
Conscious Robotic System Design Process - from
Analysis to Implementation

Antonio Chella and Massimo Cossentino and Valeria Seidita

Abstract Conscious robotic systems are composed of complex parts needing ad-hoc
software engineering techniques for their modelling, analysis and implementation.
In this paper the whole process (from analysis to implementation) for modelling
the development of conscious robotic systems is presented together with the new
created design process - PASSIC - supporting each part of it.

1 Introduction

One of the most important topics in the today research is to provide a robotic sys-
tem with self-conscious abilities. A conscious robotic system is, much more than a
robotic system, composed of complex parts providing the robot with features that
are specific of a conscious machine: understanding, planning, deciding, knowing,
problem solving etc.

Nowadays literature proposes several different software engineering techniques
for developing complex robotic systems, and in the past the agent paradigm [1, 14,
8] has proved to be successful for developing robotic applications by considering
the robotic system as a collection of agents each of them responsible for a specific
functionality.

Our aim is to model the development of a conscious robotic system in its entirety
and to adopt proper software engineering techniques for conceiving its parts.

Antonio Chella and Valeria Seidita
Dipartimento di Ingegneria Informatica, Universitá degli Studi di Palermo, Viale delle Scienze,
90128 Palermo, Italy
e-mail: {chella,seidita}@dinfo.unipa.it

Massimo Cossentino
Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche, Viale delle
Scienze, 90128 Palermo, Italy
e-mail: cossentino@pa.icar.cnr.it

1



2 Antonio Chella and Massimo Cossentino and Valeria Seidita

In the past we developed and experimented an approach for the creation of ad-
hoc design processes following the Situational Method Engineering paradigm [21].
This approach is principally based on the use of the metamodel, describing the set
of elements to be instantiated during system development. The work presented in
this paper is based on the extension of the PASSI (Process for Agent Society Spec-
ification and Implementation) [11] process and metamodel in order to include the
activities and elements needed for the construction of a conscious system.

In [7] and [6] the metaphor of test has been used for developing and implement-
ing the reflective part of a robotic system; that work resulted in two different design
activities that in this paper are integrated in a new process (PASSIC) built on the
basis of two previous evolutions of PASSI: PASSI2 and PASSIG [13][20].

In the rest of the paper an overview on the previous work is given and the PAS-
SIC design process is illustrated together with the whole conscious robotic system
development process.

2 Theoretical Background

2.1 The Robot Percepition Loop

The robot perception loop described in [4, 10] (see Fig. 1) is composed of three
parts: the perception system, the sensor and the comparative component; through
the proprioceptive sensors the perception system receives a set of data regarding the
robot such as its position, speed and other information. These data are used from the
perception system for generating the anticipation of the scenes and are mapped on
the effective scene the robot perceives, thus generating the robot’s prediction about
the relevant events around it.

Fig. 1 The Perception Loop

As it can be seen from the figure, a loop there exist among the perception and the
anticipation, so each time some parts of a perceived scene, in what it is called the
current situation, matches with the anticipated one, then the anticipation of other
parts of the same scene can be generated. According to [19], the perception loop
realizes a loop among “brain, body ad environment”.



Conscious Robotic System Design Process - from Analysis to Implementation 3

The generalized perception loop has been tested and implemented on Cicerobot,
an indoor robot offering guided tours in the Archaeological Museum of Agrigento
[10], and on Robotanic, an outdoor robot offering guided tours in the Botanical
Garden of the University of Palermo [2].

By implementing the perception loop the robot is endowed with the ability to
sense (to perceive) the word around it; besides in [9] [5] it is argued that in a real op-
erating robot there can be different perception loops contemporaneously in action,
thus realizing robot self-consciousness, the robot’s inner world conscious percep-
tion. Each of them is applied to different abilities of sensing and reacting to external
stimuli; and all of them can be managed at an higher level allowing the lower order
loops to perceive the environment and the higher order loops to perceive the self
thus providing the robot with a wide autonomous control about its own capabilities,
actions, behaviors.

2.2 The PASSI Design Process

Fig. 2 Phases of the PASSI Design Process

The PASSI process covers all the phases from requirements analysis to deploy-
ment configuration, coding, and testing. PASSI has been designed for developing
systems to be applied in the areas of robotics, workflow management, and informa-
tion systems.

Actors involved in the design process are supposed to have experiences of object-
oriented design, processes like UP [17] and of concepts like a functionality-oriented
requirement analysis. PASSI principally uses models from object oriented software
engineering and UML notation for most artefacts resulting from the activities it
is composed of. Fig. 2 shows an high level phases-decomposition of PASSI, each
phase is decomposed in activities (and then in tasks) resulting in the production of
one artefact1.

The System Requirements phase is devoted to produce a model of the system re-
quirements that can be committed to agents, the activities involved in this phase are:
Domain Description, Agent Identification, Role Identification, Task Specification.

The Agent Society phase’s aim is to model the agents society knowledge and the
communications the agents take part; it also produce models describing the structure
of role played by agents and the protocol used for communicating. The activities

1 For a detailed description of the PASSI design process refer to [11] and
http://www.pa.icar.cnr.it/passi/



4 Antonio Chella and Massimo Cossentino and Valeria Seidita

involved are: Domain Ontology Description, Communication Ontology Description,
Role Description and Protocol Description

The Agent Implementation phase deals with the solution architecture both in term
of single agent view and multi agent one, the activities it is composed of are: Multi-
Agent Structure Definition, Multi-Agent Behavior Description,Single-Agent Struc-
ture Definition, Single-Agent Behavior Description.

The Code phase provides a model of the solution at the code level. It is largely
supported by patterns reuse and automatic code generation. The activities are: Code
Reuse and Code Completion.

The Deployment phase describes the model of the distribution of the parts of the
system across hardware processing unit and the allocation of agents.

Several extensions to PASSI have been developed for specific application con-
texts. The work presented in this paper starts from two of them: PASSI2 and PAS-
SIG; the former was a natural evolution of the old PASSI after a few years of expe-
rience with that; whereas the latter is the result of a PASSI modification in order to
support goal oriented analysis 2. One of the most important features exploited from
PASSI2 is the possibility to early identify, during the analysis phase, the structural
description of the identified agents. PASSIG was used for the possibility it offers to
perform a goal oriented analysis of the features the system have to accomplish.

3 The Proposed Development Process for Conscious Systems

The perception loop is at the base of the development and implementation process
for a conscious behaviour in a robotic system because it provides the starting point
for the system to be able to activate all the proper behaviours sprung from the mis-
match between the expected situation and the real perceived one in pursuing a goal.

In our approach, the robot can (dynamically) tune some of the mission execution
parameters, decide to adopt another behaviour or to save the successful one in a
repository of cases for a future reuse.

Fig. 3 shows the complete development process used for developing robotic con-
scious systems; the figure depicts the three different phases the designer has to deal
with while implementing such a systems, they are: (i) Problem, (ii) Design and Con-
figuration, (iii) Execution.

3.1 The Three Development Phases

The Problem phase is composed of all the activities devoted to elicit system re-
quirements and to identify the mission the robot has to perform in order to reach its
goals. During these activities the designer considers a database where the set of abil-

2 For more details see [13] and http://www.pa.icar.cnr.it/passi/PassiExtension/exstensionsIndex.html



Conscious Robotic System Design Process - from Analysis to Implementation 5

Fig. 3 The Proposed Conscious System Development Process

ities the system possesses are stored (the Cases); the proposed development process
is applied to systems owning pre-determined abilities. More in details the process
considers two different databases: Cases and Configurations. A Case is composed
of the goal description, the set of actions performed in order to reach it (a plan),
pre-conditions, and the list of parameters needed for successfully applying the plan
(only their names, not useful values). A Configuration is a specific set of parameter
values that has proved to be successful to instantiate one specific case; it also in-
cludes the number of positive outcomes this configuration produced in pursuing the
case goal.

The Design and Configuration phase deals with the definition of the robotic sys-
tem that will accomplish the required mission while successfully fulfilling the re-
quirement constrains. After the design has been completed, the system has to be
configured in order to obtain an optimal performance. The phase begins with the
Design activity. This corresponds to the usual application of a system design pro-
cess (sometimes addressed as methodology or software design process). During this
activity, the designer defines a software solution that could accomplish the required
mission. This activity corresponds to the application of the PASSIC design process
(see section 4). The process starts with the inputs collected during the previous phase
and according to them aims at defining two fundamental deliverables: the design of
the robotic system to be built and the design of the perception test that will drive the
robot’s behavioural choices. This latter artefact, also includes the specification of the
rules that will be used for tuning system parameters when the executed behaviour
results do not match the anticipation.

Once the system is designed, one case has to be selected from the Cases database.
This will be used to produce both the anticipated behaviour and in the meanwhile to
start the mission execution. Cases selection is done on the basis of the goal(s) to be
pursued. In such a selection, it is to be considered that sometimes the pursued goal
cannot be satisfied by any of the cases in the database. This situation is solved by
creating a new case (usually by reusing and composing existing cases).



6 Antonio Chella and Massimo Cossentino and Valeria Seidita

In the current implementation of the system, new cases are created by randomly
selecting existing ones, we plan to adopt a more rigorous and smart approach in the
future. Usually, cases are described in terms of some parameters that deeply affect
the expected outcome. Just to provide an example, the right U-turn of a robot will
be strongly affected by the speed since an higher speed may induce wheels slipping
and may cause a higher radius in the curve. Such a radius can be determinant in
successfully reaching the target position or not.

Such set of parameter values define a configuration. In other words, a configu-
ration is a set of records reporting instantiation data for cases in the database with
the corresponding scores that report successful applications of the case (with that
configuration) versus total applications of it (with that configuration). If the results
obtained by the application of the selected configuration are not correct (this check
is performed after the Perception Test Execution), a new configuration can be tried
(either by selecting a new set of values for parameters or by selecting a new case).
If the results of the perception test are satisfying, the new configuration is saved in
the Configurations Database as a successful one.

The perception test is performed during the Execution phase during which the
running system produces the Anticipation Generation and executes the mission. Af-
ter a case has been selected, a part of the system generates the anticipations about
the mission to be performed using the case itself. For instance, if the goal is “reach-
ing object O”, the plan could be “go from point A to point B” and the corresponding
expectation is “the robot position at the end of the plan execution is (x,y)”.

Once the anticipation is produced, the robot starts the execution of its mission.
Referring to the above example, it moves and continuously compares its real be-
haviour with all the parameters involved (for instance wheels position, propriocep-
tive sensors and so on) in the anticipated case by means of the Perception Test Ex-
ecution. If it finds some differences it activates the tuning phase by changing the
initial configuration, instead if the expected behaviour perfectly matches with the
anticipated one then the used configuration has been successful and it can be saved
in the database for future reuse.

4 The PASSIC Design Process

PASSIC is the design process that has been created by extending PASSI for develop-
ing and implementing a conscious behaviour to a robotic systems; it provides design
activities for the design of each portion of the system presented in the previous sec-
tion.

In the following subsections the approach for PASSIC definition will be quickly
illustrated and after that an overview of the phases and activities it is composed of
will be given.



Conscious Robotic System Design Process - from Analysis to Implementation 7

4.1 The Definition of PASSIC Design Process

In [6, 7] an experiment concerning the creation of a design methodology and a model
for perception loop has been presented. The process for creating the new methodol-
ogy follows the Situational Method Engineering paradigm [3][18][15][16], extends
and modifies the PASSI [11], PASSI2 [13] and the PASSIG [20] developed by the
authors in the latest years.

Situational Method Engineering is the discipline developed in the field of in-
formation systems with the aim of creating, exploiting and evaluating techniques,
methods and tools for the creation of design processes to be used in specific appli-
cation context. The SME main figure is the method engineer who is responsible for
creating ad-hoc design processes by principally reusing experiences, under the form
of portion of existing design processes, already experimented and used by other
teams, groups etc. The SME paradigm has been extended to the agent field and a
well defined approach for the creation of agent design process has been developed
[21]; this one is called PRoDe (Process for the Design of Design Processes) and its
main elements is the so called process fragment [12]. The whole process is com-
posed of three main phases, the process requirements, the fragments selection and
the fragments assembly, the first concerns with the requirements analysis of the de-
sign process under construction, the second with the selection of the right process
fragments to be selected from the repository and to be assembled in the following
phase.

PRoDe mainly exploits the use of the multi agent system (MAS) metamodel
for performing the tasks within the selection and the assembly phases. The MAS
metamodel contains all the elements to be designed for developing a specific sys-
tem following one specofic design process. For instance the PASSI MAS metamodel
contains elements such as agent, role, task etc., an agent plays some roles in order to
reach an objective and has some capabilities under the form of tasks it is able to per-
form; each of this elements has to be designed in, at least, one activity of the design
process. In PRoDe the MAS metamodel is the results of the process requirements
phase and is used as a base for the selection and assembly of fragments.

In [7] an extended analysis and description of the set of requirements leading
to the creation of PASSIC is reported; the analysis resulted in the definition of the
metamodel for the perception loop, see [6] for further details, where elements of
perception loop have been identified and reflected onto a robotic system.

Briefly some central elements of the metamodel are: the robot having the respon-
sibility of pursuing one or more goals composed of plans and actions, i.e. physi-
cal or communicative acts between the robot and external objects that result in the
change of the surrounding environment. The robot also has capability by means of
test, simulated act and log that implement the robot’s inner and outer reflections
(i.e., the perception loop).

In order to cope with the aforementioned elements of the conscious metamodel
two process fragments coming from the Unified Process (UP) [17] (Test Plan and
Design and Test Execution) have been reused, modified and integrated; the former’s
aim is to identify the system functionalities to be tested, the available system re-



8 Antonio Chella and Massimo Cossentino and Valeria Seidita

sources and the test objective in order to design the Anticipation Generation. The
latter aims at defining the Execution Test in order to identify defects and analyze the
results also by means of defining criteria for evaluating perception test results.

4.2 The PASSIC Process Lyfecicle

Fig. 4 The PASSIC Design Process - Phases

PASSIC includes three phases arranged in an iterative/incremental process model
(see Figure 4):

• System Requirements: it covers all the phases related to a goal oriented require-
ments analysis and agents/roles identification.

• Agent Society: deals with all the aspects of the agent society are faced: ontology,
communications, roles description, interaction protocols.

• Implementation: A view on the system’ s architecture in terms of classes and
methods to describe the structure and the behavior of single agent, reusable code
and source code for the target system and how the agents are deployed and which
constraints are defined/identified for their migration and mobility.

Each phase produces a document that is usually composed aggregating UML
models and work products produced during the related activities. Each phase is com-
posed of one or more sub-phases each one responsible for designing or refining one
or more artefacts that are part of the corresponding model (for instance the System
Requirements model includes an agent identification diagram that is a kind of UML
use case diagrams but also some text documents like a glossary and the system use
scenarios). The details of each phase will be discussed in the following section.

4.2.1 The System Requirements Phase

The System Requirements phase produces the model of the system in terms of
agency, the set of actors involved in the system under construction and the related
goals.

Developing this phase involves five activities:

1. Domain Description aiming at identifying the actors involved in the system and
their goals.



Conscious Robotic System Design Process - from Analysis to Implementation 9

Fig. 5 The Activities of the System Requirements Phase

2. Domain Analysis aiming at identifying each actor’s tasks and applying means-
end-analysis.

3. Identify System where the System-to-be actor is identified.
4. Agent Structure Exploration where an analysis-level description of the agent

structure in terms of tasks required for accomplishing the agent’s functionalities
is performed.

5. Describe Environment produces the system’s actors and goals that can be as-
signed to the System-to-be actor thus identifying the dependencies between the
System actor and all the other actors

6. Identify Architecture for decomposing the System-to-be into sub-actors and to
identify agents.

7. Define Agent Society aiming at identifying a set of capability for each agent in
order to establish which plans they have to follow.

8. Roles Identification aiming at identifying the roles each agent plays and the de-
pendencies with other agents.

4.2.2 The Agent Society Phase

The Agent Society phase introduces an agent-oriented solution for the problem de-
scribed in the previous phase. This phase presents an ontological description of both
the domain where agents will live and their communications, then agents are de-
scribed in terms of roles they play, services provided by roles, resource dependencies
and finally their structure and behavior. Once an agent solution has been identified
the autonomous part of the system devoted create the expectation about the results
of plans application and the related configuration management is designed.

Developing this phase involves eight activities:

1. Domain Ontology Description aiming at describing the domain categories (con-
cepts), actions that could affect their state and propositions about values of cate-
gories.

2. Communication Ontology Description for describing agents’ communications in
terms of referred ontology, interaction protocol and message content language.



10 Antonio Chella and Massimo Cossentino and Valeria Seidita

Fig. 6 The Activities of the Agent Society Phase

3. Perception Test Planning and Design where the anticipation is produced, starting
from the agent society architecture, the knowledge about the environment and
requirements.

4. Role Description aims at showing distinct roles played by agents, the tasks in-
volved in the roles, communication capabilities and inter-agent dependencies in
terms of services.

5. Multi-Agent Structure Definition (MASD) describes the structure of solution
agent classes at the social level of abstraction.

6. Multi-Agent Behavior Description describes the behavior of individual agents at
the social level of abstraction.

7. Perception Test Execution aims at designing the criteria for evaluating the results
between expected and observed system behaviour.

8. Configuration Management designs the rules for tuning the system parameters.

4.2.3 The Implementation Phase

Implementation Phase results in the model of the solution architecture in terms
of classes, methods, deployment configuration, code and testing directives. In this
phase, the agent society defined in the previous models and phases is seen as a spec-
ification for the implementation of a set of agents that should be now designed at
the implementation level of details, then coded, deployed and finally tested.

The Implementation Phase is composed of seven activities:

1. Single-Agent Structure Definition describes the structure of solution agent classes
at the implementation level of abstraction.

2. Single-Agent Behavior Description describes the behavior of individual agents
at the implementation level of abstraction.

3. Deployment Configuration describes the allocation of agents to the available pro-
cessing units and any constraints on migration, mobility and configuration of
hosts and agent-running platforms.

4. Code Reuse uses a library of patterns with associated reusable code in order to
allow the automatic generation of significant portions of code.



Conscious Robotic System Design Process - from Analysis to Implementation 11

Fig. 7 The Activities of the Implementation Phase

5. Code Completion where source code of the target system is manually completed.
6. Agent Test is devoted to verifying the single behavior with regards to the original

requirements of the system solved by the specific agent.
7. Society Test where the validation of the correct interaction of the agents is per-

formed in order to verify that they actually concur in solving problems that need
cooperation.

5 Conclusion

The authors developed in the past some agent oriented design processes realizing the
possibility of designing systems working in different application contexts mainly
exploiting the fact that agent oriented processes can be used as a design paradigm.
The work presented here focuses on the creation of a complete process for the de-
velopment of a conscious system.

The experience made in the latest years in the creation of ad-hoc design processes
allowed the identification and the analysis of the requirements for the creation of a
design process realizing such a process following a perception driven approach; the
continuous loop between perceived events and activities in the brain is the core of
conscious behaviour we want to emulate in a robotic system. The result was the
possibility of using and extending PASSI design process, by integrating it with new
techniques for designing the robot perception loop, thus creating PASSIC that con-
tains all the activities for the complete development of a conscious robotic system.

PASSIC allows to design and implement the perception loop thus making a
robotic system able to move in a dynamic environment, by continuously detect-
ing the differences between the expected and the real behaviour, and tuning its pa-
rameters also learning successfully experienced behaviours for later reuse in novel
situations.

Acknowledgements This work has been partially supported by the EU project FP7-Humanobs.



12 Antonio Chella and Massimo Cossentino and Valeria Seidita

References

1. R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An Architecture for Autonomy.
The International Journal of Robotics Research, 17(4):315, 1998.

2. R. Barone, I. Macaluso, L. Riano, and A. Chella. A brain inspired architecture for an out-
door robot guide. In A. Samsonovich, editor, Proc. of AAAI Fall Symposium on Biologically
Inspired Cognitive Architectures BICA ’08, Menlo Park, CA., 2008. AAAI Press.

3. S. Brinkkemper, K. Lyytinen, and R. Welke. Method engineering: Principles of method con-
struction and tool support. International Federational for Information Processing 65, 65,
1996.

4. A. Chella. Towards robot conscious perception. In A. Chella and R. Manzotti, editors, Artifi-
cial Consciousness. Imprinting Academic, Exter, UK, 2007.

5. A. Chella. A robot architecture based on higher order perception loop. In A. Hussain, editor,
Brain Inspired Cognitive Systems 2008, page (in press). Springer Science+Business Media,
2009.

6. A. Chella, M. Cossentino, and V. Seidita. Towards a Methodology for Designing Artificial
Conscious Robotic System. In A. Samsonovich, editor, Proc. of AAAI Fall Symposium on
Biologically Inspired Cognitive Architectures BICA ’09, Menlo Park, CA., 2009. AAAI Press.

7. A. Chella, M. Cossentino, and V. Seidita. Towards The Adoption of a Perception-Driven
Perspective in the Design of Complex Robotic Systems. Proc. Of the 10th Workshop on
Objects and Agents (WOA09), 2009.

8. A. Chella, A. Frixione, and S. Gaglio. An architecture for autonomous agents exploiting
conceptual representations. Robotics and Autonomous Systems, 25:231–240, 1998.

9. A. Chella and I. Macaluso. Higher order robot perception loop. In Berlin Eiderlberger
Springer-Verlag, editor, BICS 2008 Brain Inspired Cognitive Systems, June 24-27 2008.

10. A. Chella and I. Macaluso. The perception loop in Cicerobot, a museum guide robot. Neuro-
computing, 72:760 – 766, 2009.

11. M. Cossentino. From requirements to code with the PASSI methodology. In Agent Oriented
Methodologies, chapter IV, pages 79–106. Idea Group Publishing, Hershey, PA, USA, June
2005.

12. M. Cossentino, S. Gaglio, A. Garro, and V. Seidita. Method fragments for agent design
methodologies: from standardisation to research. International Journal of Agent-Oriented
Software Engineering (IJAOSE), 1(1):91–121, 2007.

13. M. Cossentino and V. Seidita. Passi2 - going towards maturity of the passi process. Technical
Report ICAR-CNR, (09-02), 2009.

14. AC Dominguez-Brito, D. Hernandez-Sosa, J. Isern-Gonzalez, and J. Cabrera-Gamez. Inte-
grating robotics software. Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, 4, 2004.

15. A.F. Harmsen, M. Ernst, and U. Twente. Situational Method Engineering. Moret Ernst &
Young Management Consultants, 1997.

16. B. Henderson-Sellers. Method engineering: Theory and practice. In D. Karagiannis and
editors Mayr, H. C., editors, Information Systems Technology and its Applications., pages 13–
23, 2006.

17. B. Jacobson. Rumbaugh, The Unified Software Development Process. Addison-Wesleym ISBN
0-20-157169-2.

18. J. Ralyté. Towards situational methods for information systems development: engineering
reusable method chunks. Procs. 13th Int. Conf. on Information Systems Development. Ad-
vances in Theory, Practice and Education, pages 271–282, 2004.

19. W.T. Rockwell. Neither brain nor ghost. MIT Press, 2005.
20. V. Seidita, M. Cossentino, and S. Gaglio. Adapting passi to support a goal oriented approach:

a situational method engineering experiment. In Proc. of the Fifth European workshop on
Multi-Agent Systems (EUMAS07), 2007.

21. V. Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam, and S. Gaglio. The
metamodel: a starting point for design processes construction. International Journal of Soft-
ware Engineering and Knowledge Engineering. (in printing)., 2009.


