
An approach for the integration of swarm intelligence in
MAS: an engineering perspective

Vincent Hilairea, Massimo Cossentinob, Franck Gechtera, Sebastian
Rodrigueza,c, Abderaffiaa Koukama

alaboratoire Systmes et Transports, UTBM, 90010 Belfort Cedex FRANCE
bICAR Institute,National Research Council, Palermo, ITALY

cCentro de Investigación de Teconoloǵıas Avanzadas de Tucumán, UTN, San Miguel de
Tucuman, ARGENTINA

Abstract

For more than 20 years, researchers have designed models in order to describe
swarm intelligence and apply the resulting techniques to complex problems.
However, there is still a gap between these models and current MAS method-
ologies. The goal of this paper is to propose a principled and methodological
approach for the engineering of systems based upon swarm intelligence. The
constraints are, on the one hand, to enable the analysis, design and implemen-
tation of such systems; and, on the other hand, to formally analyze and verify
properties of resulting systems. The principles of the approach are based, on
the one hand, on requirement driven activities that produce goals to be fulfilled
by the system of interest and, on the other, hand on an ontological modeling of
the problem domain. This ontological modeling conceptualizes the phenomenon
one seek to imitate and thus allows it understanding. The produced ontology is
refined through the methodology activities down to organizational models.

1. Introduction

For more than 20 years, researchers have designed models in order to de-
scribe swarm intelligence and apply the resulting techniques to complex prob-
lems. However, there is still a gap between these models and current MAS
methodologies such as ASPECS [1], TROPOS [3] or GAIA [38].

The goal of this paper is to propose a principled and methodological ap-
proach for the engineering of systems based upon swarm intelligence. The con-
straints are, on the one hand, to enable the analysis, design and implementation
of such systems; and, on the other hand, to formally analyze and verify proper-
ties of resulting systems.
Some works have contributed to this issue [6, 7, 8]. In [7] the authors build a
library of patterns of self-organizing behaviors. However, even if it is an interdis-
ciplinary and interesting attempt to define a framework for engineering systems
based upon swarm intelligence a lot of work has still to be done in order to
define principled and methodological approaches relying on swarm intelligence.

Preprint submitted to Elsevier July 13, 2012



The author of [6] proposes general rules in order to engineer swarming systems
and a formal framework for analysis and validation. These rules are not related
to current methodologies or development platforms. In [8] the authors design
a complete methodology based upon the theory of Adaptive Multi-Agent Sys-
tems. This methodology allows the analysis and design of swarming systems
but impose a cooperative internal medium which maybe a strong constraint for
some cases.
Swarming approaches are usually inspired by biology [9] or physics [10, 11].
These systems usually exhibit features such as self-organization, emerging phe-
nomena, robustness and adaptability. One of the main problems with this kind
of approaches is the small number of methodologies and guidelines which help
the engineering of such systems. Indeed, to be fully adopted, methodologies
must be able to decompose the underlying principles of these systems with ab-
stractions in a principled way. Some experiments were done in the domain of
swarming MAS architecture reverse-engineering [12] but they usually lack a sys-
tematic support. For instance, in [5] the authors give general principles in an
informal way. However, it is a real problem and despite the interest risen by
these architectures the claims that stripping away centralized control is enough
to allow the emergence of interesting properties has never been proved [13].
In order to engineer such kind of MAS we propose to use a combined approach
based, on the one hand, on requirement driven activities that produce goals to
be fulfilled by the system of interest and, on the other, hand on an ontologi-
cal modeling of the problem domain. The principle is to produce an ontology
which conceptualizes the phenomenon one seek to imitate and thus allows it
understanding. Indeed, swarming approaches [4] are based on the replication of
existing behaviors, that have produced in certain experimental conditions the
desired emerging properties. This statement was already observed in [5]:

Swarming is a discovery, not an invention. It is a naturally oc-
curring phenomenon that we seek to imitate in engineered systems.
Design principles for effective artificial swarming systems must be
developed from an understanding of why swarming works in natural
systems.

The produced ontology is then refined down to organizational models. The
analyst can then choose from a library of organizational models the ones that
will satisfy the goals issued from the requirements analysis. This combined
approach is associated with formal proofs techniques in order to formally verify
properties of organizational models and fulfillment of goals.

It seems a sound principle as the ontology is an understanding of the mod-
eled system and so describes at least partially how it works. The interacting
entities the designer wants to replicate and their possible actions are part of
this ontology. In order to introduce a systematic activity, some guidelines are
provided in order to identify organizations and roles from this ontology. This
activity is integrated in an existing methodology, namely ASPECS. The modi-
fied methodology is then able to decompose such systems in roles, interactions

2



and organizations which are the key concepts of the ASPECS analysis phase
and which are identified, in the original methodology, by means of use cases.
This kind of approach is advocated by the authors of [5] who state ”we ought
to be able to reverse-engineer the underlying mechanisms of swarming systems
for use in synthetic systems”.
The paper is organized as follows: section 2 presents the background related
to the ASPECS methodology and the specific architecture that illustrates the
presented approach. Section 3 presents the ontological identification approach.
Section 4 is dedicated to related works and section 5 concludes.

2. Background

2.1. ASPECS
aspecs is a step-by-step requirements to code software engineering process

based on a metamodel which defines the main concepts for the proposed mas and
Holonic mas analysis, design and development. It integrates design models and
philosophies from both object- and agent-oriented software engineering (OOSE
and AOSE) and is largely inspired by the passi [2] and rio [14] approaches.
The target scope of aspecs can be found in complex systems and especially
hierarchical complex systems. The main vocation of aspecs is towards the
development of societies of holonic (as well as not-holonic) multiagent systems.

The ideas underpinning the aspecs design process can be described as fol-
lows:

1. The aspecs design process explicitly deals with the design of open, dynamic
and complex systems.

2. The adoption of an organizational approach. Functionalities to be realized
are assigned to organizations. An organization is defined by a collection of
roles that take part in systematic institutionalized patterns of interactions
with other roles in a common context. A role is defined as an expected
behavior (a set of role tasks ordered by a plan) and a set of rights and obli-
gations in the organization context. The goal of each Role is to contribute
to the fulfillment of (a part of) the requirements of the organization within
which it is defined. A role can be instantiated either as a Common Role or
Boundary Role. A Common Role is a role located inside the designed sys-
tem and interacting with either Common or Boundary Roles. A Boundary
Role is a role located at the boundary between the system and its outside
and it is responsible for interactions happening at this border (i.e. GUI,
Database, etc).

3. Domain related ontological knowledge is used as a tool for enhancing the
quality of design. This has been already adopted in some previous method-
ologies [15] but it is lacking in most modern approaches. We think that
in dealing with intelligent agents it is particularly important to explicitly
catch an ontological model of the problem and solution domains; this al-
lows an easy application of several AI techniques as well as the adoption of
semantic-based communications among agents.

3



4. Three main levels of abstractions, called models according to the model-
driven engineering terminology, are considered. Concepts of the problem
domain are used to model system requirements in terms of organizations
and interacting roles; concepts of the agency domain are the result of a
set of transformations from the previous domain and are used to depict
an agent-oriented solution; concepts of the solution domain are again the
result of some transformations and are devoted to design a platform-specific
solution at the code level.

The different activities of the System Requirements phase of aspecs are rep-
resented by the SPEM diagram of figure 1. aspecs software process is driven by
requirements. Thus the first activity, Domain Requirement Description, of the
first phase of aspecs, System Requirements, deals with the analysis of system
functional and non functional requirements. Functional requirements describe
the functions the software has to exhibit [16] or the behavior of the system in
terms of interactions perceived by the user. Non functional requirements are
sometimes known as constraints or quality requirements [16]. The global ob-
jective of the Domain Requirements Description (DRD) activity is gathering
needs and expectations of application stakeholders and providing a complete
description of the behavior of the application to be developed. In the proposed
approach, these requirements should be described by using the specific lan-
guage of the application domain and an user perspective. This is usually done
by adopting use case diagrams for the description of functional requirements;
besides, conventional text annotations are applied to use cases documentation
for describing non-functional requirements.
The global objective of the Problem Ontology Description (POD) is to provide
an overview of the problem domain. Stakeholders naturally express require-
ments in their own terms and with implicit knowledge of their own works [17].
Therefore the aim of this activity is deepening the understanding of the problem
by complementing the usual requirements description in terms of use cases with
a description of the concepts that compose the problem domain. It describes
concepts used in the specific language of the application domain and users. Re-
sults of this activity can sometime imply modifications in uses cases. The design
of the domain ontology occurs very earlier in our process and this has a direct
consequence in the organization and capacity identification activities. Problem
ontology is modeled by using a class diagram where concepts, predicates and
actions are identified by specific stereotypes. The ontology is inspired from the
FIPA proposal [18]. The main point is that actions are distinguished concepts
associated to the concept that act and the concept that is manipulated. This
specific type of ontology is described in the next subsection.
The DRD and POD activities precedes Organization Identification. In this ac-
tivity the objective is to assign to each use case an organization in charge of
its fulfillment. Once the organizations have been identified the next activity,
Interaction and Role Identification consists in refining organizations in terms of
interacting roles. Roles use their capacities for participating to organizational
goals fulfillment; a Capacity is a specification of a transformation of a part of the

4



Figure 1: aspecs System Requirements phase

5



Figure 2: aspecs example of organization

designed system or its environment. This transformation guarantees resulting
properties if the system satisfies a set of constraints before the transformation.
It may be considered as a specification of the pre- and post-conditions of a goal
achievement. This concept is a high level abstraction that proved to be very
useful for modeling a portion of the system capabilities without making any
assumption about their implementations as it should be at the initial analysis
stage.

A Capacity describes what a behavior is able to do or what a behavior may
require to be defined. As a consequence, there are two main ways of using this
concept:

• it can specify the result of some role interactions, and consequently the
results that an organization as a whole may achieve with its behavior. In
this sense, it is possible to say that an organization may exhibit a capacity.

• capacities may also be used to decompose complex role behaviors by ab-
stracting and externalizing a part of their tasks into capacities (for instance
by delegating these tasks to other roles). In this case the capacity may be
considered as a behavioral building block that increases modularity and
reusability.

Figure 2 shows an example of organization drawing from the well-known
Contract NET protocol [19]. This organization is sketched by the CNET pack-
age stereotyped Organization. Within this organization there are two roles
depicted by classes stereotyped Role. These two roles are Manager and Par-
ticipant. The association class between roles depicts an interaction. Here it is
the Call for Proposal aiming to delegate a task that starts the CNET protocol.
An example of provided capacity is included in the diagram. This capacity,

6



namely TaskDelegation, represents the fact that the CNET organization is able
to manage the delegation of a task. the requires part of this capacity includes
the fact there exist such a task and that there is participants. The ensures part
of the capacity states that the task will be delegated to the participant with the
best bid

For a complete view of ASPECS the reader can see [1].

2.2. Ontology definition
A definition of ontology is given by the author of [20] : in the context of

knowledge sharing, an ontology means a specification of a conceptualization.
That is, an ontology is a description (like a formal specification of a program)
of the concepts and relationships that can exist for an agent or a community
of agents. There are several ways for describing an ontology such as: semantic
networks, concept lattices and logic for example. A frequently used ontology
is OWL advocated by the W3C [21]. It is an object-oriented language based
on class and properties. For clarity reasons, the examples of ontologies will be
presented as UML class diagrams in this paper.
The ontology we use for this paper is inspired by the FIPA RDF content specifi-
cations [18] and the one used in [2]. An UML class diagram is used to represent
the ontology, as it is the case in other works such as [22, 23]. In order to
distinguish the different ontology categories, the classes representing them are
stereotyped by their category name. These categories are: concept, predicate
and action. A concept describes a set of individuals or instances of the domain of
interest. A predicate is an assertion on properties about concepts. An action is
something that is performed in the domain of interest. These classes have rela-
tionships between them. Indeed, a predicate is related to the concerned concept
and an action is related to an actor (the concept that acts) and a receiver (the
concept that is acted on). To these existing categories the Capacity, as described
in previous subsection, is added. A capacity is described by a set of properties
required (pre-conditions), a set of properties ensured (post-conditions) and two
sets that are the inputs and outputs of the capacity. An example of such on-
tology is given in figure 3. In this example, there are two concepts: Seller and
Buyer and one action: Sell. The principle of the action is that a Seller sells to
a Buyer. The predicate hasProductsToSell establishes whether or not a Seller
has some products to sell. Eventually, the capacity TriggerPayment of a Buyer
states that a Buyer must be able to pay.

2.3. Localization and Tracking MAS
2.3.1. Context

Localization, with mobile or fixed sensors, is a very difficult but required
task to control mobile robots in an indoor dynamic and uncertain environment.
This task can be defined as finding the position of an object, mobile or not,
in a well known referential system. The localization problem may adopt two
methods: localization with on board sensors (also called self localization) and
localization with external sensors. The algorithms used generally stem from

7



Figure 3: Example of ontology diagram

signal or image processing, or from the stochastic methods based on Markov
Models [24]. So, the standard localization algorithms are extremely dependent
on the nature of the used sensors and deal generally only with one single target.
The existing multi-agent based localization and tracking devices are generally
based on specialized cognitive agents and are closely tied to specific task [25].
In this way, tracking is considered to be a collection of temporally and spatially
coherent localizations. As a means of localization, the tracking algorithms stem
from the signal processing. Among the most spread out we can point out the
Kalman filter, the optical flow algorithms and the particle filtering [26]. The
main difficulty in designing such systems for localization and tracking is to take
into account the characteristics of the used sensors while obtaining properties
such as robustness and adaptation to the variation in the targets’ kinetics. Con-
sidering these required properties, using a reactive multi-agent system to solve
this problem seems to be adapted.
The approach presented in this paper is based on the fact that the environment
can also be considered as an active element in MAS problem solving processes.
Indeed, it has been emphasize in litterature [27], [4] that it can plays an impor-
tant role in MAS especially when agents have limited abilities. As exposed in
[28], in the presented approach, the environment can be considered as the inter-
face between the real world where the problem evolves (i.e. where the targets
appear, move and disappear in our case) and the resolution process, composed
of agents and their interactions, which computes the solution (i.e. localization
and tracking of targets). This principle has already been used practically in
target tracking and localization [29] but also in relation with intelligent mobile
vehicle abilities such as obstacle avoidance [30] and driving assistance [31].

2.3.2. Approach
As previously exposed, localization and tracking are based on the use of

sensors that are spread out in the target evolution area. The association sen-
sor/processing algorithms is then called Perceptive Unit (PU). The environment
is depicted using an occupancy grid that represents an abstraction of the ob-
servable areas of the real world according to the sensors’ range. Dynamics of
the problem depend on dynamics of the targets, which can (i) appear, i.e. they
arrive in the observation field of the sensors, (ii) move, i.e. they go from one
observable point of the real world to another observable point, (iii) disappear,

8



Figure 4: Architecture of the Physics based reactive model for the localization and the tracking
(left) and representation of the solving process as a filter (right).

i.e. they go out of the observation field. These dynamics have been accounted
for using two main trends. First, accumulation of the sensing information deals
with the appearance of the targets. This accumulation leads to the construc-
tion of a plot(namely, a local probability distribution) that represents a possible
position for a target. This construction can be considered as a deformation of
the environment that has to be perceived by the agents. Second, there is atten-
uation of the plot in order to deal with target disappearance. Together, these
two trends take into account the targets’ movements.
The perceptions of the agents have then to be defined. The agents perceive the
plots through the environment by means of an attraction force (formulated to
account for the nearsightedness of the agents). This force is induced by the
appearance of a plot and depends on its size.
As for the interaction mechanisms, they have to be defined taking into account
individual and collective points of view. Moreover, regulation mechanisms are
required. A repulsion mechanism has been defined between agents in order to
spread them in the information-less areas of the environment. This mechanism
is inhibited when the agents are on a plot. There, the agents cooperate by am-
plifying the attenuation of the plot, in order to limit the size of the resulting
group. Finally, the emergent organization is characterized by both a gathering
of the agents on the plots, which leads to group construction, and an homoge-
neous distribution of them in the information-less areas. Each group can thus
be considered as a localized target. The output of the system is stable when
equilibrium is established between refreshing and solving dynamics. Figure 4
summarizes the architecture of our problem-solving model.

9



3. Architecture analysis principles

The approach proposed in this paper in order to analyze swarming system
modifies the ASPECS process as defined by the figure 1. The Domain Re-
quirement Description is no longer the only first activity. In fact, there are
two possible ways to begin the analysis process as described in the figure 5.
The first possible way consists in starting from phenomena to be imitated and
conceptualize them with the Problem Ontology. From the ontology, the sub-
sequent activities identify organizations, roles and interactions and then refine
roles with concrete behaviors. The result of this path is the production of an or-
ganizational diagram composed of interacting roles with detailed behaviors that
exhibit known overall properties. The second way consists in starting from the
domain requirement description analyzing text usage scenarios and interviews
at hand in order to produce a goal diagram for the system to be. The DRD
activity may be quite complex and involves a lot of tasks before producing a
goal diagram as described in [32]. However, it is not in the scope of this paper
to describe these tasks.
These two paths reunite in the Goals assignment activity which intend to as-
sociate to identified goals to organization forms (coming from the ontological
analysis) that are able to fulfill them.

3.1. Problem ontology description
The approach proposed in this paper consists in using the result of the

Problem Ontology Description to identify organizations and roles from specific
phenomena we seek to imitate. As a consequence the aspecs process is modified
to take into account this methodological point of view. POD can be done
before in order to identify organizations and roles from the phenomenon that
is to be imitated. In order to do so, the POD must describe the concepts of
the phenomenon of interest and the actions that take place. Moreover, if the
expected results of an action are known the action has to be described by a
capacity and if there exist some known properties about concepts or actions
then it must be described by predicates.
This approach leads to the definition of two elements usable in the verification
process. On the one hand, proof obligations for the candidate organizations are
generated by each capacity. Indeed, a capacity is a kind of abstraction of the
behavior of an organization that needs to be verified by the role behaviors. The
property to be verified can be formulated as follows :

requires ⇒ ensures

with, respectively, requires (resp ensures) the pre-condition (resp post-condition)
of the capacity. On the other hand, each known property expressed as a predi-
cate can be used as a lemma to help the verification process.

3.2. Organisation and Role Identification
The guidelines proposed in order to identify organizations and roles from the

Problem Ontology are the following. Organizations are logical units composed of

10



interacting roles. Each Action of the Problem Domain Ontology will correspond
to an interaction between two roles. Indeed, acting concepts exhibit behaviors
when acting and concepts that are acted upon are either roles or parts of the
environment. It is then reasonable to associate (at least) a CommonRole or a
BoundaryRole to these concepts. For each Action two Roles and one interac-
tion are then identified. In a first approximation, we can define an organization
for each of these role couples. This process gives birth to many organizations,
one for each Action. A role may be duplicated in several of these organizations
if it takes part in several actions. The next step is now to merge the created
organizations in order to define coherent organizations. The proposed guideline
suggests to check if all duplicated roles are really different. If duplicated roles
exhibit the same behavior or if their behaviors do not make sense when consid-
ered separately then their encapsulating organizations must be merged.
The following algorithms formalize the preceding guidelines. The initial identifi-
cation of organizations is done by the initial Organization and role identification
algorithm. After this step each role is defined by a statechart in the Role Plan
Activity. Once the Role Plans are defined one can refine the organizations is-
sued from the initial Organization and role identification algorithm using the
Organization and role refinement algorithm. This process is repeated until a
stable set of organizations is defined.

Input: POD the Problem Ontology Description
Output: A set of Organizations O composed of interacting roles
O:=∅;1

foreach action ∈ POD do2

O:=O ∪ createOrg(action.actor,action.receiver,action);3

end4

Algorithm 1: Initial Organization and Role Identification

The consistencyCheck test asserts if the two roles in parameter can be de-
scribed separately or not. If the description of one of the roles needs information
coming from the other then the roles are not consistent and must be described
by a single merged role.

The consistencyCheck test can be realized using the different role plans result-
ing from the Role Plan activity. Each Role Plan is described with a statechart.
If the statecharts can not be fully defined because of the absence of informa-
tions present in another incomplete statechart then the roles are inconsistent
and should be merged. Another case is when a predicate states a property over
two or more actions linked to roles. Such a predicate, in order to be consistent,
needs to be wrapped in a single organization.

The mergeOrgs function takes as input two organizations, O1 and O2, and
produces as output an organization which is composed by the union of the two
organizations O1 and O2 roles and interactions. This function algorithm is given

11



Figure 5: Modified sequence of activities for swarming system analysis

12



Input: A set of Organizations O composed of interacting roles
Output: O refined to eliminate inconsistent roles
while There are still unchecked duplicates do1

foreach O1,O2 containing the same concept c do2

if not consistencyCheck(O1.c,O2.c) then3

O:=mergeOrgs(O1,O2);4

O:=O-O1;5

O:=O-O2;6

end7

end8

end9

Algorithm 2: Organization and role refinement

by algorithm 3.

Input: O1 and O2 two organizations
Output: O3 resulting of the merge of O1 and O2

O3:=∅;1

O3.R:=O1.R ∪O2.R;2

O3.I :=O1.I ∪O2.I ;3

Algorithm 3: mergeOrgs algorithm

An example of merge of two organizations is given in figure 6.

3.3. Verification
One of the possible approaches for requirements elicitation is based upon

goals analysis see [3, 33] for example. The general principles of these approaches
is to identify the global goals of the system and then to decompose these goals
in sub-level goals that contribute to the realization of the upper-level goals until
reaching a satisfying level of decomposition. If such an approach would be cho-
sen within aspecs the result would be a hierarchical, tree-like, decomposition
of goals.
The verification process proposed in this paper is composed of two steps. First,
each organization is associated to a set of proved capacities. It means that the
identified roles and interactions of the organization verify the property defined
by the capacity. This verification relies on the description of roles and inter-
actions. These descriptions are transformed into transition systems and used
as input for specific software tools such as SAL [34]. The principle of the ver-
ification using SAL is to prove that the system composed of interacting roles
satisfies the capacities defined property.
The second step consists in verifying that for each goal there is a capacity (or
a set of capacities) that verify it. This kind of proof maybe very complex. In-
deed, when goals cannot be related by well defined constructs, such as logical
and or logical or for example, to capacities, then there is the need for a theoret-
ical framework such as the one presented in [35]. Presenting such a framework

13



Figure 6: Example of organizations merge

would be out of the scope of this paper and the case study of the next section
allows a verification without this kind of framework. However, it is possible to
apply such a technique and use it for the purpose of the here described goal
analysis.

4. Case study

4.1. Problem Ontology Description
The domain ontology for the analysis of the localization and tracking MAS is

described in figure 7. The SituatedElement concept describes all concepts that
are situated in the environment. In order to do this, each of these elements is as-
sociated with a location in a three dimensional coordinate system. The Target,
PerceptionUnit and Tracker inherit from SituatedElement. The Target concept
represents the targets that are to be localized and tracked. The PerceptionUnit
is a concept that represents sensors able to perceive targets in the real world
environment. This action is represented by the Perceive concept (stereotyped
Action). According to the MAS architecture described in section 2.3 these sen-
sors modify the environment and specifically the highness (z component) of the
grid. This action is represented by the ModifyZ concept (stereotyped Action).
The Agent concept represents the agent that behave as described in section 2.3.
It means that they are repulsed by each others and attracted by high altitude
spots. The repulsion is materialized by the Repulsion concept (stereotyped Ac-
tion) and the attraction is materialized by the Attraction concept (stereotyped
Action).

4.2. Organisation and Role Identification
The O1, O2 and O3 organizations of figures 8, 9 and 10 are generated from

respectively the Perceive Action, IncrementZ Action and DecrementZ Action.
The Target Moving Organization of figure 11 is the result of the merging of

organizations O1, O2 and O3. Indeed, the PerceptionUnit role behavior is not

14



Figure 7: Problem Domain Ontology for the localization and tracking MAS

Figure 8: Organization generated from Per-
ceive

Figure 9: Organization generated from In-
crementZ

Figure 10: Organization generated from DecrementZ

15



Figure 11: Target Moving Organization

Figure 12: Organization generated from
Attraction

Figure 13: Organization generated from
Repulsion

decomposable. It consists in perceiving targets and according to this perception
modifying the z component of the environment grid. This fact merge O1 and O2

organizations. Since the predicate DecLTInc is expressed over the IncrementZ
and DecrementZ actions, and could not be expressed otherwise, O2 and O3 must
be merged.

The O4 and O5 organizations of figures 12 and 13 are generated from re-
spectively the Attraction Action and Repulsion Action. The Localization and
Tracking organization is the result of the merging of organizations O3 and O4.
In this case, the behavior of the Agent role consists in movements which are
computed following equations of section 2.3 that combine both attraction and
repulsion. It thus makes no sense to separate this behavior in two organizations.
At this point there is still one duplicated role (the Environment role) which be-
longs to the Target Moving and to the Localization and Tracking Organizations
of figure 11 and 14. The behaviors associated to this role are different in the two
organizations. In the Target Moving organization the environment is passively

16



Figure 14: Localization and Tracking Organization

modified by its PerceptionUnit. In the Localization and Tracking organization
the behavior of the Environment consists in attracting agents to high altitude
spot. These two organizations are thus coherent.

4.3. Role plan and proofs
After Organization Interaction and Role Identification activities the analyst

defines the role plan using statechart diagrams. These statecharts detail the
behaviors of the roles. From these statecharts, using the operational semantics
defined in [36] one can generate transition systems that can be given as input
of softwares such as SAL [34] thus allowing automatic verifications. For our
system, the generated proof obligations concern, respectively, the organizations
of figures 11 and 14 and the capacities PlotAroundTarget and SwarmAround-
Plot. The behavior of the organization defined in figure 11 must satisfy the
capacity PlotAroundTarget taking as hypothesis the predicate DecLTInc. The
capacity requires property is perception(x , y) representing the perception of a
target on a (x , y) position and the ensures is©©©(highness ′(x , y) > highness(x , y))
representing the fact that in the next step the highness of (x , y) position is
greater than the highness in the current step. The property to be proven is thus
perception(x , y) ⇒ ©©©(highness ′(x , y) > highness(x , y)) with the lemma DecLT-
Inc stating that the increment due to a target perception is greater than the
decrement due to evaporation. This property was proven by using the transition
system issued from the behaviors of the Target Moving organization with the
SAL software using induction and the bounded model checker.
The behavior of the organization defined in figure 14 must satisfy the capacity
SwarmAroundPlot taking as hypothesis the predicate ZeroOnTarget. The ca-
pacity requires property is ∃(x , y , z ) • z > 0, this means that there is at least
one position in the environment with a non-zero highness. The ensures property

17



Figure 15: Goal analysis for the localization and tracking problem

is

∀ i , j : Tracker , (i 6= j ) ∧ (i .pos.x = j .pos.x ) ∧ (i .pos.y = j .pos.y) ⇒ i .pos.z > 0
∧ ∀ i : Tracker ,∃ s : Plot • ©©©(d(i , s) > d ′(i , s))

The first line states that if two Trackers are on a same position then it must
be on a Plot. The second line states that a Tracker is always attracted by a
Plot. This property was proven by using the transition system issued from the
behaviors of the Localization and tracking organization with the SAL software
using induction and the bounded model checker.

4.4. Goals analysis
The result of the goal analysis for the problem of localization and tracking is

shown in figure 15. The main goal for this problem can be reduced, as discussed
in section 2.3, to a localization goal with dynamic properties. This main goal
is decomposed into two sub-goals by an AND type decomposition. The first of
these sub-goals is to deform the environment around targets, and only around
targets, so as to define high altitude spots and maintain them as targets move.
The second goal consists in building swarms around high altitude spots and only
around these spots.
The proof that the two sub-goals satisfy the main goal is quite obvious. Indeed,
if the environment is deformed around targets only and agents are grouped
on high altitude spots then the only existing groups of agents (swarms) are
necessarily constituted around identified targets. Now let us suppose there exists
a target not surrounded by a swarm. It means that either the environment is
not deformed around it (which is contradictory with the first sub-goal) or there
are no swarm on this spot (which is contradictory with the second sub-goal).
So, if the two sub-goals are satisfied, and supposing there are enough agents to
cover all possible targets then all targets will be surrounded by a swarm.

4.5. Discussion
A first interesting property of the presented heuristic is that generated orga-

nizations are correct in the sense that it is impossible to produce an organization

18



with a role that has no interactions with other roles. This can be easily proven
by induction. The initial state produced from the ontology defines one orga-
nization, composed of two or more interacting roles, for each action. In this
state the roles interact as each one participates in an action. Subsequently, the
transformations that are applied to organizations are of the merge type. Each
merge of organization is based upon union of roles and interactions. There are
no suppressions of interactions. It is so impossible to create an isolated role.
The second interesting property is that the set of generated organizations is the
smallest possible respectively to the consistency test. It means that for a given
problem ontology there are no smaller set of consistent organizations than the
one produced by the heuristic. It can be proven by contradiction. If it were
not true then among the generated organizations there would be at least two
duplicates that could be merged. This is in contradiction with the loop (line 3 of
Algorithm 2) that tests whether there are unchecked duplicates. The generated
set of organizations is then the smallest possible.

5. Related works

For many methodologies, such as [37, 38, 39], the identification of roles
and organizations is left to the designer choices or to an external requirements
process. However, it is recognized that requirement elicitation is not an easy
task and the assignment of such requirements to organizational structures is not
a trivial task, any guidelines maybe helpful.
For goal-oriented methodologies, like TROPOS [3] or MOISE [33], there is a
strong relationship between the organizational structure and the goals since
each goal is associated to an organization (for MOISE) or actor (for TROPOS).
The problem lies in the fact that goal-oriented approaches are not well fitted
for swarming MAS as it is difficult to define goals and decompose them for this
kind of system. Indeed, the principle is to replicate existing behaviors.
Other methodologies do not take into account organizational concepts, as for
example Prometheus [40] and Adelfe [8].
In [5] the authors propose definitions for swarming and self-organized MAS and
give general principles on how to engineer swarming MAS. These principles
are illustrated through several case studies. Even if it is a very important
work both on theoretical and practical aspects, the given principles are not well
formalized and may sometimes be ambiguous. Their application may lead to
several different results. Moreover, the approach presented in this paper is based
on organizational concepts which enable the definition of ODP from swarming
metaphors. These ODP can be easily reused as many MAS methodologies and
development platforms integrate organizational concepts.
The authors of [13] deal with the engineering of emergence as it appears in many
biological systems. The underlying assumption is that there must exist several
levels and/or timescales to explain and describe emergence. Their proposition
consists in a three elements architecture to be refined for any specific problem.
These elements are: the System of System (SoS) model that describes the high
level system, the local model that describes the lower level and the the integrated

19



model that describes an integration environment between these two levels. This
approach has some similarities with the one presented in this paper. Indeed,
the Problem Ontology Description acts as an integration model describing the
system at different levels. The local model is described by organizations which
are projection of agents behaviors in a specific context. Eventually, the definition
of agents and their behaviors, not described in this paper as it comes later on in
the aspecs methodology, can be related to the SoS model. However, the work
presented in [13] only sketch the architecture and do not propose a methodology
to apply it.

6. Conclusion

This paper presents an approach for the engineering of swarming MAS. This
approach is based simultaneously on the analysis of the Problem Ontology De-
scription and the Goal-Requirements analysis of the problem. The result of the
Problem Ontology analysis is the decomposition in terms of organizations com-
posed of interacting roles. The construction of these organizations is described
by an heuristic which exhibits interesting properties and the approach generates
proof obligations from the ontology that should be proven by the concrete be-
haviors when defined. These properties once proven can be used to determine
which organization is able to fulfill the identified goals from the goal-requirement
analysis. Moreover, the heuristic that produces organizations only produces or-
ganizations that are syntactically correct since each role interacts with at least
another role and the produced set of organizations is the smallest possible.
The described activity of Organization, Role and Interaction identification is
integrated in an existing MAS methodology, named aspecs. The aspecs ini-
tial flow of activities is modified in order to take into account the engineering
of swarming MAS. It is a minor modification and the two subsequent phases,
agency domain (a sort of design) and implementation remains unchanged. The
result is then an entire methodology from analysis to implementation dedicated
to swarming MAS.
The interest of the presented approach is that it introduces a systematic way
to engineer swarming systems that relies on the description of the system by an
ontology. This description is not complex to obtain as it is the conceptualization
underlying the chosen swarming system.
Future works will be concerned by the analysis of well known swarming MAS
in order to constitute a library of Organizational Design Patterns library.

References

[1] M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam, aspecs:
an agent-oriented software process for engineering complex systems, Au-
tonomous Agents and Multi-Agent Systems 20 (2) (2010) 260–304.

[2] M. Cossentino, From requirements to code with the passi methodology, in:
Agent-Oriented Methodologies, Idea Group Inc., Hershey, PA, USA., 2005.

20



[3] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos, Tropos:
An agent-oriented software development methodology, Autonomous Agents
and Multi-Agent Systems (8) (2004) 203–236.

[4] H. V. D. Parunak, Go to the ant: Engineering principles from natural
multi-agent system, Annals of Operations Research 75 (1997) 69–101.

[5] H. V. D. Parunak, S. A. Brueckner, Engineering swarming systems, in:
METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT
SYSTEMS -The Agent-Oriented Software Engineering Handbook, Kluwer
academic publisher, 2004, pp. 341–376.

[6] M. naturwissenschaftlichen Fakult At Ii, H. D. inf, S. A. Brückner, D. H.
Meyer, D. Mathematisch-naturwissenschaftlichen, F. Ii, P. Dr, P. Dr,
B. Krause, Return from the ant - synthetic ecosystems for manufacturing
control (2000).
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.7907;
http://www.anteaters.net/ sbrueckner/publications/2000/thesis.pdf

[7] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm intelligence: From natural
to artificial systems, J. Artificial Societies and Social Simulation 4 (1).
URL http://jasss.soc.surrey.ac.uk/4/1/reviews/kluegl.html

[8] C. Bernon, V. Camps, M. Gleizes, G. Picard, Engineering adaptive
multi-agent systems: The adelfe methodology, in: B. Henderson-Sellers,
P. Giorgini (Eds.), Agent-Oriented Methodologies, Idea Group publishing,
2005, Ch. VII, pp. 172–202.

[9] V. D. Parunak, ”go to the ant”: Engineering principles from natural multi-
agent systems, in: Engineering Principles from Natural Agent Systems.
Annals of Operation Research, 1997.

[10] C. W. Reynolds, Flocks, herds, and schools: A distributed behavioral
model, in: Computer Graphics, 1987, pp. 25–34.

[11] M. C. Marco, M. Mamei, F. Zambonelli, L. Leonardi, Co-fields: A physi-
cally inspired approach to distributed, IEEE Pervasive Computing 3 (2004)
2004.

[12] V. Hilaire, O. Simonin, A. Koukam, J. Ferber, A formal framework to
design and reuse agent and multiagent models, in: J. Odell, P. Giorgini,
J. Muller (Eds.), Agent Oriented Software Engineering, no. 3382 in LNCS
3382, Springer, 2005.

[13] S. Stepney, F. Polack, H. R. Turner, Engineering emergence, in: ICECCS,
IEEE Computer Society, 2006, pp. 89–97.
URL http://doi.ieeecomputersociety.org/10.1109/ICECCS.2006.55

21



[14] V. Hilaire, P. Gruer, A. Koukam, O. Simonin, Formal driven prototyping
approach for multi-agent systems, International Journal of Agent Oriented
Software Engineering 2 (2) (2008) 246–266.

[15] C. Iglesias, M. Garijo, J. Gonzalez, J. Velasco, Analysis and design of
multi-agent systems using mas-commonkads, Vol. 1365 of LNAI, Springer-
Verlag, 1998, Ch. Intelligent agents IV: Agent theories, architectures, and
languages, pp. 313–326.

[16] Software Engineering Body of Knowledge, IEEE Computer Society, 2004.

[17] I. Sommerville, Software Engineering, seventh edition Edition, Interna-
tional Computer Science Series, Addison Wesley, Pearson Education, 2004.

[18] FIPA, Fipa rdf content language specification, Tech. Rep. XC00011B
(2001).

[19] R. G. Smith, The contract net protocol : High-level communication and
control in a distributed problem solver, Morgan Kaufmann (1988) 357–366.

[20] T. R. Gruber, A translation approach to portable ontologies, Knowledge
Acquisition 5 (2) (1993) 199–220.

[21] W3C OWL Working Group, OWL 2 web ontology language — docu-
ment overview, World Wide Web Consortium, Working Draft WD-owl2-
overview-20090611 (Jun. 2009).

[22] F. Bergenti, A. Poggi, Exploiting uml in the design of multi-agent systems,
in: A. Omicini, R. Tolksdorf, F. Zambonelli (Eds.), Engineering Societies in
the Agents’ World, Lecture Notes in Artificial Intelligence, Springer Verlag,
2000.

[23] S. Cranefield, M. Purvis, UML as an ontology modelling language, in: Proc.
Workshop on Intelligent Information Integration, 16th International Joint
Conference on Artificial Intelligence (IJCAI-99), 1999.

[24] F. Gechter, F. Charpillet, Vision based localisation for a mobile robot, in
proceedings IEEE International Conference on Tools with Artificial Intel-
ligence (ICTAI) (2000) 229–236.

[25] F. Ealet, B. Collin, G. Sella, C. Garbay, Multi-agent architecture for scene
interpretation, SPIE’00 on Enhanced and synthetic vision, Orlando, USA.

[26] D. Fox, W. Burgard, F. Dellaert, S. Thrun, Particle filters for mobile robot
localization, Sequential Monte Carlo Methods in Practice Springer Verlag,
New York.

[27] Environments for multi-agent systems, first international workshop, e4mas
2004, new york, ny, usa, july 19, 2004, revised selected papers, in:
D. Weyns, H. V. D. Parunak, F. Michel (Eds.), E4MAS, Vol. 3374 of Lec-
ture Notes in Computer Science, Springer, 2005.

22



[28] D. Weyns, H. V. D. Parunak, F. Michel (Eds.), Environments for Multi-
Agent Systems II, Second International Workshop, E4MAS 2005, Utrecht,
The Netherlands, July 25, 2005, Selected Revised and Invited Papers, Vol.
3830 of Lecture Notes in Computer Science, Springer, 2006.

[29] F. Gechter, V. Chevrier, F. Charpillet, A reactive agent-based problem-
solving model: Application to localization and tracking, TAAS 1 (2) (2006)
189–222.

[30] F. Gechter, J.-M. Contet, P. Gruer, A. Koukam, A reactive agent based
vehicle platoon algorithm with integrated obstacle avoidance ability, in:
SASO, 2011, pp. 129–137.

[31] F. Gechter, J.-M. Contet, P. Gruer, A. Koukam, Car-driving assistance
using organization measurement of reactive multi-agent system, Procedia
CS 1 (1) (2010) 317–325.

[32] V. Seidita, M. Cossentino, S. Gaglio, Adapting passi to support a goal
oriented approach: a situational method engineering experiment, in: Proc.
of the Fifth European workshop on Multi-Agent Systems (EUMAS’07),
2007.

[33] J. F. Hübner, J. S. Sichman, O. Boissier, Developing organised multiagent
systems using the MOISE, IJAOSE 1 (3/4) (2007) 370–395.
URL http://dx.doi.org/10.1504/IJAOSE.2007.016266

[34] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, A. Tiwari,
SAL 2, in: R. Alur, D. Peled (Eds.), Computer-Aided Verification, CAV
2004, Vol. 3114 of Lecture Notes in Computer Science, Springer-Verlag,
Boston, MA, 2004, pp. 496–500.

[35] P. Giorgini, J. Mylopoulos, R. Sebastiani, Goal-oriented requirements anal-
ysis and reasoning in the tropos methodology, Eng. Appl. of AI 18 (2) (2005)
159–171.
URL http://dx.doi.org/10.1016/j.engappai.2004.11.017

[36] P. Gruer, V. Hilaire, A. Koukam, Heterogeneous formal specification based
on object-z and state charts: semantics and verification, Journal of Systems
and Software 70 (1-2) (2004) 95–105.

[37] A. Drogoul, A. Collinot, Applying an agent-oriented methodology to the
design of artifical organizations: A case study in robotic soccer, Journal of
Autonomous Agents and Multi-Agent Systems 1 (1) (1998) 113–129.

[38] F. Zambonelli, N. Jennings, M. Wooldridge, Developing multiagent sys-
tems: the gaia methodology, ACM Transactions on Software Engineering
and Methodology 12 (3).

23



[39] S. DeLoach, Multiagent systems engineering: a methodology and language
for designing agent systems, in: Agent Oriented Information Systems ’99,
1999.

[40] L. Padgham, M. Winikoff, Prometheus: A methodology for developing
intelligent agents, in: AOSE, 2002.

24


