it would produce a well documented and structured
work, it has the side effect to stretch out the time required
to accomplish it.

Our proposal is to follow a methodology for developing
multi-agent systems simultaneously with a large reuse of



Figure 3. The part of the Agent Identification
diagram related to the functionalities and re-
lationships of the third level planner agent
(TLPlanner)

design models and implementation code supplied by the use
of patterns of agents.

3.1. Our Design Approach

A robotic application architecture has not been fre-
quently developed following a rigorous and rationale pro-
cess from design to code. The experimental character of
these types of applications do not justifies the demanding
work required from the design methodology activities. Al-
though a software engineering approach would be desirable
because it would produce a well documented and structured
work, it has the side effect to stretch out the time required to
accomplish it. Our proposal is to follow a methodology for
developing multi-agent systems simultaneously with a large
reuse of design models and implementation code supplied
by the use of patterns of agents. A robotic architecture can
be well modeled using a multi agents system and particu-
larly the agent autonomy is very important because it gives
us the opportunity of easily partitioning the architecture in
different components, each of them independent by the oth-
ers and responsible for only a portion of the overall system
behavior/functionalities.

In our approach we use PASSI [16], that is a step-by-step
requirement-to-code methodology for developing multi-
agent software that integrates design models and philoso-
phies from both object-oriented software engineering and
MAS (Multi-Agent System). It is composed of five models
that address different design concerns and twelve steps in
the process of building a model.

In PASSI we use UML as the modeling language and
its extension mechanisms (constraints, tagged values and

stereotypes) to facilitate the customized representation of
agent oriented diagrams without requiring a completely new
language. Moreover, like other UML-based methodologies,
PASSI is supported by a CASE (Computer Aided Software
Engineering) tool, called PTK (PASSI toolkit) that is an
add-in for Rational Rose. The use of PTK allows the auto-
matic composition of some of the diagrams (built upon the
information provided in the previous parts of the design), a
consistency check of the work and generation of the agent
code also reusing pieces coming from a pattern repository.

In the first PASSI model (System Requirements) the
designer analyzes the system requirements and produces a
decomposition of them among the identified agents. This
model involves four steps:

• Domain Description (D.D.), in which the developer
describes the functional requirements of the system us-
ing conventional use-case diagrams.

• Agent Identification (A.Id.), where the functionalities
are assigned to different agents. As an example we
can consider, in Figure 3 the part of the A.ID. diagram
showing the functionalities of the third level planner
agent (TLPlanner) and its relationships with the others.
The functionalities of the system are represented with
use cases (ovals in the figure) and the relationships
among this pieces of external behavior of the system
can be of three different types: include if one function-
ality always needs services by another to accomplish
its duty, extend if another use case concurs in the solu-
tion only under precise circumstances, communicate if
two use cases belonging to different agents interact to
exchange data or services (this is different from stan-
dard UML where only relationships among actors and
use cases can be of the communicate type). In Figure
3 we can see that the TLPLanner agent includes the
third level planning functionality (pathplanningTL use
case) and that in order to fulfill its mission it asks for
data coming from the SensorFusion use case (that is
one of the functionalities of the SensorReader agent)
where readings from sonars and laser are combined in
the histograms of the VFH+ algorithm. The TLPlan-
ner agent also receives suggestions about the path to
be followed by the second level planner (SLPlanner)
agent and sends commands to the robot motors com-
municating with the engcontrol use case of the Eng-
Controller agent. The feedback from odometry is then
used to refine the movement commands and if an ob-
stacle is detected and the path changed to avoid it, this
information is sent to the second level planner (com-
municate relationship from the TLPlanner agent to the
SLPlanner agent) that recalculates its path.

• Role Identification (R.Id.), consisting in the use of se-
quence diagrams to explore each agent’s responsibili-



Figure 4. The portion of the Multi-Agent Struc-
ture Definition diagram (MASD) representing
the agents shown in Figure 3

ties through role-specific scenarios. For example these
diagrams are used for representing the interactions that
the TLPlanner agent establishes in order to obtain the
data required for path planning.

• Task Specification (T.Sp.), where we use activity dia-
grams to describe the capabilities of each agent. Here
we also design the policy the agent uses to fire its be-
haviors. BDI or statechart based agents produce very
different results in this phase.

The second PASSI model is Agent Society: it is the rep-
resentation of agents’ interactions and dependencies from
the social point of view. Developing this model involves
three steps:

• the Ontology Description (O.D.) is one of the typi-
cal steps of designing an agent-based system. We use
class diagrams and OCL (Object Constraint Language)
constraints to describe the knowledge ascribed to in-
dividual agents and their communications in terms of
content language (SL, RDF, KIF [12]), piece of ontol-
ogy referred and agent interaction protocol.

• Role Description (R.D.) consists of class diagrams
showing the distinct roles played by the agents, the
tasks involved in these roles, the communications and
inter-agent dependencies.

• In the Protocol Description (P.D.), the agent interac-
tion protocol is described using UML sequence dia-
grams in terms of speech-act performatives like in the
AUML approach [18].

The third PASSI model is Agent Implementation where
the architecture of the multi agent system is defined in terms
of classes and methods. This model involves the following
steps:

• The Agent Structure Definition (A.S.D.) is a classi-
cal representation of the system in terms of class dia-
grams. We use two different levels of abstraction pro-
ducing a multi-agent diagram (M.A.S.D.) where each
agent is represented by one class and the operations
of this class are the tasks of the agent and one dif-
ferent single agent diagram (S.A.S.D.) for each agent.
In the S.A.S.D. the agent main class and the tasks
are represented as different elements each one with its
’real’ methods that will be coded. For instance we can
consider in Figure 4, the portion of the Multi-Agent
Structure Definition diagram (MASD) representing the
agents shown in Figure 3. The knowledge of each
agent is described in the class attribute compartment
(the upper one), therefore we can see that the TLPlan-
ner agent knows the robot position (robot piece of
knowledge referring to the RobotPosition concept of
ontology), the grid decomposition of the room (active-
Grid piece of knowledge that relates to the Grid con-
cept) and so on. The tasks (i.e. the elementary pieces
of behavior of the agent) are described in the class op-
eration compartment (the lower one). The TLPlan-
ner agent has a FirstLocalization task used to require
the self localization to another agent, the SLListener
task receives the communications from the SLPlanner
agent and so on.

• The behavior of the each single agent and of the whole
society is modeled in the Agent Behavior Description
(A.B.D.)diagrams. They are activity diagrams or state
charts again used at the multi or single agent level of
abstraction

The fourth PASSI model is the Code Model. In this
phase we produce the solution at the code level performing
the following steps:

• In Code Reuse (C.R.), we take existing patterns from
a repository and use them in order to fill the inner part
of the methods

• During the Code Completion (C.C.) the source code
of the target system is completed by the programmer
and the final version of the software is released.

The Deployment Model is the last step of the PASSI
process. It is a model of the distribution of the parts of the
system across hardware processing units, and of their mi-
gration between processing units. It involves one step, the
Deployment Configuration (D.C.) where we use UML de-
ployment diagrams to describe the allocation of agents in
the available processing units and any constraints on migra-
tion and mobility.



Amount of work (months) 18
Different types of agents 16
Total number of classes 230
Lines of code 10610

Table 1. The dimension of the surveillance
robotic application (time spent is without pat-
tern reuse)

3.2. Coding with patterns reuse

In PASSI great importance has the reuse of existing pat-
terns. We define a pattern as set of different representation
of the same structural/behavioral part (a couple of agents
interacting in order to accomplish a cooperative goal, a sin-
gle complete agent, a task of an agent or even a piece of a
task) of the multi-agent system. Therefore, in our approach,
each pattern is composed of a model of the structure of the
involved elements (an UML class diagram), a model of the
dynamic behavior (an UML activity diagram) and the im-
plementation code [9].

The PTK (PASSI ToolKit) tool comprehends a reposi-
tory of patterns and during the design process the user can
select the desired patterns from a list and can import them
in the project. This operation easily enriches the current
multi-agent system with the functionalities or behaviors de-
fined in the reused pattern. The repository of patterns has
been developed in the AgentFactory project funded within
the Agentcities initiative (www.agentcities.net).

This process brings to drastically lowering the cost of
developing a multi-agent application without limiting the
choice of the implementation platform. In order to prove
this assertion we decided of simultaneously supporting both
the JADE and FIPA-OS platforms. These are very diffused
FIPA-compliant platforms that cover a great percentage of
installed systems. If the designer wants to produce a JADE
system, he has the opportunity of reusing the same patterns
available in FIPA-OS. This is possible because the descrip-
tion of the pattern uses XML as a meta-language platform-
independent representation (meta-pattern).

This high level description of a pattern has been intro-
duced to separate its structure from the implementation plat-
form. For example in the FIPA-OS platform, a task is a class
that extends the Task super-class and contains a startTask()
method; in the JADE platform a task is a class that extends
the Behavior super-class and contains an action() method.
These structural differences can be handled with a unique
meta-description using high level concepts like TaskShell
or TaskSetup(). TaskShell is the super-class extended from
any task, while TaskSetup() is the method called when a
task is scheduled.

From the meta-pattern, applying an XSLT transforma-

Figure 5. The structure of the VFH TL Planner
pattern that offers VFH+ planning capabili-
ties.

tion (a transformation used to change the structure of an
XML document), we deduct the platform (FIPA-OS or
JADE) specific static structure and dynamic behavior. This
is a pattern that can contains attributes and methods com-
patible with the specific agent platform. For example the
TaskSetup() becomes startTask() in the FIPA-OS transfor-
mation while action() in the JADE transformation.

Now, the static and dynamic description of the pattern
together with an additional XSLT transformation that intro-
duces some of the implementation features of the platform,
contribute to generate the JAVA code of the agent. At this
skeleton we add the body of the methods (when available
for the specific environment, we call these parts action pat-
terns) obtaining a class that is complete both in the structure
and in the inner code. As a consequence automatic code
generation percentage grows-up with the number of pattern
used in the project.

It is useful to specify that while several UML-based
CASE tools can generate code, they do not have specif-
ically conceived structures (agent, task and other specific
base classes) nor they can produce significant parts of the
inner code for the methods.

4. Experimental Setup

The experiment we refer in this paper consists in a
robotic system devoted to surveillance tasks. More in de-
tail the implemented functionalities comprehend the recon-



Figure 6. The sequence of tasks and the con-
trol logics of the VFH TL Planner agent pat-
tern described with an activity diagram

naissance of the building, the detection of new objects in the
environment (for example a bag that someone has forgotten)
with the consequent update of the environmental knowledge
and map description, the automatic detection of an intruder,
the pursuit (and encirclement if more robots are available)
of the intruder.

From the hardware point of view, the system is com-
posed of one (but more is possible) B21 mobile robot with a
computer and a stereo camera aboard; some fixed cameras
are positioned in the environment (a floor of our depart-
ment) in order to detect the intruder and four fixed work-
stations are used for agents deployments.

The software aspects are characterized by a multi-
agent system implemented with a FIPA-compliant platform
(JADE). The dimension of the whole project (as summa-
rized in Table 1) are quite interesting since more than 10
thousands of lines of code and 16 different types of agents
have been produced (some of them with several instances
at runtime). Each one of the three different categories (per-
ception, cognition and actuation) of our robotic architec-
ture in the proposed experiment includes several agents. A
particular effort has been dedicated to the vision subsys-
tem that introduces a multi-level architecture allowing the
dynamical introduction of new hardware (cameras) and ser-
vices (agents performing different kinds of filtering and im-
ages manipulations) [13]. One instance of a grabber agent
is bound to each camera (the type is FixedCameraGrabber
if the camera is a single camera or StereoCameraGrabber if
the camera is a stereo system) to capture the images. Several
instances of these agents are used and therefore an Hard-

wareManager agent is necessary to allow other agents to
interact with the best positioned (or more useful) camera
for each specific purpose. The captured images are then
manipulated by other agents that can perform tracking, mo-
tion detection, camera calibration and other operations. The
SelfLocalizator agent localizes the robot in the environment
using two images captured by its stereo camera while look-
ing at a landmark whose position is known a priori. This in-
formation is also used to correct the odometry error. Other
sensors (infra-red, laser range finder and compass) are man-
aged by an unique agent, the SensorReader.

Navigation and path planning have been realized using a
three level planning approach:

The first level looks at the environment (the building) as
a graph of interconnected rooms, the FLPlanner agent deals
with this and brings the robot from the actual position to the
room where the intruder has been found.

The second level deals with building the path inside the
single room.

The third level, planning (TLPlanner agent), is related
to the obstacle avoidance. It uses the VFH+ algorithm
[3],[14],[15] to perform the sensor fusion and change the
trajectory in order to avoid unexpected obstacles. The actu-
ation of the movement is responsibility of the EngController
agent that converts the path (composed of a series of direc-
tion commands) in the directives used to control the robot’s
motors.

4.1. An example of pattern of agent

Our repository of patterns include many elements spe-
cialized for robotics. One of these is the VFH TL Planner
pattern whose functionality is planning with the VFH+ al-
gorithm.

The VFH (vector field histogram) is a largely adopted
planning technique [3],[14],[15]; it grants a fluid motion of
the robot and a simple data fusion of sensors information
coming from different sources.

Because of the frequent application of this algorithm, its
availability as a pattern to reuse could be useful in designing
a robotic application.

The static structure of the VFH TL Planner pattern is
represented in Figure 5 where the different tasks and the
base agent class are obtained specializing more general pat-
terns (super-patterns).

The TLPlanner pattern represents an entire agent (for
this reason we mark it with the component stereotype) in-
cluding its necessary tasks. The main agent class is built
extending the GenericAgent behavior that provides the abil-
ity of registering itself to the agent platform (Directory Fa-
cilitator and Agent Management System services). The
VFHPlanner task (like other tasks characterized by the Be-
havior stereotype) that implements the VFH algorithm is



Figure 7. The XML meta-language representation of the TLPlanner agent

specialized from the SimpleBehavior task (one of the base
and simplest behaviors). The other six tasks (Request-
Grid, RequestSelfPosition, SendMoveParam, DeadlockIn-
form, FirstLocalization and GoalListener) are all devoted
to communications and are derived from pattern that refer
to the use of some specific agent interaction protocols (like
Request or Inform) and different roles in the communica-
tion (initiator or participant).

The main agent class has also the role of coordinating the
tasks flow of control accordingly to the specifications of the
activity diagram in Figure 6. In this diagram each rounded
angle rectangle represents a task of the pattern.

The first activity performed by the agent is to request
to another of updating the robot current position estima-
tion (FirstLocalization task). When this auto-localization
is complete the TLPlanner agent is ready to receive the plan
produced by the higher level planning agent (GoalListener
task). Again looking at the structural diagram of Figure 5,
we can see that the task is a communication task and that it
will use the Inform agent interaction protocol and the agent
will play the role of participant in the communication.

When the target position (and subsequent plan) is re-
ceived then the agent begins a loop: it sends the request for
the active grid to the sensor fusion agent (RequestGrid task)
and the request for the self position is sent to the engCon-
troller agent that can read the odometry sensors and estimate
the requested coordinates. With this information available
the agent can execute the VFH+ algorithm (VFHPlanner
task). If it is possible to move towards the goal (eventu-
ally avoiding an obstacle) the agent sends the commands to
the motors (SendMoveParam task) otherwise it informs the
second level planner agent that there is a stall condition and
plan need to be changed (DeadlockInform task).

The static structure of VFH TL Planner pattern, repre-
sented in the class diagram of Figure 5 can be represented in

form of a platform independent XML-based meta-language
as shown in Figure 7.

This code incorporates the parts of the pattern structure
and behavior that are common to the two different FIPA
compliant platforms that we use: FIPA-OS and JADE.

We can see that the main agent class (TLPlanner) is re-
ported in the agent name tag where the extension relation-
ship with the GenericAgent pattern is specified (we use the
GenericAgent pattern to introduce fundamental capabilities
in more complex agents). The VFHPlanner task is shown
together with some of its methods (particularly the setup
method will be discussed in the following). The remaining
part of the XML code is neglected because not important in
this context.

From this still high level of representation of the agent
implementation we deduce (with an XSLT transformation)
another XML-based stage that is localized to the specific
platform (for example it includes the default method of
each that is startTask for FIPA-OS and action for JADE).
This process could bring to the automatic generation of the
complete agent skeleton (results of this kind are obtained by
almost all the object-oriented CASE tools). We go beyond
this step trying to obtain a great amount of code for the
inner parts of the methods. This is possible if the behavior
of the specific part of code is known (as in this case) and
therefore it could be written for the two different platform,
stored in a repository and reused when necessary. As an
example consider the elaborate path@VFHPlanner action
pattern (an action pattern is a portion of code reusable
inside a method) that is present in the setup method of the
VFHPlanner task, at the code tag. When the XSLT trans-
formation that produces the final JAVA (JADE or FIPA-OS)
code is applied, the elaborate path@VFHPlanner action
pattern is substituted with the code represented in Figure 8
(for JADE). In the case of the FIPA-OS platform the code



Figure 8. The elaborate path@VFHPlanner action pattern (inner part of the method) used in the
VFHPlanner agent pattern

would be almost the same but the last line should be:

startTask(new SendMoveParam(params));

This shows that constructing the action pattern necessary
for both the two platforms that we selected is not an impos-
sible effort since they share the same language (JAVA) and
there are little difference among them.

5. Experimental Results and Conclusions

The robotic application we presented has been originally
realized using a precise design process (PASSI) but without
the availability of the pattern repository. Subsequently at
the introduction of this feature in the PTK tool we rebuilt
the application.

About these experiments we should consider that the
study and tuning of the algorithms used for vision, naviga-
tion, planning and the realization of the drivers for control-
ling the robotic hardware required 11 man/months; this part
of the work was not repeated in the second experiment. For
this reason we do not include this time in the comparison of
the results that are reported in Table 2.

The code reuse percentage for the agent that extends the
VFH TL Planner pattern, reported as an example through-
out the paper, is about 31%.

This means that while the complete agent code is com-
posed of 486 lines, after the application of this pattern to
the project, the programmer reused 152 lines of code and
manually added the remaining 334 (algorithmic parts of
the agent, related to this specific problem and that are not
present in the repository). Almost an half of the automati-
cally produced lines of code (70/152), are lines of the inner
part of the methods and not simple skeletons.

From the reuse point of view this agent can be considered
a typical example. In this experiment we had agents with up
to 82% of automatically generated code (SensorReader) and
agents with a lower percentage (SLPlanner, 18%).

The overall percentage of automatically generated code
is about 26% and the 46% of this code is method code (not
skeletons). It should be considered that a larger part of the
code that the designer added manually was strongly algo-
rithmic (therefore not well suited for pattern reuse) and in
both our two experiences in building the application it de-
rived from the previous activities of alghoritms studying and
tuning. This justify the differences in the coding and testing
activities in the two experiments (with and without patterns,
see Table 2).

In this considerations we should also add the time that
the designer saves when introducing a pattern. In fact in so
doing he obtains the reuse of the related portions of design.

We consider valuable this process not only for the re-
sulting high productivity but also because adopting this de-
sign methodology we obtain a well documented and easily
maintainable software with a complete traceability of the re-
quirements to the code. This is the result of using: a process
that includes models describing all the important aspects of
a MAS and a specifically conceived CASE tools that en-
sures an high level of coherence and continuous checks in
the design.

6. ACKNOWLEDGMENTS

We would like to thank A. Luparello, M. Parisi, V.
Savarino and S. Sorace for their contribution in realizing
the experiment discussed in this paper.

References

[1] A.Chella, S. Gaglio, and R. Pirrone. Conceptual represen-
tations of actions for autonomous robots. Robotics and Au-
tonomous Systems, 34:251–263, 2001.

[2] F. Bergenti and A. Poggi. Exploiting uml in the design of
multi-agent systems. ESAW Worshop at ECAI, 2000.

[3] J. Borenstein and Y. Koren. The vector field histogram -
fast obstacle avoidance for mobile robots. IEEE Journal of
Robotics and Automation, 7(3):278–288, 1991.



Design (without pattern reuse) 3
Code Production (without pattern reuse) 2
Testing (without pattern reuse) 2
Total amount of work (without pattern reuse) 7
Design (with pattern reuse) 2
Code Production (with pattern reuse) 1
Testing (with pattern reuse) 1
Total amount of work (with pattern reuse) 4

Table 2. Amount of work (in months) spent in
the development of the software system for
the surveillance robotic application

[4] J. Castro, M. Kolp, and J. Mylopoulos. Towards
requirements-driven information systems engineering: The
tropos project. In To appear in Information Systems, Else-
vier, Amsterdam, The Netherlands, 2002.

[5] A. Chella, A. Frixione, and S. Gaglio. A cognitive architec-
ture for artificial vision. Artificial Intelligence, 98(1-2):73–
111, 1997.

[6] A. Chella, A. Frixione, and S. Gaglio. An architecture for
autonomous agents exploiting conceptual representations.
Robotics and Autonomous Systems, 25:231–240, 1998.

[7] A. Chella, A. Frixione, and S. Gaglio. Understanding dy-
namic scenes. Artificial Intelligence, 123:89–132, 2000.

[8] A. Collinot and A. Drogoul. Using the cassiopeia method
to design a soccer robot team. Applied Articial Intelligence
(AAI) Journal, 12(2-3):127–147, 2000.

[9] M. Cossentino, P. Burrafato, S. Lombardo, and L. Sabatucci.
Introducing pattern reuse in the design of multi-agent sys-
tems. In AITA’02 workshop at NODe02, Erfurt, Germany,
8-9 October 2002.

[10] S. Cranefield and M. Pruvis. Uml as an ontology modelling
language. In Workshop on Intelligent Information Integra-
tion, 1999.

[11] S. A. DeLoach, M. F. Wood, and C. H. Sparkman. Multia-
gent systems engineering. International Journal on Software
Engineering and Knowledge Engineering, 11(3):231–258.

[12] Foundation for Intelligent Physical Agents. FIPA Content
Languages Specification, 2001.

[13] I. Infantino, M. Cossentino, and A. Chella. An agent based
multilevel architecture for robotics vision systems. In The
2002 International Conference on Artificial Intelligence,
Las Vegas (NV), USA, June 24-27 2002. ICAI’02.

[14] J.Ulrich and J.Borenstein. Vfh+: Reliable obstacle avoid-
ance for fast mobile robots. In IEEE International Confer-
ence on Robotics and Automation, page 1572, Leuven, Bel-
gium, July 15-19.

[15] J.Ulrich and J.Borenstein. Vfh*: Local obstacle avoidance
with look-ahead verification. In IEEE International Confer-
ence on Robotics and Automation, pages 2505–2511, San
Francisco (CA), USA, April 2000.

[16] M.Cossentino and C. Potts. A case tool supported methodol-
ogy for the design of multi-agent systems. Las Vegas (NV),
USA, June 24-27 2002. The 2002 International Conference
on Software Engineering Research and Practice, SERP’02.

[17] P. O’Brien and R. Nicol. Towards a standard for software
agents. BT Technology Journal, 16(3):51–59, 1998.

[18] J. Odell, H. V. D. Parunak, and B. Bauer. Extending uml
for agents. In AOIS Workshop at AAAI 2000, Austin, Texas,
July 2000.

[19] M. Wooldridge, N. R. Jennings, and D. Kinny. The
gaia methodology for agent-oriented analysis and design.
Journal of Autonomous Agents and Multi-Agent Systems,
3(3):285–315, 2000.


