
1

PROCESS MODELS FOR
AGENT-BASED DEVELOPMENT

Luca Cernuzzi1,2, Massimo Cossentino3, Franco Zambonelli 1

1) DISMI – Università di Modena e Reggio Emili a, Italy
Via Allegri 13 – 42100 Reggio Emilia, Italy

2) DEI – Universidad Católica “Nuestra Señora de la Asunción” , Paraguay
Campus Universitario – C.C. 1683 Asunción, Paraguay, Tel: +595-21-334650, Fax: +595-21-310072

3) Istituto di Calcolo e Reti ad Alte Prestazioni – Consiglio Nazionale Ricerche, Italy
Viale delle Scienze, ed. 11, 90128 Palermo, Italy

e-mail: cernuzzi.luca@unimore.it, cossentino@pa.icar.cnr.it, franco.zambonelli@unimore.it

ABSTRACT
A great deal of researches in the area of agent-oriented software engineering focuses on
proposing methodologies for agent systems, i.e., on identifying the guidelines to drive the various
phases of agent-based software development and the abstractions to be exploited in these phases.
However, very little attention has been paid so far to the engineering process subjacent the
development activity, disciplining the execution of the different phases involved in the software
development. In this paper, we focus on process models for software development and put these in
relations with current researches in agent-oriented software engineering. First, we introduce the
key concepts and issues related to software processes and present the various software process
models currently adopted in mainstream software engineering. Then, we survey the characteristics
of a number of agent-oriented methodologies, as they pertain to software processes. In particular,
for each methodology, we analyze which software process model it (often implicitly) underlies and
which phases of the process are covered by it, thus enabling us to identify some key limitations of
currently methodology-centered researches. On this base, we eventually identify and analyze
several open issues in the area of software process models for agent-based development, calling
for further researches and experiences.

KEYWORDS: Agent-based Computing, Software Engineering, Methodologies, Process Models.

1. INTRODUCTION

Agents and multiagent systems, other than a technology, represent a brand new
paradigm for software development (Jennings 2001; Zambonelli et al, 2003). When
adopting agents as the basic conceptual components of software systems, software has
to be conceived in terms of autonomous task-oriented entities, interacting with each
other in a high-level way (e.g., via co-operation, coordination of activities,
negotiations), leading to possibly very articulated organizations (e.g., teams, coalitions,
markets, swarms). This calls from a brand new set of tools to support software
development.

In this context, agent-oriented software engineering (from now on AOSE)
(Ciancarini and Wooldridge, 2001; Zambonelli and Omicini, 2004) has recently
emerged as the discipline devoted to the engineering of complex software systems based
on the multiagent systems paradigm. Researches in the area of AOSE include the
identification and development of both conceptual tools (e.g., formal modeling and
notational tools) and practical tools (e.g., agent-based infrastructures and case tools) to
support software engineers and programmers in the analysis, design and development of
multiagent systems. Among the others, a great deal of efforts in the AOSE area focuses

2

on the definition of methodologies to guide the process of developing multiagent
systems.

AOSE methodologies, as they have been proposed so far, mainly try to suggest a
clean and disciplined approach to analyze, design and develop multiagent systems,
using specific methods and techniques. To this end, AOSE methodologies, as well as
non-AOSE ones (Lahlouhi and Sahnoun, 2002), typically start from a meta-model,
identifying the basic abstractions to be exploited in development (e.g., agents, roles,
environment, organizational structures). On this base, they exploit and organize these
abstractions so as to define guidelines on how to proceed in the analysis, design, and
development, and on what output to produce at each stage. Unfortunately, this is far to
be enough for practical software development without a clear understanding of the
software development process model that should underlie the methodology.

In general, one of the very goals of software engineering researches is increasing the
quali ty and the reliabili ty of software, as well as improving the cost-effectiveness of
software development. In this context, the basic understanding is that there is a direct
correlation between the quali ty of the software being developed and the quali ty of the
software development process (Fuggetta, 2000). While this consideration is valid for
any human product, in the case of software it assumes even greater emphasis due to
factors such as intangibili ty of the product, high-instabili ty of requirements, and – in the
case of multiagent systems – dynamics of operational environments and of the
multiagent systems themselves.

Accordingly, in the development of software systems and of multiagent systems, the
identification of a suitable methodology cannot abstract from the identification of a
specific model for the software development process (Boehm, 1988). Such model
should define how the different phases of software development should be organized
and coordinated with each other, which activities engineers and developers have to
undertake in each stage and when, which technologies and artifacts may be used for
those activities, which products have to be expected for each stage, and which resources
need to be involved in the phases of software production process. In other word, the
software process model should guide all the production effort and complement the
guidelines identified by a specific methodology.

In recognition of the fact that current researches on AOSE methodologies mostly
disregard any considerations about process models, the contribution of this paper is to
go into details about software process models and analyze a few key questions that – in
our opinion – will be of a key importance for the future of the AOSE discipline
(Zambonelli and Omicini, 2004). In particular:

• Does the choice of a specific software process model impact on the activity of
agent-oriented software development? How can past and current experiences in
the area of software process models impact researches in the area of agent-
oriented software engineering? Are traditional software process models adequate
for multiagent systems?

• Which methodologies, either implicitly or explicitl y, adopt which process model?
Can a specific methodology be applied in the context of a specific process model?

• What further research is needed in this area? Which research trends and open
issues are relevant and may be envisioned in AOSE arena from the process model
point of view?

According to the above key questions, and for the sake of elaborating on them, the
remainder of this paper is organized as follows. Section 2 introduces the concept of
software process models and discusses the traditional and emerging trends in the area,
also in relationship with agent-based computing. Section 3 presents a survey of some

3

AOSE methodologies proposed in the literature, with a specific focus on the
characteristics related to the process model perspective. Section 4 identifies some open
issues and promising research directions in the area of process models for agent-
oriented software engineering. Section 5 concludes.

2. SOFTWARE PROCESS MODELS

In this section, we introduce the basic definitions and concepts related to software
development process models, survey the main process models proposed so far in the
area, and put this in relation with agent-based software development and agent-oriented
methodologies.

2.1 Processes vs. Methodologies

Process and methodology are often used with contradictory meanings, sometimes
they are seen as synonymous other times as different or complementary terms. In order
to prevent confusions and misunderstandings, we introduce a minimal glossary.

In this paper we will use the terms process, software process, software process
model, method, and methodology in accord to the following meanings:

• (Development) Process. Generally speaking, a development process (or simply
process) is an ordered set of steps that involve all those activities, constraints and
resources required to produce a specific desired output (e.g., a physical artifact)
satisfying a set of input requirements. Typically, a process is composed by
different stages/phases put in relation with each other. Each stage/phase of a
process identify a portion of work (more properly called work definition) to be
done in the context of the process, the resources to be exploited to that purpose
and the constraints to be obeyed in the execution of the phase. Phases are usually
composed by a set of activities that may, in turn, be conceived in terms of
smaller atomic units of work (steps).

• Software (Development) Process. Looking more specifically at the software
context, Fuggetta (2000) proposes an interesting definition of software
development process (or simply software process): “ the coherent set of policies,
organizational structures, technologies, procedures, and artifacts that are
needed to conceive, develop, deploy, and maintain (evolve) a software product” .
Consequently, we can identify that also software processes can be (and are
typically) composed by a set of stages, each specifying which phases/activities
should be carried on and which roles (i.e.: client, analyst, software architect,
programmers, etc.) and resources are to be involved in them. However, unlike
traditional “development” processes, software processes should also take into
account the fact that the product should not only be developed but also: (i)
“conceived” , often relying on unstable or incomplete requirements; (ii)
deployed, i.e., put to work in an operational environment; (iii) maintained and
evolved, depending on novel requirements or changes in the operational
environments.

• Software (Development) Process Model. A software (development) process
model prescribes around which phases a process should be organized (and
possibly but not necessarily which activities should be executed in some of the
phases), in which order such phases should be executed, and when iterations and
coordination (if any) between the work of the different phases should occur. In
other words, a process model defines a skeleton, a template, around which to

4

organize and detail an actual process. A software development process model
(that, from now on, we will simply indicate as a “process model”) does not take
care of f ine-grained work definitions, guidelines, modeling style for artifacts, as
these can change and be adapted from case to case. This is one of the most
important aspects of process models, and it will be the subject of a detailed
analysis in the following sub-sections.

• Method. A method prescribes a way of performing some kind of activity within
a process, in order to properly produce a specific output (i.e., an artifact or a
document) starting from a specific input (again, an artifact or a document). Any
phases of a process, to be successfully applicable, should be complemented by
some methodological guidelines (including the identification of the techniques
and tools to be used, and the definition of how artifacts have to be produced) that
could help the involved stakeholders in accomplishing their work according to
some defined best practices.

• Methodology. A methodology is a collection of methods covering and
connecting different stages in a process. The purpose of a methodology is to
prescribe a certain coherent approach to solving a problem in the context of a
software process by preselecting and putting in relation a number of methods
(Ghezzi et al., 1991).

Based on the above definitions, and comparing software processes and
methodologies, we can find some common elements in their scope. Both are focusing
on what we have to do in the different activities needed to construct a software system.
However, while the software process is more centered on the global process including
all the stages, their order and time scheduling, the methodology focuses more directly
on the specific techniques to be used and artifacts to be produced (i.e. in the methods to
be adopted). In this sense, we could say that methodologies focus more explicitly on
how to perform the activity or tasks in some specific stages of the process, while
processes may also cover more general management aspects, e.g., basic questions about
who and when, and how much).

2.2. Process Models

Let us now analyze the most relevant process models proposed so far in the
literature and applied in industry.

The waterfall process model has been for many years the emblem of software
engineering; it firstly appeared in the late 1950s but became popular in the 1970s. It is
structured as a cascade of phases, where the output of one phase constitutes the input of
the next one. Each phase, in turn, is structured as a set of activities that might be
executed by different people concurrently. There are many variants of the waterfall
model (e.g., Figure 1) but, despite their differences, all existing waterfall processes look
alike and share the same underlying philosophy: they prescribe a sequential, linear flow
among phases, adopting standards on the way the outputs (deliverables) of each stage
must be produced, and sometimes prescribing methods to obtain the desired outputs.

One of the key advantages of the waterfall model is that it clearly identifies a
number of relevant phases that a process of software development should pass through.
These phases – although differently organized and with some small adaptation in scope
and importance – are likely to appear in any other process models and include: (i)
requirements elicitation, to collect the requirements for the system to be; (ii)
requirements analysis, to organize the requirements into a set of functionaliti es and

5

properties (non-functional requirements) to be provided by the system to be; (iii) design
of the architecture of the system to be and of its components; (iv) coding and
implementation of the system; (v) verification of the behavior of the system and of its
components; (vi) deployment of the system into an operation environment.

Needless to say, multiagent systems development too should be involved in these
phases, although sometimes with a different flavor than in traditional software
development. Requirements analysis for an agent system typically translates into a set
of “goals” to be pursued by the agents of the systems, rather than in a set of
functionaliti es to be provided by, e.g., objects. Coding and implementation may not
reduce in writing code fragments, but also in integrating in agents a set of world models,
ontologies, communicative capabiliti es, and in shaping in a proper way the operational
environment. Verification and testing may often imply a number of simulations to test
the emergent behavior of the system, its capabili ty to reach/approach a specific goal,
and – in the case of open systems – the capabili ty of its component agents to fruitfully
interact and negotiate with agents in the external world. Deployment often implies
putting the system at work in an existing multiagent system ecology, and at verifying
the impact of the system in such ecology (Zambonelli and Omicini, 2004).

The waterfall model played an important role in the history of software engineering
also because it firstly prescribed some indeed needed discipline in the software
development process. However, the waterfall model accomplishes such discipline
through rigidity. Actually it is very hard to really use a prescriptive cascade and linear
model without considering feedbacks on earlier stages (feedbacks that in the waterfall
model are intrinsically costly) as primary components of a process. Unless a system has
very stable and clear requirements, and is conceived to be deployed in a closed and
static operational environment, more flexibili ty and adaptabili ty in the process is
necessary. For instance, the vast majority of agent applications focus on open
multiagent systems that are based on a great number of agents whose interactions may
produce an emergent behavior and distributed intelli gence, and that are immersed in a
dynamic operational environment. Thus, the main limit of the waterfall model is that it
neither anticipates changes in requirements, nor plans software evolution that now
proves vital in many circumstances.

Figure 1. The Waterfall model (with some feedback)

Requirements
Elicitation

Design

Coding and
 Implementation

Verification
and Testing

Deployment

Requirements
Analysis

6

Figure 2. The Evolutionary (Incremental and Iterative) approach

The need for flexible approaches to process models, also called evolutionary or
incremental approaches, has been widely acknowledged in the literature. An
incremental approach consists of a stepwise development, where parts of some stages
are postponed in order to produce some useful set of functions earlier in the
development of the project. Boehm (1988) defines evolutionary process model as a
“model whose stages consist of expanding increments of an operational software
product, with the direction of evolution being determined by operational experience”. In
other words, in an evolutionary approach, the traditional phases of the waterfall model
are not intended to fully produce a complete systems, but rather to be executed multiple
times in a quick way, so as to produce multiple version of the product and, on the basis
of the feedback received, continue at working on the product, either by incrementally
adding parts to it or by refining already implemented ones (Figure 2).

The strategy behind evolutionary process models may be simply synthesized as
follows (Gilb, 1988): (i) design, code, and deploy something to the real user; (ii)
measure the added value to the user in all criti cal dimensions; and (iii) adjust the
objectives and the design and implementation of the system based on observed realiti es;
(iv) repeat as needed. However, it is important to observe that this pragmatic strategy
has to be carried out in a structured and disciplined fashion.

A number of specific models may be accommodated under the evolutionary
approach (e.g., incremental implementation model, incremental development and
delivery model, evolutionary prototype model, etc.). Probably, the most recent model in
this direction, and perhaps one of the most interesting, is the Extreme Programming
(XP) process model (Beck, 1999) that is being increasingly used in projects with
uncertain or changing requirements. XP is an example of “agile approach” (see the agile
manifest at www.agilemanifesto.org) aimed at supporting changes and rapid feedbacks.
Agile approaches have become enough popular in the last years. Their philosophy can
be resumed by their fundamental strategies reported in the agile manifesto, which
prescribed to give consideration to: (i) individuals and interactions over processes and
tools; (ii) working software over comprehensive documentation; (iii) customer
collaboration over contract negotiation; (iv) responding to change over following a plan.

For this reasons, it appears like these approaches can be suited for those small -
medium-size project calli ng for rapid delivery and founded on quite unstable
requirements. As far as multiagent systems are concerned, we can for example imagine
that the adoption of an evolutionary approach can suit the development of an agent-
enabled portal in which agents can be incrementally deployed and improved with regard
to their capabili ty of supporting users in accessing services and information. However,
we can hardly imagine that agents and multiagent systems delegated of some criti cal

INCREMENTAL DEVELOPMENT

ITERATIVE DEVELOPMENT

7

activities, or which execution in a context may have some dramatic impact, can be
effectively developed using a bare evolutionary approach, i.e., an XP model.

Another interesting approach is the transformation model (Ghezzi et al., 1991).
Unlike incremental models, which give priority to implementation, transformation
models are deeply rooted in theoretical works on formal specifications. The software
development may be seen as a sequence of steps that gradually transform a set of formal
specification into an implementation. The process consists of two main phases (Figure
3): requirement analysis, providing formal requirements specification (a phase which is
given a much greater importance in this model than in the waterfall or in incremental
ones) and optimization, which includes a coding phase aimed at transforming (possibly
in an automatic way) the formal specifications into executable code and at performance
tuning of the resulting system.

Currently, the transformation approach is not widespread in industry, because it
requires an extensive use of formal modeling and also the presence of effective tools to
transform formal specifications into actual code. Therefore, one can consider it a sort of
research-oriented approach with a few actual tools that support it. However, when
considering multiagent systems, one should take into account that – due to the intrinsic
complexity of agent architectures and to the dynamics of multiagent systems – formal
methods will definitely play an increasing and fundamental role in agent-based
development, possibly exploiting a transformation-inspired use of formal specifications
in the context of some sorts of evolutionary process model.

Requirements
analysis and
specification

Optimization

Requirements
Formal
specifications

Lower level
specifications

Reusable
components

Recording of
developmental
history

Verification Tuning

Decisions and
rationale

Figure 3. The Transformation model

8

Figure 4. The Spiral model

The last process model we examine is the spiral one (Boehm, 1988), mainly focused
on project risks and their management. In fact, its aim is to identify and eliminate high-
risk problems in development by adopting a careful process design, rather than treating
both trivial and severe problems uniformly. To this end, the main characteristic of the
model is that it organizes the development process in a cyclic way. Each cycle of the
spiral consists of four phases (Figure 4). Phase 1 (upper-left quadrant in Figure 4) aims
at determining the objectives to be achieved in the cycle in terms of functional and
quality levels, and at identifying possible alternatives and associated constraints. Phase
2 (upper-right quadrant) aims at evaluating the potential risks of the objectives and of
the identified alternatives, eventually getting a decision on them. Phase 3 (bottom-right
quadrant) aims at developing and verifying the next level product. Eventually, phase 4
(bottom-left quadrant) aims at reviewing the results of previous stages and at planning
the next iteration of the spiral. As the spiral enlarge with the execution of different
cycles, the risks involved in the project should more and more reduce, assuming that the
more risky issues are faced in the inner cycles.

In general, the spiral model is very well suited for the development of all those
complex software systems which involve high risks, and which require a careful
planning to ensure that the final product will satisfy the specified requirements. In the
case of multiagent systems, one can think at several examples of mission critical

9

applications that would fruitfully take advantage of the adoption of the spiral process
model.

The spiral model is sometimes viewed as a kind of meta-model, because it can
potentially accommodate any process development model. However, we prefer to
consider it a model by itself, well distinguished from the waterfall model (because of
the explicit cyclic nature), from evolutionary approaches (because of the great
importance given to planning and because the incremental development that the spiral
model suggest is not aimed at producing deliverables but rather at eliminating
development risks), and from the transformation one (whose cyclic nature mostly
reduces at verifying the specifications). A representative example of a process based on
the spiral model is the Rational Unified Process (Kruchten, 1998), which is iterative and
incremental, use-case driven and centered on the architecture (attention on structural
elements of the system and their relationships) of the system.

It is also worth mentioning that other process models aimed to specific areas of
software production have been proposed. However, more of those proposals are more
oriented to management issues than development issues, and will be no longer analyzed
in this paper.

2.3. AOSE Methodologies and Process Models

Getting back to methodologies, an important issue to analyze is if a specific
methodology can be exploited as a tool in the context of different process models or,
viceversa, if the adoption of a specific process model also suggests the exploitation of a
methodology explicitly conceived for that process model.

In general, a methodology should provide guidelines for the execution of some
phases in a process model that should be independent from the specific way in which a
process model prescribes to execute and coordinate such phases. However, in practice
most of the methodologies proposed so far (and, specifically, in most AOSE
methodologies), has been conceived for adoption in the context of a specific process
model. We consider that the commitment to a specific process model can make the
methodology possibly less general but definitely more effective for practical application
in the context of that specific process model. Nevertheless, in several cases new AOSE
methodologies gets proposed without explicitly relating them to some process models
and, at the same time, being implicitly suitable only for a limited set of (or a single)
process models.

As all of us know, the real process of software construction, if not controlled, can
become a chaotic effort with a low probability of reaching the desired goal within fixed
limits of time and budget. Therefore, when an AOSE methodology is proposed with a
lack of attention to the process model, this lack may strongly undermine the practical
applicability of a methodology. As we have already analyzed, different process models
differently drive the actions during the project enactment and are differently concerned
with verification, control, comprehension, and improvement of the established
activities. Moreover, while some well known and documented process models let easily
capture good experiences and to transfer them to other persons, some others only aim at
introducing a minimum level of control in the chaos of the software development thus
allowing a high reactivity to very dynamic situations. These differences in process
models have a direct consequence: in order to have a good process and successfully
complete the project, it is necessary to adopt either explicitly general methods and
methodologies, or specifically suitable ones.

10

Another important aspect we should consider in our study of processes and
methodologies is that a process is not something static that, once adopted, should never
be changed. A process can evolve over time, together with the increased awareness of
the involved people, towards a maturity level that ensures the process repeatabili ty in
terms of quali ty of the produced software, cost and time. This is a fundamental
evaluation criterion for a company that wants to adopt the agent-based paradigm in its
development process. In order to evaluate from this point of view existing AOSE
processes and related methodologies, we could refer to the Process Capabilit y Maturity
Model (CMM) (Paulk et al., 1995). CMM proposes a classification of the process
maturity in five different categories: (i) initial; (ii) repeatable; (iii) defined; (iv)
managed; (v) optimized. According to CMM most of the existing AOSE approaches are
simply “ initial” due to the lack of experience, and a few of them can classify as
“repeatable” . In any case, it is worth noting that the CMM model evaluates a process
model in its completeness, thus including the methodological aspects that are so
intensively studied in the AOSE context. In this way, the CMM could be used to
evaluate not only the goodness of the adopted process model in a specific situation but
also the appropriateness of each method, thus driving the evolution of the studied
methodology towards a more mature one. On the contrary, evaluating the effectiveness
methodology when it does not explicitly situates in the context of a process model, is of
limited meaning.

3. A SURVEY OF AOSE METHODOLOGIES FROM THE PROCESS MODEL
VIEWPOINT

In last few years a great deal of efforts has been spent in proposing AOSE
methodologies to guide the development of multiagent systems. For full details on
these, we forward the reader to some surveys in the area (Iglesias et al., 1999;
Ciancarini and Wooldridge, 2000) as well as to the proceedings of workshop series:
Agent-Oriented Software Engineering (AOSE), Agent Oriented Methodologies (AOM),
Agent Oriented Information Systems (AOIS), Engineering Society in the Agent Word
(ESAW), and Software Engineering for Large-Scale Multi -Agent Systems (SELMAS).

However, as discussed in the previous section, a small attention has been devoted so
far to analyze the fundamental issue of the related process models. For this reason, this
section surveys a number of selected AOSE methodologies and analyze them with
regard to those characteristics that are relevant from the software process viewpoint.
Specifically, we would like to analyze the followings issues:

• Which process model do these AOSE methodologies, either explicitly or
implicitly, assume?

• Which phases are covered by these methodologies? And, consequently, how
suitable is a specific methodology to be exploited in the context of an actual
process model?

In more detail , with regard to the first point, in the following we classify AOSE
methodologies based on the class of process model (among the four presented in
Section 2) it either assumes explicitly or that we consider to implicitly underlie the
methodology. Therefore, we emphasize that whenever a methodology does not
explicitly mention the process model it refers to, we classify it on a personal analysis
that may not necessarily reflect the original intentions of the proposers, and that
sometimes had to sharpen shades.

With regard to the second point, it is very useful to specify for each methodology
which stages or phases of the comprehensive software development process are covered

11

since, in some aspects, the phase coverage is strongly related with the process. For
example, if a methodology does not cover the coding and implementation, it can hardly
be exploited in the context of extreme programming process models. As another
example, if the methodology does not cover the requirement elicitation phase, its
application in the context of a spiral process model or of a transformation model is
strongly undermined. Although in the specialized literature there is not a general
agreement about the naming and the roles of the various phases of software
development (e.g., some propose a more specialized separation of the analysis or design
phases trying to capture particular aspects like as conceptual, architectural, or detailed
design), the phases already identified in Section 2 when presenting the waterfall model
are enough to the purposes of our analysis.

Figure 5 summarize the characteristics, to be analyzed and detailed in the following
of this section, of several AOSE methodologies.

 Phases �

Process Model
and
Methodology

�

Requirements
Elicitation

Requirements
Analysis

Design Coding and
Implementation

Verification
& Testing

Deployment

Waterfall Like
Gaia X X
Roadmap X (partially) X X
Prometheus X (partially) X X X X
MaSE X (partially) X X X X(partially)
AOR X X X

Evolutionary
and Incremental
OPM/MAS X X X X
MASSIVE X X X X X
Ingenias X X X
Tropos X X X X
PASSI and Agile
PASSI

X X X X X

Transformation
DESIRE X X X X X(partially)

Spiral
MAS-
CommonKADs

X X X X X(partially) X

Figure 5. Methodologies Classification

Before continuing the presentation, we outline that in spite of a number of other
papers trying to survey, classify, and evaluate, AOSE methodologies (Iglesias et al.,
1999; Lahlouhi and Sahnoun, 2002; Cernuzzi and Rossi 2002), this paper is the first
attempt specifically oriented to analyze the relations with the process model.

3.1. Waterfall-like
The methodologies that we feel should be considered as adopting a waterfall process

model include: Gaia (Wooldridge et al., 2000; Zambonelli et al., 2003); Roadmap (Juan
et al., 2002a), as a consequence of the fact that is was firstly proposed as an extension of

12

the original Gaia; Prometheus (Padgham and Winikoff, 2002); MASE (De Loach et al.,
2001); and AOR (Wagner, 2003). While for the first three methodologies their waterfall
nature is rather clear, the last two, for different reasons, may be considered at the
borderline with evolutionary and incremental approach. In fact, they consider some kind
of iteration inside some stages. Still, since they do not clearly stress on these iteractions
or on the incremental process, we prefer to classify them into the waterfall-like class.

Gaia
The Gaia methodology (Wooldridge et al., 2000) and its official extension

(Zambonelli et al., 2003) focus on the use of organizational abstractions to drive the
analysis and design of multi-agent systems. Gaia models both the macro (social) aspect
and the micro (agent internals) aspect of a multiagent system, and devotes a specific
effort to model the organizational structure and the organizational rules that govern the
global behavior of the agents in the organization. This can make Gaia suitable for the
development of multiagent systems which can interact in an open world with self-
interested agents belonging to different stakeholders.

Gaia explicitly covers a limited number of phases in the design process, namely
analysis and design (the latter included architectural and detailed design).

Gaia assumes in a rather explicit way a waterfall process model: analysis and design
are considered as phases that should follow a (not defined) requirements elicitation
phase, that should be performed in strict sequence, and for which methods for
interactions between phases are not defined. In the analysis phase four basic models are
produced: (i) the environmental model; (ii) a preliminary roles model; (iii) a preliminary
interactions model; and (iv) a set of organizational rules. These models are used as input
to the design phase that should define: (i) the overall organizational structure (i.e., the
architecture of the system); (ii) completed preliminary roles and interactions models;
(iii) an agent model; and (iv) a services model. The result of the design phase is
assumed to be something that could be implemented in a technology neutral way.

Although we consider Gaia as one of the most promising approaches as far as
analysis and design are concerned, the limited number of phases it covers and the
strictly sequential approach may limit the adoption of Gaia, as it is, to systems with very
stable requirements and of limited dimension. In fact, for a very large system to be
effectively deployed, it must consider also extensive testing and simulations and a
careful deployment, issues that as of now find no accommodation in Gaia.

Roadmap
Roadmap (Juan et al., 2002a) focuses on building open systems giving special

emphasis to the societal aspects of the multiagent system. To this end, it extend the
original Gaia methodology (Wooldridge et al., 2000) by introducing use cases, a
dynamic role hierarchy and additional models to describe the agent environment and the
agent knowledge, as well as an interaction model based on AUML (Bauer et al., 2000)
interaction diagrams.

As Gaia, Roadmap is mainly focused on the analysis and design phases. The
analysis phase contemplates the identification of: use cases, environment model,
knowledge model, and of roles, protocols, and interactions models. Based on these
models, the design phase aims at producing an agent model and a services model. As
Gaia, Roadmap lacks of support for detailed design, code and implementation,
verification and deployment, thus designers have to adopt other methodologies to cover
those aspects.

13

We consider Roadmap as implicitly committing to a waterfall process model, due to
the strict sequential nature of its analysis and design. Although Roadmap documentation
explicitly encourages an iterative approach to development, nothing is said in the
methodology to support such iterations. However, as an improvement over Gaia, the use
case model adoption partially covers the requirements gathering and can make the
sequential process of Roadmap more effective and reliable than that of Gaia in the
presence of unstable or badly defined requirements.

Prometheus
Prometheus (Padgham and Winikoff , 2002) focus on building agents using BDI

platforms, and on providing explicit and detailed guidelines and deliverables to industry
practitioners with limited agent experience. The methodology, per se, covers three
phases: (i) system specification, (ii) architectural design, and (iii) detailed design.

The system specification phase covers the modeling of the system goals (that should
result in one or more functionaliti es) as well as of a set of scenarios (modeling the
system processing). The architectural design phase contemplates modeling agents, the
system overview, and the inter-agent protocols (modeled using AUML). The detailed
design phase focuses on developing the internal structure of each agent in term of its
capabiliti es described by a set of descriptors (event, data, and plan). Prometheus also
provides a hierarchical mechanism that allows designer to model multiple abstraction
levels facilit ating the design in great scale.

In addition, one should also consider that:
• The methodology is supported by the Jack Development Environment (JDE)

and the Prometheus Design Tool (PDT), two tools that can support in the
implementation and coding of the results of the Prometheus design phase;

• Guidelines for testing and debugging activities have been explicitly defined
(Poutakidis et al., 2002);

• Activities related to requirement elicitation are partially covered by the
analysis phase (i.e., requirements analysis is explicitly included, though as
part of the analysis phase).

For which one can say that Prometheus cover, other than analysis and design, also
requirements elicitation, coding, and testing.

The process defined by the Prometheus methodology is quite linear, proceeding
sequentially from requirements elicitation to implementation and testing. A limited
amount of feedback among phases may be identified only in the crosscheck relationship
between the system overview (architectural design) and the agent overview (detailed
design) models.

In any case, the fact that Prometheus covers a significant number of phases of a
software development process, it is more prone than, say, Gaia or Roadmap, of being
easily adapted for exploitation in the context of other process models, e.g., evolutionary
ones and the spiral one.

MaSE
The MaSE – Multiagent System Engineering (DeLoach et al., 2001) – methodology

is organized in seven steps: capturing goals, applying use cases, refining goals into roles
and their interactions, creating agent classes, constructing conversation, assembling
agent classes, and designing the system.

According to our perspective, we consider that: goal capturing and the appliance of
use cases partially cover the requirements elicitation phase; the analysis phase includes
the identification of roles, their tasks, and their interactions; then, the creation of the

14

agent classes, of their conversation, and their assembling (including diagram for the
deployment of the system), can be made corresponding to the design phase. MaSE is
supported by agentTool (Wood and DeLoach, 2000), a CASE tool supporting all
MaSE’s steps as well as code generation and automatic verification of inter-agent
communications. Overall , the methodology covers all phases from requirements
elicitation to implementation, and partially also the verification and testing activities.

Unlike the methodologies presented earlier, the MaSE methodology is limited to the
development of closed agent systems, in which all agents are known a priori, and in
which agents can trust each other during conversations.

According to the authors, MaSE has been conceived to be applied iteratively and
incrementally. However, from all the documents available, the general process is
presented like a sequential (waterfall) process, with no explicit description of iterated
activities.

The fact that MaSE covers in a rather satisfactory way most of the phases of
software development, can makes us think that MaSE could be indeed easily adapted to
be exploited in the context of evolutionary or spiral process models. Of course, this
requires that suitable guidelines are defined to support the needed iterations. In any
case, unless the methodology is properly extended to deal with the peculiar problems of
open agent systems (which are the vast majority) its applicabili ty would remain very
limited.

AOR – Agent-Object-Relationship
AOR (Wagner, 2003) is a peculiar methodology, very different from the above

presented ones, which contemplates the so called external models (i.e., models for the
analysis) and the internal models (i.e., models for the design). The central abstractions
of the AOR methodology are the so called “entities” (i.e., agents, events, actions,
commitments, as well as ordinary objects) and special relationships to be defined among
them that supplement the classical association, aggregation/composition and
generalization/specialization relationships of UML models.

The external view aims at capturing the perspective of an external observer (i.e., of
one or more so called “ focus agent/s”) to model the domain producing one or more of
the agents, interaction frames, interaction sequences, interaction pattern diagrams. Then,
for each focus agent, the internal view (the design) aims at capturing the functionaliti es
of the system. The internal AOR model is then refined for each focus agent into an
implementation model for the target language/platform. AOR modeling language
(AORML) tools as well as a Microsoft Visio template are available for support AOR
Modeling activities.

The overall process of AOR consists of 5 steps: (i) domain analysis (the external
AOR model); (ii) transforming the external AOR model into an internal AOR model for
the focus agent, and iterating this step for each focus agent that require an information
system development; (ii i) transforming the internal AOR models into database design
models or logical data structure definition; (iv) refining the design models into
implementation models; (v) generating the target language code. Thus, one can consider
AOR to cover requirements analysis, design, coding, and implementation phases.

The process model adopted is li ke an incremental waterfall with iterative work
within some stages but no explicit iterations among phases. Thus, despite the very
different nature, AOR shares the same advantages and drawbacks of MaSE.

3.2. Evolutionary and Incremental

15

In this category we can classify those methodologies that explicitly focus on an
incremental and/or iterative approach among all the process. These include: OPM/MAS
(Dori, 2002); MASSIVE (Lind, 2001); Ingenias (Gómez-Sanz and Pavón, 2002);
Tropos (Bresciani et al., 2001; Giunchiglia et al., 2002); and PASSI with its extension
Agile PASSI (Cossentino and Sabatucci, 2004; Chella et al., 2004).

OPM/MAS
OPM/MAS - Object-Process Methodology for Multiagent Systems (Sturm et al.,

2003) inherits its capabiliti es from object and process oriented paradigms. In particular,
it is conceived as an extension to OPM (Dori et al., 2002). OPM considers that objects
and processes are equally important to describe the system’s function, structure, and
behavior. It adopts a single graphical model to describe objects, processes, and their
attributes (Object-Process Diagrams – OPD) and a corresponding automatically-
generated English textual specification (Object-Process Language – OPL).

In OPM/MAS (Sturm et al., 2003) object and process are extended to include
specific agent-oriented attributes, i.e.: for objects, organization, society, platform, rule,
role, user, protocol, belief, desire, fact, goal, intention, and service; for processes, agent,
task, and messaging. Agent behaviors, in particular, are not necessarily encapsulated
within objects, but may be modeled using stand-alone processes.

OPM/MAS supports the requirements, the analysis and the design phases of the
development process, and a deployment diagram is included in the methodology. For
the implementation and testing stages, CASE tools are under development.

With regard to the process model, OPM/MAS – as OPM – adopt a single notation to
describe both the structure and the behavior of the components of a multiagent system.
One of the distinguish characteristics is that this notation can be incrementally and
selectively refined in deeper specification. It contemplates different scaling
mechanisms: unfolding/folding, in-zooming/out-zooming and expression/suppression.
These mechanisms overall facilit ate to selectively and incrementally focus on a specific
subset of issues, refining the description to any desired level of detail , and thus helping
in manage the complexity of a system model at any time in the development process.

For these reasons, and despite the fact that the general process model is not made
explicit in OPM/MAS, it possible to state that OPM/MAS is intrinsically suited for an
evolutionary and incremental model, in which the various parts of a complex, very
large-scale, multiagent systems, are incrementally refined as the development process
progress. However, the potentials of OPM/MAS will be unfold in full only with the
availabili ty of proper tools for implementation and testing.

MASSIVE
MASSIVE - Multi Agent SystemS Iterative View Engineering (Lind, 2001) is a

pragmatic method for the design and construction of multiagent systems.
MASSIVE is based on a view-oriented approach: different phases can be executed

focusing on different aspects of the systems. The considered views are: environment,
task, role, interaction, society, architectural and system view. To exempli fy: in the
society view, the multiagent systems is considered as a structured collection of agents,
organized according a particular organizational model; in the interaction view, the
multiagent system is considered as an ensemble of interacting agents, in which various
forms of competition and cooperation, as well as non-traditional forms of cooperation,
may be identified.

The development methodology based on views offers various models of a
multiagent system that can be used to incrementally define it. In particular, in

16

MASSIVE, views are explicitly embedded in a process model inspired by
stepwise refinement, the so called iterative view engineering. This is a
product centered process model combining round-trip engineering (i.e., alternating
software construction from specifications and reverse engineering to improve
specifications) and iterative enhancement (i.e., promoting several cycles of the process
to enhance a partitioned and incomplete software model).

Another characterizing part of MASSIVE is the so called “experience
factory”, which provides a conceptual framework for enabling a
systematic learning process within an organization. This way it is
possible to improve the development process and product models of a particular
project according to the experience gained in the development process (so
as to reach a higher maturity of the process).

Overall, the MASSIVE process covers analysis, design,
implementation, verification and testing, and deployment. No attention
is paid to requirements elicitation.

In our opinion, MASSIVE is one of the few examples of a
methodology for multiagent systems that explicitly takes care of the
underlying process model in a very detailed way. The fact that it is
based on a well-organized incremental process model and that it
considers most of the relevant phases of multiagent systems
development, makes MASSIVE a very promising approach, although its
applicability may be possibly undermined by the lack of a proper
requirements elicitation phase as well as of adoption of notations (e.g.,
AUML) already well accepted in the multiagent systems community.

INGENIAS
INGENIAS (Gómez-Sanz and Pavón, 2002) build on previous work on the

MESSAGE methodology (Caire et al. 2001). Its aim is to support multiagent systems
development by generating multiagent systems specifications incrementally covering
the analysis, design, and implementation phases of the development process. It adopts
AUML as the basic notation to support the process.

INGENIAS identifies five meta-models to be exploited in development: agent
model, interaction model, tasks and goals model, organization model, and environment
model. Such meta-models (partially inherited from the MESSAGE methodology) allow
the designers to incrementally define the architecture and the functionaliti es of the
multiagent system, by focusing on different points of view during development (in a
similar way that MASSIVE does).

INGENIAS supports multiagent systems engineers using three elements: (i) a visual
language for multiagent systems definition (GOPRR), (ii) integration with the phases
and workflows of the USDP, and (iii) development tools: the meta-case METAEDIT+
(Kelly et al., 1996).

INGENIAS explicitly applies the Unified Software Development Process – USDP
(Jacobson et al., 1999). This is an iterative process model identifying two dimensions
for the software developing process: time (phases of the li fe cycle), and content (models
and other artifacts). Thus, the explicit process model it adopts is the so called stepwise
refinement one, a specific form of an incremental process model. INGENIAS covers
analysis, design, and coding and implementation phases. This suggests that INGENIAS,
the same as MASSIVE, could be a very effective methodology for rapid development of
agent system, with the additional advantage of providing standard notations and ready-

17

to-use tools. Still , missing it the requirements elicitation phase, it can hardly be applied
to criti cal systems design.

Tropos
The key characteristic of the Tropos methodology (Bresciani et al., 2001;

Giunchiglia et al., 2002) is its strong focus on early requirements elicitation. The
requirements phase of Tropos is strongly influenced by the i* modeling framework (Yu,
1995). The main concepts on which Tropos is based are the “actors” with their goals,
their plans, and the inter-dependencies.

All analysis of system requirements in Tropos is based on the goals that must be
achieved by the system to be, and on the identification of the actors (whether humans or
agents) that should be considered to achieved these goals. The process adopted by
Tropos is basically one of analyzing goals on behalf of different actors, and is described
in term of a non deterministic concurrent algorithm, including a completeness criterion.
A few primary goals are analyzed from the perspective of its respective actor (typically
humans at the beginning of the process), and as subgoals are identified, they are
delegated to other actors (typically agents) or assumed by the actual actor. This analysis
is carried out concurrently and normally implies iteration among different phases,
especially between requirements elicitation and requirements analysis. Once all goals
are identified and assigned to specific actors, the design phase aims at producing the
organizational structure of the systems (i.e., identifying relationships between agents),
and at detaili ng the specific characteristics of the composing agents. The
implementation phase relies on appropriate AUML-based tools.

Overall , Tropos covers all the phases of the software development process up to the
coding and implementation. The incremental iterative nature of the process, however,
reduces to requirements elicitation, analysis, and design, ruling implementation out of
the cycle. For this reason, we believe Tropos is very suitable to the development of
those multiagent systems that rely on unstable or hard-to-be-identified requirements,
and for which an incremental process must be followed before a stable design satisfying
the requirements can be identified. However, it is definitely not suitable for those
projects requiring rapid prototyping and quick delivery of products.

PASSI and Agile PASSI
PASSI (Cossentino and Sabatucci, 2004) is a methodology for multiagent systems

development which design activity is carried out adopting five sequential phases that
explicitly take into account the need for incremental refinement.

In particular, PASSI covers the following phases of software development: (i)
system requirements, to produce a use-case based description of the functionaliti es and
an initial decomposition of them accordingly to the agent paradigm; (ii) agent society,
that is an analysis phase aimed at composing a model of domain ontology, social
interactions and dependencies among the agents; (iii) agent implementation, which is a
design phase aimed at modeling the solution architecture in terms of required agents,
classes and methods, it is composed of both a structure definition and a behavior
description of the whole system; (iv) code, the implementation phase aimed at modeling
a solution at the code level. It is largely supported by patterns reuse and automatic code
generation; (v) deployment, aimed at modeling the distribution of the system parts
across a distributed platform. PASSI also includes a description of the testing approach
divided in two different stages: the agent test, where each single agent is tested after its
implementation, and the society test, where the multi -agent system is tested after
deployment.

18

Although explicitly incremental, the great number of sequential phases in a cycle
may require a long time before the first prototype code can be obtained in PASSI; this
configures PASSI as a suitable choice in application problems for which the coding
phase can be positioned somehow late in the process, i.e., projects with a low level of
changes in requirements but the considerable risks require an iterative-incremental
approach (medium-large projects). In order to deal with smaller projects and more
dynamic problems, the authors (Chella et al., 2004) conceived an adapted version of
PASSI, i.e., Agile PASSI which preserves the iterative and incremental nature but – by
following the ideas of agile processes – leads to a quicker process more oriented to code
delivery than to documentation production.

PASSI is an example of a complete methodology that not only pays the needed
attention to the process model, but also recognizes that different application needs may
require different types of processes, and accordingly face the problem of adapting the
methodology to different agile process models.

3.3. Transformation
As an example of a methodology that can be somewhat considered committed to a

transformation process model, we report here about DESIRE (Brazier et al., 2002),
which also may be classified under the evolutionary and incremental hat.

DESIRE
The compositional multi -agent design method DESIRE - DEsign and Specification

of Interacting REasoning components (Brazier et al., 2002) supports the design of
component based autonomous interactive agents considering conceptual design and the
system’s specification exploiting knowledge-based techniques.

DESIRE views the individual agent and the overall system as compositional
structures modeling both the inter-agent functionaliti es (requirements for the
coordination and cooperation in the social interaction expressed in term of knowledge
and reasoning skill s) and the intra-agent ones (requirements for the tasks domain), as
well as taking into account the processes and knowledge dimensions. DESIRE partially
captures the organizational aspect of a multiagent system without considering the
organizational structure

In DESIRE the following models are supported: (i) problem description; (ii)
conceptual design; (iii) detailed design; (iv) operational design; and (v) design rationale.
Also, to improve the reusabili ty, the methodology offers designers a set of generic
models (i.e. generic co-operative agent model, generic model of a BDI-agent, generic
model for diagnostic task, for design task, generic model of reasoning path, etc.). It is
worth to note that there is no fixed sequence of design.

DESIRE covers the phases from requirements elicitation up to the verification and
testing (partially). In fact, the high level modeling environment of DESIRE allows
engineers to automatically generate prototypes of multiagent application from the
detailed design. On the basis of these partial prototypes, new designs and prototypes are
iteratively generated and examined. In this sense DESIRE can be considered to adopt an
evolutionary model.

However, during the problem specification phase, informal requirement are
incrementally transformed into formal ones, to facilit ate code generation and the
verification process. Due to the formalization of the requirements, the verification
process is done by a mathematical proof and doing so, the verification and testing phase
is partially covered. For this reasons, we can also consider DESIRE to adopt, at least for
some of its phases, a transformation model.

19

We have already stated in Section 2 what we consider the limitations of the
transformation model for practical industry applicabili ty. Still , the possibilit y enforced
by DESIRE of somewhat integrating in an incremental model the additional power of a
transformation model represents a potentially promising approach.

3.4. Spiral
We found a single methodology that could be clearly included in this class, i.e., the

MAS-CommonKADS one (Iglesias et al., 1997).

MAS-CommonKADS
MAS-CommonKADS (Iglesias et al., 1997) extends the models defined in

CommonKADS, adding techniques from object-oriented methodologies (li ke Object
Modeling Technique – OMT, Object Oriented Software Engineering – OOSE, and
Responsibili ty Driven Design - RDD) and from protocol engineering to describe the
agent protocols.

The methodology starts with a conceptualization phase which is an informal phase
used to collect the users’ requirements. Consequently, MAS-CommonKADS partially
covers the requirement elicitation phase by means of the use case model. For the
following analysis and design phase, MAS-CommonKADS defines the following
models: (i) agent model; (ii) task model; (iii) expertise model; (iv) coordination model;
(v) organization model; (vi) communication model; and (vii) design model, which
contemplates the application design, architecture design and platform design.

According to its proposers, MAS-CommonKADS also considering the coding unit
testing, integration and global testing, and implementation and maintenance stages,
however, we have not found supporting documentation for those phases.

The process model adopted for small projects is a waterfall -li ke based on the reuse
of components previously defined, while for large projects MAS-CommonKADS
adopts the same process model of the CommonKADS methodology, that is, the spiral
model.

Although rather obsolete, and possibly hardly applicable to modern multiagent
systems scenario, the MAS-CommonKADS methodology has the advantage of showing
that a spiral process model can be applied in the context of multiagent systems. In
addition, it points out (as PASSI does) that the same methodology can be effectively
adapted and applied in the context of different process model (i.e., a waterfall for small
projects, and a spiral for complex and risky projects).

3.5. Summary
Most of the AOSE methodologies analyzed (those presented in this section as well

as those that we have excluded from the presentation for the sake of length limitations)
adopts either a waterfall -li ke or an evolutionary/incremental model.

In particular, from the above analysis we can state that:
• Those methodologies that do not make any explicit reference to the process

model, end up in promoting a rather standard waterfall process model or – more
rarely – a rough incremental process model;

• Those methodologies paying more care to the process model issue end up in
explicitly proposing an incremental process model.

Summarizing, we can state that the need for incremental process models is widely
recognized in the community.

A very few methodologies adopts a transformation-like model (here we have
mentioned DESIRE). Although other attempts in transforming informal specification

20

into code by mean a transformation process have been explored so far (consider e.g., the
work of d’ Inverno and Luck (1997) using Z schemas), those efforts are to be considered
single methods and notations more than complete methodologies. Nevertheless, it is our
opinion that the use of formal model for multiagent systems development will notably
increase in the future (as already stated in Section 2).

Spiral models too have encountered a very limited success. Very likely, the reason is
that a few complex industrial projects (involving high risks) have been so far carried
out. Thus, the need to anticipate and possibly eliminate the risks associated with
complex software development projects in agent based development have simply not
emerged. Still , we expect the spiral model to increase its role in the future, with the
increase of multiagent systems to be developed in real-world complex setting.

4. OPEN ISSUES

As already discussed, up to date, researchers and practitioners in AOSE have paid
more attention to methodologies rather than the whole software development process.
Methodologies play indeed a very important role, but require to be put into the context
of a process model. With regard to the latter, in addition to the specific issues discussed
in the previous section, several further issues may represent interesting challenges for
researchers and practitioners in this community. Hereinafter, we present some of them
considering five complementary assessment directions: on the process models, focusing
on the need of specific agent-oriented agile process models (Sub-section 4.1); on the
methodologies, focusing on the need of multi -perspective approaches (Sub-section 4.2);
on the methods and the meta-models for agent-oriented development (Sub-section 4.3);
on the tools supporting the process of agent-based development (Sub-section 4.4); and
on the evaluation and improvement of the process and the resulting product quali ty
(Sub-section 4.5).

4.1. Extreme Programming of Multiagent Systems

Section 3 has already outlined the need for incremental and possibly very agile
processes for software systems and multiagent systems development. However, some
further considerations on this are to be reported.

It is a matter of a fact that most industrial practice of software development – due to
the lack of time, strict schedules for delivery, no time and resources to spend in
documentation activity – end up in being unstructured, frenetic, and missing at all some
kind of organization in human resources. The most innovative trend in agile approaches
to software development, namely Extreme Programming (XP) is an interesting attempt
to start from the above state, and proposes a very agile structure that can bring some
engineering flavor to the process without forcing to spend too many resources,
preserving the need for quick delivery and, at the same time, ensure more reliabili ty.
The new approach is rapidly gaining a relevant industrial acceptance for the
development of conventional types of small - medium-size software in projects affected
by uncertain or changing requirements (Succi and Marchesi, 2001).

 To the best of our knowledge, the only proposal towards and XP approach in agent-
based development is that of Knublauch (2002), proposed with an explicit support for
change and rapid feedback. The approach consists in building and maintaining in a
cyclic fashion two main models: (i) a process model (for the design of agent scenarios);
and (ii) the executable agent source code including automated test cases. The process
model aims at capturing and clarifying requirements, visually documenting agent

21

functionaliti es, and facilit ating the communication with end users. Using specific tools
it is possible to automatically generate source code, thus introducing the next phases
(coding and testing), and to focus on interactions among agents and agent li fe-cycle
management. Finally, the cyclic development process consists in switching between the
implementation and process models updating them arbitrarily.

Although it is a pioneering proposal potentially very interesting, it has several
limitations – which may be considered as current general limit ations of the agent
technology rather than limitations of the proposal itself. First, the complexity of
potential agent interaction scenarios and the emerging behaviors within a multiagent
may make pre-planning very hard (Lind, 2001), which is in sharp contrast with the very
foundations of the XP philosophy, stating that implementation and evaluation of
executable code must have priority over a comprehensive documentation. Second, being
XP strongly concerned with rapid prototyping and testing, the lack of appropriate tools
for the testing of multiagent systems (making it impossible to systematically evaluate
specific agent-oriented problems such as the respect of social rules, the correct
enactment of collaboration strategies etc.) represents a serious issue.

 We strongly believe that agile and XP-like processes for agent-based development
are needed to improve acceptance of agent-technology by industry. Still , further
researches in the AOSE area are needed to pave the way to XP-oriented agent-based
development.

4.2. Multi-perspective Approaches

Another potentially interesting direction to improve the effectiveness and reliabili ty
of agent-based development is to focus on different perspectives during the
development process. With the term perspective, we mean an abstract representation of
the system highlighting some aspects of current interest, while hiding all the others that
are not interesting from that specific point of view. This is an application of different
fundamental principles of the software engineering (i.e. separation of concerns,
horizontal modularity, etc.) and may help a more exhaustive comprehension of the
system to be in all of its different aspects.

In mainstream software engineering, the application of this approach has been
widely used. For instance, structured analysis and design approaches specify the system
to be adopting two main perspectives: the data flow and the data structure. On the other
side, object orientation defines the system considering the objects (and their description)
perspective, the (instantiation) relationships among objects and classes, and, finally, the
interactions among different classes (or objects). Also in the artificial intelli gence area,
in the construction of expert system, two mainly perspectives are considered: the
knowledge representation and the inference skill s.

Recently, in the AOSE arena, this multi -perspective idea has been adopted – to
different extent – in a number of proposals (see for example MASSIVE and
INGENIAS) and has also been advocated in a different paper by the authors
(Cossentino and Zambonelli , 2004).

While it is easy to recognize the importance of multiple perspectives in order to
achieve a thorough comprehension of the system (especially when dealing with
multiagent systems that are often used to implement complex and distributed solutions),
it is not easy to obtain a multi -perspective design process that conjugates both quali ty
and cost parameters. Quali ty pursuing would bring to increment the number of different
perspectives but to avoid the introduction of colli ding specifications in different views
pushes to adopt a specific design tool support for maintaining their coherence. Both of

22

these aspects (an increment in the number of perspectives and the coherence check
performed by a specific design tool) originate an increment in the project costs (and
time) and therefore limit the possibili ty of diffusely applying this approach.

Accordingly, we believe further investigations are needed to make the multi -
perspective approach practical, i.e., as a way to reduce complexity rather than increase
the costs of software development.

4.3. Meta-Models, Meta- Methodologies, and Method Engineering

Actually, several works (Cossentino and Seidita, 2004; Odell et al., 2005;
Henderson-Sellers, 2005) are focusing on the identification of appropriate meta-models
for AOSE methodologies and process models, where a meta-model is intended as
rational analysis and identification of the abstractions used in multi -agent system
development. However, since it is quite hard to synthesize the better of all existing
proposals, in this approach still subsists the risk of producing a result that is too
complex and not enough affordable.

In this direction, we can cite the contributions coming from the FIPA Methodology
Technical Committee (Cossentino et al., 2003) and the OPEN framework (Henderson-
Sellers, 2005) that adopt the method engineering paradigm, more appropriately called
situational method engineering (Ter Hofstede and Verhoef, 1997). In this approach the
development process is composed by assembling pieces (method fragments) of it from a
repository of methods built up taking pieces from existing processes/methodologies.
Each method fragment is mainly composed by three elements: (i) the process to achieve
fragment objectives; (ii) the artifacts to be produced; and (iii) the roles played by the
involved people.

The process composition by reusing existing parts may be seen as an application of
the compositionali ty software engineering principle, according to the roman idea of
“divide et impera” , strongly related with modularity, incrementali ty, abstraction, and
separation of concerns, that are principles frequently advocated by software engineering
authors (see for example (Ghezzi et al., 1991)). Also, the relationships among
components may be associated to the object oriented aggregation relationship.

The complete method engineering process could start from the selection of the
elements that compose the meta-model of the multiagent system. Then the development
process is composed by selecting proper fragments from the repository. In FIPA those
activities are supported by a Computer Aided Method Engineering – CAME tool.

To harmonically integrate all the different fragment of methods, engineers will need
guidelines; up to now, some guidelines are available, for example in the OPEN
framework, about the adequate use of a particular method in a specific context, that is,
about the correct use of a single method fragment (component). Some kind of patterns,
i.e. design or architectural patterns, have been proposed in specialized literature, but to
really accomplish with the method engineering purpose, engineers need more
“methodological patterns” for the thorough process resulting by the method’s
integration.

Other interesting attempts are trying to propose new processes as a synthesis of the
best models proposed by previous ones. The idea is to find out the minimum common
ground between different processes and to extend it to a general approach by adopting
the best features of each considered process in a consistent way. Some example of this
trend are Skeleton (based on Roadmap and Prometheus) (Juan et al., 2002b),
INGENIAS (Gómez-Sanz and Fuentes, 2002), MESMA (Cuesta et al., 2002), etc.
However, this practice still not guarantees that the results would be more useful than the

23

previous process they extended. In effect, it is practically impossible to take into
account all the best contributions of the already existing methodologies and the
frequently newly proposed ones. Moreover, probably it is impossible to define the
“panacea” process that better covers all the multiple possible project cases and
multiagent applications. Thus, every syncretism is destined to be partial and, from the
point of view of the process model, to suffer the some drawback of the original
approach it extends.

4.4. Tools

When developing an agent-based system, several tools are necessary during the
different stages of the process. Because of the scope of this paper, in the following we
will only discuss design tools and their related open research issues.

Application fields for design tools spread from requirements elicitation to design,
testing, validation, version control, configuration management and reverse engineering;
we can classify them in three different categories: CASE, CAME, CAPE tools. The
CASE acronym means Computer Aided Software Engineering and it names tools that
could be used to design with the most different approaches. Usually they well support
the modeling activities and only constrain the designer in the choice of the system
modeling language (for instance UML), and, when code generation is possible, on the
list of supported coding languages. The main limit of these tools is that they are not
aware of the adopted method (in terms of work to be done) but they are only concerned
with the representation of some (often not coordinated) views of the system. Several
examples of research-level CASE tools are available for the design of multiagent
systems but at our knowledge, there exists no agent-oriented tool that has reached an
industrial quali ty level.

As regards CAME tools (CAME stands for Computer Aided Method Engineering),
they are conceived to support methods rather then design. They do not adopt any
specific software development process model (they are not even aware of its existence
because they are only concerned with the drawing of the different aspects of the model
separately) and therefore the designer could freely work on the different views even
violating the prescribed process without any warning from the tool. No specific CAME
tool for agents is reported, at our knowledge, in literature. One of the intrinsic limits of
CAME tools (the lack of process awareness) is overcome by CAPE (Computer Aided
Process Engineering) tools that are aware of the adopted process model (or could even
be used to design it) and coordinate the different stages of the design in order to respect
its prescriptions. This category of tools is, at our knowledge, totally unexplored in the
field of agent-oriented software development and their growth is as desirable as the
directly related development of specific agent-oriented processes.

4.5. Evaluation and improvement of processes and resulting products quality

A possible way to let accessible the expertise is to insist on evaluation frameworks
that could highlight the advantages and drawback of agent-based methodologies and
process models in particular contexts. In this sense, different authors have proposed
interesting works on the evaluation of methodologies (Sturm and Shehory, 2003;
Cernuzzi and Rossi, 2002; Hoa Dam and Winikoff , 2003; etc.). However, at our
knowledge no work has focused on the evaluation of process models and we think that
more effort is still needed in evaluating methodologies, specific methods and techniques
in AOSE. In effect, the great majority of the proposed works are centered on qualitative

24

evaluation, while engineers need of more quantitative results that may facilit ate
comparative analysis and the selection of specific methods.

5. CONCLUDING REMARKS

Since the very beginning of software engineering researches, a variety of software
process models have been proposed, from sequential waterfall -li ke to evolutionary and
transformation-based ones, with the goal of identifying effective, reliable, and
reproducible ways to produce software. In the community of software engineering, there
is now a general consensus that for most real-world industrial projects the pervasive
waterfall model should be better replaced by more flexible and iterative approaches,
such as evolutionary and spiral ones. Also, it is an acknowledged fact that no single
general-purpose process model can be effective for all projects, and that different
commercial and engineering needs may be satisfied by different process models. In
addition, software processes cannot be defined and established once and for ever, they
need to be continuously assessed and improved.

The above considerations imply that a major duty of a software engineer – other
than designing software by applying methodologies – is to apply its expertise to identify
the most appropriate process model for any specific situation, and put this model at
work. Unfortunately, despite the above understanding, this paper has outlined that
current researches in the area of AOSE and of AOSE methodologies underestimate the
importance of the process model in multiagent system development. In most of the
cases, an AOSE methodology gets proposed without any explicit reference to the
underlying process model.

It is our hope that the analysis and the discussions reported in this paper may
somewhat clarify about the importance of process models in agent-oriented software
development, and may be of inspiration for process-oriented researches in the AOSE
community. In addition to the open issues identified in this paper, further issues related
to the engineering of very large collectives of distributed agents exhibiting complex and
emergent behaviors, and to the analysis of the innovative process models that could suit
these kinds of systems, would be worth to be investigated (Zambonelli and Omicini,
2004).

REFERENCES

Bauer, B., Müller, J., and Odell , J., 2000. Agent UML: A Formalism for Specifying Multiagent Software
Systems. In: Ciancarini, P., and Wooldridge, M. (Eds.) Agent-Oriented Software Engineering -
Proceedings of the First International Whorkshop (AOSE-2000). Springer-Verlag, Berlin (Germany) ,
pp. 91-103

Beck, K., 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston, MA
(USA)

Boehm, B., 1998. A Spiral Model of Software Development and Enhancement. IEEE Computer, Vol. 21,
Nº 5, May, 1988, pp. 61-72

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J., 2001. A Knowledge Level
Software Engineering Methodology for Agent Oriented Programming. In: Proceedings of the 5th
International Conference on Autonomous Agents. ACM Press, Montreal (Canada), pp. 648-655

Brazier, F., Jonker, C., and Treur, J., 2002. Principles of Component-Based Design of Intelligent Agents.
Data and Knowledge Engineering, vol. 41, No. 2, pp. 1-28

25

Caire, G., Chainho, P., Evans, R., Garijo, F., Gómez Sanz, J., Kearney, P., Leal, F., Massonet, P., Pavón,
J., 2001. Agent Oriented Analysis Using MESSAGE/UML. Proceedings of Agent-Oriented Software
Engineering – AOSE 01, May 2001, Montreal (Canada), pp. 101-107

Cernuzzi, L. and Rossi, G., 2002. On The Evaluation Of Agent Oriented Methodologies. Proceedings of
the OOPSLA 02 - Workshop on Agent-Oriented Methodologies, November 2002, Seattle (USA), pp.
21-30

Chella, A., Cossentino, M., Sabatucci, L. and Seidita, V., 2004. From PASSI to Agile PASSI: Tailoring a
Design Process to Meet New Needs. In 2004 IEEE/WIC/ACM International Joint Conference on
Intell igent Agent Technology (IAT-04), Sept. 2004, Beijing (China),

Ciancarini, P. And Wooldridge, M., 2001. Agent-Oriented Software Engineering. Proceedings of the 1st

International Workshop on Agent-Oriented Software Engineering, Springer Verlag, LNCS, Vol. 1957,
pp. 1-24

Cossentino, M., Hopmans, G., Odell , J., 2003. FIPA Standardization Activities in the Software
Engineering Area. Workshop on Object and Agents (WOA'03) Sept, 10-11, Cagliari (Italy),

Cossentino, M. and Sabatucci, L., 2004. Agent System Implementation in Agent-Based Manufacturing
and Control Systems: New Agile Manufacturing Solutions for Achieving Peak Performance. Paolucci
M. and Sacile R. editors. CRC Press, April 2004

Cossentino, M. and Seidita, V., 2004. Composition of a New Process to Meet Agile Needs Using Method
Engineering. Software Engineering for Large Multi-Agent Systems vol. III . LNCS Series, Elsevier Ed..

Cossentino, M. and Zambonelli , F., 2004. Multiagent Systems Development from the Autonomy
Perspective, Computational Autonomy. LNCS Series No. 2969, Elsevier Ed.

Cuesta, P., Gómez, A., González, J.C., and Rodríguez, F., 2002. The MESMA Approach for AOSE.
Proceedings of Fourth Iberoamerican Workshop on Multi-Agent Systems (Iberagents'2002), at
IBERAMIA'2002, the VIII Iberoamerican Conference on Artificial Intelligence, November 11-12,
2002, Malaga (Spain),

DeLoach, S., Wood, M. and Sparkman, C., 2001. Multiagent Systems Engineering. International Journal
of Software Engineering and Knowledge Engineering, vol. 11, No. 3, pp. 231-258

Dori, D., 2002. Object-Process Methodology – A Holistic System Paradigm. Springer, Berlin,
Heidelberg, New York

d’ Inverno, M., and Luck, M., 1997. Development and Application of a Formal Agent Framework.
Proceedings of the First IEEE International Conference on Formal Engineering Methods, November
12-14, 2002, Hiroshima (Japan), pp. 222-231

Fuggetta, A., 2000. Software Process: a Roadmap. Proceedings of the Conference on the Future of
Software Engineering, June 4-11, 2000, Limerick (Ireland), ACM Press, New York (USA), pp. 25-34

Ghezzi, C., Jazayeri, M., and Mandrioli , D., 1991. Fundamentals of Software Engineering. Prentice Hall
International, Upper Saddle River, NJ (USA)

Gilb, T., 1988. Principles of Software Engineering Management, Addison-Wesley, Boston, MA (USA)

Giunchiglia, F., Mylopoulos, J. and Perini A., 2002. The Tropos Software Development Methodology:
Processes, Models and Diagrams. Proceedings of Agent-Oriented Software Engineering (AOSE-
2002), July 2002, Bologna (Italy), pp 63-74

Gómez-Sanz, J. and Pavón, J., 2003. Agent Oriented Software Engineering with INGENIAS. Proceedings
of the 3rd Central and Eastern Europe Conference on Multiagent Systems, Springer Verlag, LNCS
2691, pp. 394-403

Henderson-Sellers, B., 2005. Method Engineering to Create a Comprehensive AO Methodology
Framework. Chapter 13 in Agent-Oriented Methodologies (edited Henderson-Sellers, B., and
Giorgini, P.) Idea Group Inc., Hershey, PA; USA, 2005

Hoa Dam, K., and Winikoff, M., 2003. Comparing Agent-Oriented Methodologies. Proceedings of Agent
Oriented Information Systems-AOIS‘03, July 2003, Melbourne (Australia), pp. 78 - 93

Iglesias, C., Garijo, M., González, J.C. and Velazco, J.R., 1997. Analysis and Design of Multiagent
Systems using MAS-CommonKADS. In: Singh, M., Rao, A.S. and Wooldridge, M. (Eds.), Intelli gent
Agent IV, Springer, LNCS 1365, pp. 312-328

26

Iglesias, C., Garijo, M. and González, J.C., 1999. A survey of Agent-Oriented Methodologies. In: Muller,
J.P., Singh, M., and Roa, A.S. (Eds.), Intell igent Agent V, Proceeding of ATAL-98, Springer, LNCS
1555, pp. 317-330

Kelly, S., Lyytinen, K. and Rossi, M., 1996. MetaEdit+: A Full y Configurable Multi-User and Multi-Tool
CASE and CAME Environment. in Advanced Information Systems Engineering, Proceedings of the
8th International Conference CAISE'96 (eds. P. Constapoulos, J. Mylopoulos, Y. Vassiliou), Springer-
Verlag, pp. 1-21

Knublauch, H., 2002. Extreme Programming of Multi-Agent Systems. Proceedings of the First
International Conference on Autonomous Agents and Multi-Agent Systems - AAMAS ’02, ACM
Press, July 15-19, 2002, Bologna (Italy), pp. 704-711

Kruchten, P., 1998. The Rational Unified Process: An Introduction. Addison-Wesley , Boston, MA
(USA)

Jacobson, I., Rumbaugh, J. and Booch, G., 1999. The Unified Software development Process. Addison-
Wesley, Reading, MA (USA)

Jennings, N. R., 2001, An Agent-Based Approach for Building Complex Software System,
Communications of the ACM, Vol. 44, No. 4, pp. 35-41.

Juan, T., Pearce, A. and Sterling, L., 2002a. ROADMAP: Extending the Gaia Methodology for Complex
Open Systems. Proceeding of the First International Conference on Autonomous Agents and Multi-
Agent Systems - AAMAS ’02, July 15-19, 2002, Bologna (Italy), pp. 3-10

Juan, T., Sterling, L. and Winikoff, M., 2002b. Assembling Agent Oriented Software Engineering
Methodologies from Features. Proceedings of the First International Conference on Autonomous
Agents and Multi-Agent Systems-AAMAS‘02, Third International Workshop on Agent-Oriented
Software Engineering AOSE-2002, July 15, 2002, Bologna (Italy), pp. 161-172

Lahlouhi, A. and Sahnoun, Z., 2002. Multi -Agent Methodologies’ Incoherencies. Proceedings of the
OOPSLA 2002, Workshop on Agent-Oriented Methodologies, November, 2002, Seattle (USA), pp.
64-73

Lind, J., 2001. Iterative Software Engineering for Multiagent Systems, the MASSIVE Method. Springer
Verlag, New York, Secaucus, NJ, USA

Odell , J., Nodine, M., and Levy, R., 2005. A Metamodel for Agents, Roles, and Groups, in Agent-
Oriented Software Engineering (AOSE) IV, Odell , J., Giorgini, P., and Müller, J. (eds.), Lecture Notes
on Computer Science volume (forthcoming), Springer, Berlin (Germany)

Padgham, L. and Winikoff, M., 2002. Prometheus: A Methodology for Developing Intelli gent Agents.
Proceedings of the First International Conference on Autonomous Agents and Multi-Agent Systems -
AAMAS ’02, Third International Workshop on Agent-Oriented Software Engineering AOSE-2002,
July 15, 2002, Bologna (Italy), pp. 135-146

Paulk, M., Weber, C.V., and Curtis, B., 1995. The Capabili ty Maturity Model for Software. Addison
Wesley, Reading, MA (USA)

Poutakidis, D., Padgham, L. and Winikoff , M., 2002. Debugging Multi-Agent Systems Using Design
Artifacts: the Case of Interaction Protocols. Proceedings of the First International Conference on
Autonomous Agents and Multi-Agent Systems - AAMAS ’02, July 15-19, 2002, Bologna (Italy), pp.
960-967

 Sturm, A., Shehory, O., 2003. A Framework for Evaluating Agent-Oriented Methodologies. Proceedings
of Workshop on Agent-Oriented Information Systems – AOIS 2003, 5th International Bi-Conference,
July 14, Melbourne, (Australia), October 13, 2003 and Chicago, IL (USA), 2003, LNCS 3030, pp. 94-
109

Sturm, A., Dori, D., Shehory, O., 2003. Single-Model Method for Specifying Multi-Agent Systems.
Proceedings of the Second International Conference on Autonomous Agents and Multi-Agent
Systems - AAMAS’03, July, 2003, Melbourne (Australia), pp. 121-128

Succi, G. and Marchesi, M., 2001. Extreme Programming Examined. Addison-Wesley, Reading, MA
(USA)

Ter Hofsted, A.H.M., and Verhoef, T.M., 1997. On the Feasibility of Situational Method Engineering.
Information Systems, vol. 22, No. 6/7, pp. 401-422

27

Wagner, G., 2003. The Agent-Object-Relationship Metamodel: Towards a Unified View of State and
Behavior. Information Systems, Vol. 28, No. 5, July, 2003, Elsevier, pp. 475-504

Wood, M., and DeLoach, S.A., 2000. An Overview of the Multiagent Systems Engineering Methodology.
Ciancarini, P., and Wooldridge, M. (Eds.) Agent-Oriented Software Engineering - Proceedings of the
First International Workshop (AOSE-2000). Springer-Verlag, Berlin (Germany), pp. 207–221

Wooldridge, M., Jennings, N. R. and Kinny, D., 2000. The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multi Agent Systems, Vol. 3, No. 3, pp. 285-
312

Yu, E., 1995. Modelli ng Strategic Relationships for Process Reengineering. PhD thesis, University of
Toronto, Department of Computer Science

Zambonelli , F., Wooldridge, M. and Jennings, N. R., 2003. Developing Multiagent Systems: The Gaia
Methodology. ACM Transaction on Software Engineering and Methodology, vol. 12, No. 3, pp. 417-
470

Zambonelli , F. and Omicini, A., 2004. Challenges and Research Directions in Agent-Oriented Software
Engineering. Journal of Autonomous Agents and Multiagent Systems, vol. 9, No. 3, Kluwer Academic
Publishers, pp 253-283

