
A Study of some Multi-Agent Meta-Models

Carole Bernon1, Massimo Cossentino2, Marie-Pierre Gleizes1,

Paola Turci3, Franco Zambonelli4

1 IRIT – University Paul Sabatier
118, Route de Narbonne, 31062 Toulouse, Cedex 4 - France

{bernon, gleizes}@irit.fr

2 Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
Consiglio Nazionale delle Ricerche (CNR)

Viale delle Scienze ed. 11 – 90128 Palermo - Italy
cossentino@pa.icar.cnr.it

3 Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma, Viale delle Scienze, 181A – 43100 Parma – Italy
turci@ce.unipr.it

4 Dipartimento di Scienze e Metodi dell’Ingegneria

Università di Modena e Reggio Emilia – Via Allegri 13 – Reggio Emilia – Italy
franco.zambonelli@unimo.it

Abstract. Several agent-oriented methodologies have been proposed over the
last few years. Unlike the object-oriented domain and unfortunately for desi-
gners, most of the time, each methodology has its own purposes and few stan-
dardization works have been done yet, limiting the impact of agent design on the
industrial world. This paper tries to find a means to unify three existing metho-
dologies – ADELFE, Gaia and PASSI – by studying their meta-models and the
concepts related to them. Comparing a certain number of features at the agent or
system level (such as the agent structure, its society or organisation, its interac-
tions capacities or how agents may be implemented) has enabled us to draw up a
first version of a unified meta-model proposed as a first step towards interopera-
bility between agent-oriented methodologies.

1. Introduction

Over the years several methodologies and approaches have been proposed for the
development of multiagent systems. If we were to compare the agent-oriented world
with the object-oriented one, we could say that the agent-oriented paradigm is as
young as the object-oriented when it started off in the early 90’s. In that period there
was an explosion of object-oriented methods and notations. Many users had trouble
finding a method and notation that would satisfy their needs completely. In the mid
‘90’s, the effort of the unification of the modelling languages started and successfully
ended in the late ‘90’s with a standard: UML.

The great popularity of UML is due mainly to the fact that almost all developers us-
ing an object-oriented approach agree on what makes a system an object-oriented one.
A set of criteria in fact has been defined for assessing objectness.

To date the unification process of the existing agent-oriented modelling notations
seems quite a long way away given that the term “agent-oriented” is used by different
people with different meanings, there is not a universally accepted definition of agent
and finally a diffused model of the multiagent system does not exist.

Going on with the analysis of the antecedent paradigm and directing our attention to
the methodology side, what seems to be widely accepted is that a unique specific
methodology cannot be general enough to be useful to everyone without some level of
personalization. As a matter of fact the need for systematic principles to develop situa-
tion-specific methods, perceived almost from the beginning by the object-oriented
community, has led to the emergence of the method engineering approach. In the last
years, the method engineering approach proved successful in developing object-
oriented information systems [13]. Its importance in the object-oriented context should
be evaluated considering not only the direct influence (not so many companies and
individuals work in this specific way) but mainly the indirect consequence. The most
important and diffused development processes (e.g., the Rational Unified Process [10])
are in fact not rigid, instead they are a kind of framework within which the single de-
signer can choose his/her own path.

We believe that the agent-oriented community should follow a similar path, trying
to adapt the method engineering for using it in agent-oriented design. It is in this ambit
that the FIPA Methodology TC1 is situated. Its aim, and our aim as members of the
committee, is to propose quite an open approach that allows the composition of a very
large repository of human experiences (design process is first of all a human process)
that could be expressed in terms of a standard notation.

Right from the beginning however it was clear that adopting the method engineer-
ing approach in the AOSE context is not a plain task. In the object-oriented context the
construction of method fragments, the assembling of the methodology with them and
the execution of the design rely on a common denominator, the universally accepted
concept of object and related meta-model of the object-oriented system. As said be-
fore, the situation concerning the agent-oriented approach is quite different since there
is not a commonly accepted definition of the concept of agent and related meta-model
of the multiagent system – a structural representation of the elements (agent, role,
behaviour, ontology, etc.) that will compose the actual system with their composing
relationships. Since a meta-model is a means to unifying concepts, the lack of a unique
MAS meta-model consequently leads to each methodology having its own concepts
and system structure.

 Analysing the process of designing a system (object or agent-oriented) we have
come to the conclusion that it consists in instantiating the system meta-model that the
designers have in their mind in order to fulfil the specific problem requirements. In the
agent world this means that the meta-model is the critical element when applying the
method engineering paradigm, because of the variety of the methodology MAS meta-
models. The first step of the composition process should therefore consist in an accu-

1 http://www.fipa.org/activities/methodology.html

rate analysis of the MAS meta-models, on which the methodologies are based. Then
the designers have to select the elements that compose the meta-model of the MAS
they will build. The availability of the MAS meta-model will help them both at a logi-
cal and practical level. This will first be useful in the method fragment selection phase
(avoiding the selection of methods referring different elements) and secondly, the
same fact of clearly declaring the structure of the system will enable the CASE tools to
check for model coherence and find parts not completely defined. Once the methodol-
ogy is composed the designers will perform the established process obtaining a model
of the system - an instantiation of the MAS meta-model – that solves their problem.

Bearing in mind the above described composition process centred on the MAS
meta-model, the main scope of this work is two-fold: (i) to analyze the MAS meta-
models of three existing design methodologies - ADELFE, Gaia and PASSI - in order
to support what has been asserted above; (ii) to design an unifying MAS meta-model,
obtained by merging the most interesting aspects of each meta-model, with the aim of
making a significant step towards the definition of a unique omni-comprehensive MAS
meta-model.

We would like to emphasize that despite the fact that the choice of the three meth-
odologies was a logic consequence of the people involved in writing the paper, we
think that all in all the heterogeneousness of the three methodologies allows us to draw
interesting remarks.

2. ADELFE Meta-Model

ADELFE2 is a methodology devoted to software engineering of adaptive multi-agent
systems [2], [1]. Adaptive software is used in situations in which the environment is
unpredictable or the system is open.. To solve these problems ADELFE guarantees
that the software is developed according to the AMAS (Adaptive Multi-Agent System)
theory [3].

According to this theory, building a system which realises the right desired global
function (which is functionnally adequate) is achieved by designing agents with a
cooperation-driven social attitude. Agents composing an AMAS are cooperative ones.
They ignore the global function of the system, only pursue a local goal and try to al-
ways keep cooperative relations with one another.

The MAS meta-model adopted for ADELFE (cf. Figure 1) is explained by the fea-
tures such a cooperative agent possesses. Its lifecycle is a classical one; it consists in
having perceptions, taking decisions and then doing actions (perceive-decide-act).

Besides local cooperation rules are enabling it to detect and solve Non Cooperative
Situations (NCS). These NCS are cooperation failures (e.g., cooperation protocol not
obeyed, unpredictable situation…) that are, from its point of view, inconsistent with its

2 ADELFE is a French acronym for “Atelier de Développement de Logiciels à Fonctionnalité

Emergente”. It was a French RNTL-funded project (2000-2003) which partners were:
ARTAL Technologies (http://www.artal.fr) and TNI-Valiosys (http://www.tni-valiosys.com)
from industry and IRIT (http://www.irit.fr/SMAC) and L3I (http://www-l3i.univ-lr.fr) from
academia. See http://www.irit.fr/ADELFE

cooperative social attitude. Different kinds of such failures can be detected according
to the context of the concerned application, such as Incomprehension (an agent does
not understand a perceived signal), Ambiguity (it has several contradictory interpreta-
tions for a perceived signal), Incompetence (it cannot satisfy the request of another
one), Unproductiveness (it receives an already known piece of information or some
information that leads to no reasoning for it), Concurrency (several agents want to
access an exclusive resource), Conflict (several agents want to realise the same activ-
ity) or Uselessness (an agent may make an action that is not beneficial, according to its
beliefs, to other agents). When detecting a NCS, an agent does all it is able to do to
solve it to stay cooperative for others. For example, faced up with an incomprehension
situation, it does not ignore the message but will transmit it to agents that seem (from
its point of view) relevant to deal with it.

Figure 1 – The Multi-Agent System Meta-Model Adopted in ADELFE

An agent possesses world representations that are beliefs concerning other agents,
the physical environment or the agent itself. These representations are used by the
agent to determine its behaviour. If an agent has representations that may evolve (e.g.,
a semantic network), these representations can be expressed using a multi-agent sys-
tem. A representation can be shared by different agents.

An agent is able to communicate with other agents or its environment. This com-
munication can be done in a direct manner (by exchanging messages) or an indirect

one (through the environment). Tools that enable an agent to communicate are interac-
tion languages. When an agent uses a direct communication through messages ex-
changes, AIPs may also be used to express the communication pattern between agents.

For an agent, an action is a means to act on the environment during its action phase.
Data (e.g., a move length or the maximum size for a message) or something the agent
can perform (e.g., to move or to send a message, FIPA’s ACL) may represent an ac-
tion.

An agent can have perceptions which are means to receive information from its
physical or social (other agents) environment. Perceptions and actions are also two
kinds of interactions.

Aptitudes show the ability of an agent to reason both about knowledge and beliefs it
owns. For instance, an aptitude of a software agent can be expressed by an inference
engine on a base of rules or any other processing on perceptions and world representa-
tions. Aptitudes can also be expressed using data, e.g. an integer value which repre-
sents the exploration depth of a planning tree.

An agent owns some skills that are specific knowledge that enable it to realise its
own partial function. For instance, a skill may be a simple datum which is useful to act
on the world (e.g., an integer distance which represents the minimal distance a robot
has to respect to avoid obstacles) or may be more complex when expressing a reason-
ing that the agent makes during its decision phase (e.g., a reasoning to avoid obsta-
cles). If they are complex and able to evolve, skills may also be implemented by MAS.

An agent may possess some characteristics which are its intrinsic or physical proper-
ties. It may be, for instance, the size of an agent or the number of legs of a robot-like
or ant-like agent. A characteristic may also be something the agent can perform to
modify or update one of its properties; for example, if the agent is an ant, enabling it to
modify its number of legs.

3. Gaia Meta-Model

The first version of the Gaia methodology was designed to handle small-scale, closed
agent-based systems [15]. Consequently, it modelled agents, roles, interactions, but
missed in modelling explicitly the social aspects of a multiagent system. The official
extension of Gaia extends Gaia based on the key consideration that an organization is
more than simply a collection of roles and agents [16]. Therefore the main difference
is that it has been designed in order to explicitly model and represent the social aspects
of open agent systems, with particular attention to the social goals, social tasks or
organizational rules. This is quite evident from the MAS meta-model (see Figure 2):
the methodology is focused on the organizational structure of the system and all other
concepts – agents, roles, services interactions – turn around the concept of organiza-
tion and are modelled in order to better specify the relationship between the different
entities in the context of a specific organization.

Having a deeper look at the MAS meta-model for the extended version of Gaia we
notice that the basic building blocks of the former version of Gaia – namely agents,
roles, activities, services, and protocols – are still present. In particular: an agent is an
entity that plays one or more roles; a role is a specific behaviour to be played by an

agent, defined in terms of permission, responsibilities, and activities, and of its interac-
tions with other roles; an agent plays a role by actualizing the behaviour in terms of
services to be activated and de-activated in dependence of specific pre- and post-
conditions.

The extended version of Gaia starts from the above basic concepts and enriches
them by putting them in the context of a specific environment and of a specific organi-
zation.

LivenessProperty SafetyProperty

SafetyRule LivenessRule

OrganizationalStructure

Environment

Action
type

Activity

Resource
name
description

0..*

1

0..*

1

*

1

+permitted action*

1

Responsibility

OrganizationalRule

Protocol
name
initiator
partner
inputs
outputs
description

Comm unication

0..*0..*

observes

1

1..*

1

1..*

Organization
control regime
topology

collaborates/interacts

**

0..*0..*

observes

Role

1..*1..*

0..* 10..* 1acts on/interacts with

1..*

1

1..*

1
has

0..*

*

0..*

*

observes

*1
+ini tiator/participant

*1

Service
inputs
outputs
pre-conditions
post-conditions

AgentType
collaborates

*

1

+member
*

1

...

1

...

1

plays

1..* 11..* 1

provides

Permission

Figure 2 – The Multi-Agent System Meta-Model Adopted in Gaia

We emphasize Gaia does not deal with the requirements capture phase, and consid-
ers the requirements statement simply as an input for the methodology. However, the
environment in which a multiagent system is immersed is elected to a primary analysis
and design abstraction in order to promote a clear understanding of the overall system.
The environment abstraction explicitly specifies all the entities and resources a multi-
agent system may interact with, restricting the interactions by means of the permitted
actions. Thus, to some extent, the explicit representation of the environmental re-

sources that can be manipulated by agents can be considered as a reference to the
problem domain.

The explicit representation of an agent organization and the central role of organiza-
tional concepts come into play with the abstractions of organisational rules and organ-
isational structures.

Organisational rules have the scope of specifying some constraints that the organi-
sation has to observe. They may be global, affecting the behaviour of the society as a
whole, or concerning only specific roles or protocols. Organisation structure on the
other hand aims at making the overall architecture of the system, that is the position of
each role in the organisation and its relationship with other roles, explicit.

Organizational rules and organizational structures are strictly related, in that organ-
izational rules may help designers in the identification of the organizational structures
that more naturally suit these rules. Therefore, in the extended version of Gaia, the
organizational structure is not implicitly defined via the role model, instead the identi-
fication of the roles is explicitly derived from an analysis of the chosen organizational
structure. As a consequence the role model and the related interaction model will be
completely defined in the design phase when an accurate identification of the organ-
izational structure will take place.

4. PASSI Meta-Model

System meta-models traditionally refer to two different domains: the problem domain
(where the requirements are captured) and the solution domain (where the imple-
mented system will be deployed). In conceiving the PASSI [6] MAS meta-model (see
Figure 3) we found that this duality does not properly reflect the needs of an agent
approach and therefore in our meta-model we introduce the agency domain. It repre-
sents the transition from problem-related concepts to the corresponding agent solution
(that is not at an implementation level but it is still a logical abstraction). In this (agent)
domain we will design all the agent-related elements like roles, communications, and
the same agents, in order to define the solution to the requirements drawn in the prob-
lem domain. Since we decided to implement our solution with a FIPA-based infra-
structure, we do not have any agent-oriented language that can be used to code the
system but we map our choices to an object-oriented implementation level. In PASSI
we do not think this is a limit because this presents several advantages, in fact the
agent paradigm is used where it is more profitable: providing an abstraction level that
could enable a simpler solution where classical software engineering concepts like
decoupling, information hiding and responsibility division among components are
naturally pursued. Moreover, final code-level implementation is devoted to affordable
object-oriented languages that can be managed by several already skilled programmers
and can be easily tested referring to a broad existing experience and a huge literature.

In the PASSI MAS meta-model (Figure 3), the Problem Domain deals with the
user's problem in terms of scenarios, requirements, ontology and resources; scenarios
describe a sequence of interactions among actors and the system. Requirements are
represented with conventional use case diagrams. There is a strong point behind these
choices: a lot of highly skilled designers are already present in different companies and

can be more easily converted to the use of an agent-oriented approach if they are al-
ready confident with some of the key concepts used within it. Analysis related issues
(like requirements and scenarios) being situated in the highest abstraction phase are
strategic in enabling this skill reuse and allow a smooth entering in the new paradigm.

Ontological description of the domain is composed of concepts (categories of the
domain), actions (performed in the domain and effecting the status of concepts) and
predicates (asserting something about a portion of the domain elements). This repre-
sents the domain in a way that is substantially richer than the classic structural repre-
sentations produced in the object-oriented analysis phase. As an instance, we can con-
sider ontologies devoted to reasoning on strategies or problem solving methods whose
essence is very difficultly captured in object-oriented structures [4].

Resources are the last element of the problem domain. They can be ac-
cessed/shared/manipulated by agents. A resource could be a repository of data (like a
relational database), an image/video or also a good to be sold/bought. We prefer to
expressly model them since goals of most systems are related to using and capitalizing
available resources.

The Agency Domain contains the elements of the agent-based solution. None of
these elements is directly implemented; they are converted to the correspondent object-
oriented entity that constitutes the real code-level implementation. The concept of
agent is the real centre of this part of the model; each agent in PASSI is responsible for
realizing some functionalities descending from one or more requirements. The direct
link between a requirement and the responsible agent is one of the strategic decisions
taken when conceiving PASSI. Sometimes an agent has also access to available re-
sources. This could happen because it accesses the corresponding information (for
example stored in a DB) or it can perceive it using its sensors (like in the case of em-
bodied robotic agents sensing the environment). Each agent during its life plays some
roles; that are portions of the agent social behaviour characterized by some specificity
such as a goal, or providing a functionality/service.

From this definition easily descends that roles could use communications in order to
realize their relationships or portions of behaviour (called tasks) to actuate the role
proclivity. In PASSI, the term task is used with the significance of atomic part of the
overall agent behaviour and, therefore, an agent can accomplishing its duties by differ-
ently composing the set of its own tasks. Tasks cannot be shared among agents, but
their possibilities could be offered by the agent to the society as services (often a ser-
vice is obtained composing more than one task); obviously according to agent auton-
omy, each single agent has the possibility of accepting or refusing to provide a service
if this does not match its personal attitudes and will.

A communication is composed of one or more messages expressed in an encoding
language (e.g. ACL [8]) that is totally transparent to agents. The message content
could be expressed in several different content languages (SL, KIF, RDF, …); we

chose to adopt RDF [9][12] and the PASSI supporting tool (PTK) offers a concrete aid
in generating the RDF code from the designed ontology. Each communication explic-
itly refers to a piece of ontology (in the sense that information exchanged are concepts,
predicates or actions defined in the ontology) and its flow of messages is ruled by an
interaction protocol (AIP) that defines which communicative acts (the predefined se-

mantic of the message content [14]) may be used in a conversation and in what order
the related messages have to be sent to give the proper meaning to the communication.

Figure 3. The Multi-Agent System Meta-Model Adopted in PASSI

The Implementation Domain describes the structure of the code solution in the cho-
sen FIPA-compliant implementation platforms (like FIPA-OS or JADE) and it is es-
sentially composed of three elements: (i) the FIPA-Platform Agent that represents the
implementation class for the agent entity represented in the Agency domain; (ii) the
FIPA-Platform Task that is the implementation structure available for the agent's Task
and, finally, (iii) the Service element that describes a set of functionalities offered by
the agent under a specific name that is registered in the platform service directory and
therefore can be required by other agents to reach their goals. This description is also
useful to ensure the system openness and the reusability of its components.

5. Comparison and Discussion

The three meta-models presented in the previous sections are very different and are a
well representative example of the debate in the agent community about these strategic
issues. In order to catch the essence of each of them we should consider the specific
approach followed by the respective authors and the system structure pursued by them.

The ADELFE meta-model (Figure 1) clearly represents the aim of solving the prob-
lem with an adaptive MAS and therefore a great effort is done in order to study all the
situations that could enable or inhibit the cooperation among agents (cooperative and
not cooperative situations). The cognitive and behavioural representations of the agent
is performed in terms of it aptitudes, skills, characteristics, and representations (social
or physical); agents interact via direct communications or the environment.

The Gaia meta-model (Figure 2) is mostly devoted to represent a MAS system as a
social organization. For this reason, roles more than agents are the central subject of
the model, as the basic building block of agents and with which to make agents inter-
act in an organization. While a Gaia role is characterized by an activity structure and
by internal responsibilities, an organization is characterized by a structure – i.e., a set
of roles interacting with each other according to specific protocols – and by “organiza-
tional responsibilities” or “organizational rules” – i.e., the constraints that the actual
evolution of an organization mush adhere to. Little or no attention is paid to cognitive
and representational issues.

The PASSI meta-model (Figure 3) aims to conciliate classical software engineering
concepts like problem and solution domain with the potentiality of the agent-based
approach while pursuing the goal of a traceability of the solution from requirements to
the related code implementation. Authors clearly points to a FIPA-based implementa-
tion of their systems and therefore communications and implementation issues are
typical of those specifications and most common related platforms (FIPA-OS, JADE).
The convergence between agents and traditional issues of software engineering is
obtained by introducing a new abstraction layer (agency domain) that complements the
well-known problem-solution domain dichotomy.

Generally speaking, it is interesting to note that none of the discussed approaches
explicitly refers to one of specific ‘classical’ agent architecture (like BDI or purely
reactive agents) but these are seen as some kind of low level architectures that can be
adopted during the MAS implementation. Only PASSI partially limits this range by
referring to FIPA-compliant systems but this does not seem to be a real constraint
since such systems have been used to implement all of the cited architectures.

In the following we will compare these meta-models by looking at some of their
specific aspects; specifically we will consider:

– Agent structure: this means how each of the meta-models represents the agent
and its most common elements (namely roles).

– Agent interactions: agents of different meta-models are supposed to interact us-
ing communications or the environment. Communications are sometimes speci-
fied by attributes like interaction protocols, content language and so on.

– Agent society and organizational structure: the goal of some of these meta-
models is to model a specific society or an organizational infrastructure con-
strained by rules that enforce agents to some collective or individual behaviour.

– Agent implementation: the code-level structure of the agent system.
Each of the cited categories will now be diffusely discussed and this study will be

used to compose a new unifying meta-model that will try later to take the best of the
different approaches.

5.1. Agent Structure

Looking at agent structure and specifically at agent and role definitions in the different
meta-models, we can find that the ADELFE meta-model is quite different from the
others because it tries to constrain the agent behaviour with a cooperative attitude.
Therefore, the ADELFE agent is defined as the composition of aptitudes, skills, char-
acteristics, and representations. But the ADELFE meta-model is not centred on the
role notion because designers have to focus on the ability an agent possesses to act,
detect and solve cooperation failures by observing cooperation rules. Furthermore, if a
designer gives roles to agents by describing a task or protocols he will establish a fixed
organization for these agents. However, a fixed organization in an AMAS is not wel-
comed because this organization must evolve to enable the system adaptation (cf. sec-
tion 5.3).

The PASSI agent is the composition of some roles but each role is defined as the
manifestation of the agent activity in some scenarios, it is associated with one or more
communications and provides some services composing the capabilities offered by the
agent’s tasks (elementary agent behaviours). This structure can be regarded as the
expected consequence of PASSI authors commitment in following the agent specifica-
tions provided by FIPA.

The Gaia agent is defined as a composition of roles. The specification of roles re-
quires identifying the activities for which the role is responsible, including those ac-
tivities that may require interactions with other agents, as well as the internal responsi-
bilities of an agent (i.e., responsibility with regard to those operational parameters of
an application, both internal to the role itself or external to it, for which the role is
personally responsible). Once the abstract concept of role is translated into an actual
agent, activities and responsibilities translate into a set of services and a set of prag-
matic activation and de-activation rules.

Goal and plan are other elements that should be considered in discussing the agent
structure. None of the considered methodologies decidedly deal with them that are
very important in other approaches (for instance goals are at the base of requirement
analysis in the Tropos [4] methodology). In ADELFE, the notion of goal is only used
to determine skills, but is not defined in a formal context. In the same way, plans are
not modelled because usually, in complex and open applications, designers do not
know plans. A plan will be built at runtime by the global system. However, if design-
ers do know a plan, they can manage it by defining appropriate aptitudes. In Gaia, the
concept of “goal” is implicit in roles, because a role in an organization (and thus the
agent in charge of playing such a role) is by definition identified to achieve some spe-
cific application sub-goals. Plans play no explicit role in Gaia, although one can some-
how consider that the activities of a role may include some sort of planning activities.
In PASSI, goals are considered as non functional requirements and they are attached to

agents according to their duties. As an example we can consider response or computa-
tional time constraints for agents operating in real-time contexts like robotics. They are
usually described in the requirement analysis documentation in form of text. As re-
gards agents’ plans, they are not seen as a structural element of the PASSI meta-
model, and they are usually modelled in a near algorithmic form (activity diagrams
used as flow charts) during the Task Specification phase.

5.2. Agent Interaction Capabilities

In almost all the agent-based approaches, agents can interact with other agents or with
the physical environment. About that, ADELFE, Gaia and PASSI are quite similar
because in all of them agents are supposed to interact with others using communica-
tions ruled by some kind of interaction protocol (AIP) that could also ensure some
level of interoperability among agents designed with different methodologies if they
are all FIPA-compliant.

The most complete approach comes from ADELFE in which an agent can interact
with other agents through direct communications but also in an indirect manner using
the environment. An agent can perceive its environment and operate on it with its
actions. Furthermore, ontologies have not to be modelled in ADELFE because if
agents have to adapt themselves to their environment they are also able to adapt to the
other agents. This adaptation can lead agents to learn to understand each other. For
instance, if an agent does not understand a request made by another one, the former
has to detect a NCS and solve it. May be it will be able to learn what the other wanted
to say or it will find another manner to help it (e.g., by relaxing the request to another
judged relevant agent).

In PASSI, agent perceptions (obtained by sensing the environment of by communi-
cating with other agents) are not directly represented but they are shown in form of the
knowledge that the agent acquires from them. Communications are designed as the
composition of several messages according to the interaction rules defined by an AIP
(Agent Interaction Protocol). Each message is purposeful since it expresses the precise
intention specified by its communicative act (speech act theory [14]). In PASSI, com-
municating is a privilege of a role and therefore it significantly concurs in defining the
PASSI concept of role as a communicational role.

In Gaia, communications are related to both AIP and mediated interactions via the
environment. With regard to AIP, Gaia does not enter in details about ontologies and
specific types of ACL messaging schemes: while Gaia developers’ consider these as
necessary concepts, they consider them as not very influential in the analysis and de-
sign processes. With regard to communications mediated by the environment, these are
considered as a sort of side effect – due to the fact that different agents may influence
and perceive overlapping portions of an environment. However, such an issue has
never been analyzed in deep in Gaia.

5.3. Agent Society and Organizational Structure

Societies modelled in ADELFE are open. The society exists only by the representation
an agent possesses about other agents and these representations may change at run-
time. As a consequence the organization between agents is not predefined and fixed
when the system starts and even less at the design stage. This organization can evolve
to make the system adapt. The organization emerges from the evolving interactions
between agents and can be seen by an external observer. The ADELFE agent is de-
signed to cooperate with the others and may change its relationships with them. Agents
have to obey cooperation rules at the (local) micro-level to ensure that the collective
behaviour is coherent at the macro-level. A large part of the ADELFE MAS meta-
model is then devoted to model all the factors of that social attitude but not the society
that the agents could form.

Gaia agent is particularly devoted to the creation of societal organizations, and rec-
ognizes organizations as a primary abstractions to be exploited in MAS analysis and
design. For these reasons, Gaia considers a MAS organization more than a collection
of agents somewhat interacting. Rather, Gaia considers an organization as an entity
having a well-defined structure (the organizational “architecture”) characterizing the
position of each agent (better, of the agents playing specific roles) in it, as well as a set
of “organizational rules”. Organizational rules make explicit the fact that an organiza-
tion as a whole cannot be simply assumed to work well because of the well-defined
behaviour of its individual components. Rather, supra role and supra agent specifica-
tions are required, expressing constraints on the inter-related activities of agents. Shift-
ing to a societal metaphor, one can consider organizational rules as the social laws that
have to drive all interactions in the organization and the evolution of the organization
itself.

The PASSI model represents society aspects by defining services that can be pro-
vided/accessed by agents (specifically by some of their roles) and their participation in
scenarios where they are supposed to interact via the already discussed communica-
tions. An agent is also supposed to have the availability of some resources that are
explicitly modelled in order to identify its relevance for the remaining part of the soci-
ety.

5.4. Agent Implementation

Even if the graphical modelling tool used within the ADELFE methodology (Open-
Tool) generates code skeletons, the problem of the system implementation is not
treated yet and no platform is imposed.

Gaia totally abstracts from implementation tools. The key point is that – in the Gaia
developers’ intentions – the Gaia design specifications should be abstract enough that
they could be used as guidelines to implement agents independently of the specific
technology adopted.

In PASSI, a direct map exists among the most important elements of the model and
their implementation; this is largely supported by a dedicated design tool (PTK, PASSI

ToolKit) and the pattern reuse approach that is widely applied in the PASSI methodol-
ogy. Each agent is coded using the base agent class of the selected implementation
(FIPA-compliant) platform and it contains the tasks that are used by roles. A role has
not a direct code level implementation since it is seen as an agent society domain ele-
ment with only a virtual (not tangible) presence in the code. The service is described in
a form that is suitable to be introduced in the deployment platform service directory in
order to enable agents’ collaborations.

6. Towards a Unifying Meta-Model

Figure 4 - A Unifying MAS Meta-Model - The new MAS meta-model is composed by

merging the most significant contributions of ADELFE, Gaia and PASSI.

After having analyzed the different MAS meta-models of ADELFE, Gaia and PASSI,
we think that each of them has some very interesting features, but these are mainly
located in different contexts (as discussed in section 5). This consideration brought us
to design a new MAS meta-model that, including the most interesting aspects of each
of the studied ones, could result in some kind of improvement to the state-of-the-art in
this topic.

This model is presented in Figure 4 and we can see that it is quite a huge model.
The fundamental choice that justifies it, is that we aim to create societies without

(ADELFE) or with predefined organisations, in accordance with the growing interest
for open systems in which an organization cannot always be given during the design
phase. To achieve this result we enriched the generic agent with all the properties an
agent may have, being cooperative or not. Furthermore, this generic agent is composed
of Gaia-like roles complemented by some PASSI features (tasks and a FIPA-compliant
communication structure). This generic agent has two choices: belonging to an organi-
sation or following cooperation rules (due to some lack of space in the figure above,
inherited NCS such as incomprehension, uselessness… have not been explicitly men-
tioned, see the ADELFE meta-model in Figure 1). Agent are implemented (at code
level) in the PASSI way. The proposed meta-model is also characterized by the possi-
bility of identifying in it the three domains (problem, agency, solution) discussed in the
PASSI approach.

From the experience of merging our three models we learnt that their composition
adds some significant improvements to the new structure since they complement each
other in several aspects, for example the ADELFE representation that the agent has of
its environment, the Gaia environment and the PASSI ontology, naturally relates by
representing the fact that an agent has a representation (possibly affected by errors or
uncertainty) of the environment expressed in terms of an ontological model of it.

After identifying this extensive MAS meta-model the following natural step would
be to define a methodology for designing systems according to it. Although we will
move in this direction, we fear that probably such a great model could need a design
methodology that is composed of too many activities to be really profitable. It is pre-
sumable that while several different methodologies could cover different parts of this
model (e.g., some will produce cooperative agents while some others non cooperative
ones), the presented model could be regarded as an unifying framework for the sys-
tems produced with different approaches thus enabling their interaction and providing
a substantial step in the direction of a unique omni-comprehensive MAS meta-model.

7. Conclusion

A great number of agent-oriented methodologies exist nowadays; some are dealing
with specific kinds of agents or multi-agent systems, like, for instance, the three ones
that are depicted in this paper. ADELFE is devoted to cooperative agents and adaptive
MAS, while Gaia aims more at creating social organisations and PASSI, the more
general one, considers the whole life-cycle from the problem domain to the agent-
based solution and the final level code implementation but limits the scope to FIPA-
compliant systems. These differences are reflected by the meta-models elaborated by
respecting authors to express the concepts used in the design activities and the result-
ing systems related to these three methodologies.

In this paper, these meta-models have been compared in order to begin a unification
work that would be beneficial to the agent-oriented engineering domain. It has then
appeared that all of the three models share common concepts such as the agent and
interaction protocols ones while other elements are present only in some of them: this
is the case of ADELFE and Gaia that share the communication and environment no-
tions, and Gaia and PASSI that have notions like roles and services in common. Some

concepts are only appearing in one of the three meta-models, for instance, responsibili-
ties in Gaia, ontology in PASSI or representations (of others) in ADELFE. Putting
these different meta-models together has enabled enriching them mutually as well as
unifying the different used concepts. This preliminary unification has led methodolo-
gies authors to revise their respective meta-models to make choices and concessions to
present the merged meta-model in Figure 4. Furthermore, we are sure that this unifica-
tion would be useful to build tools in the OMG’s MDA [10] spirit in order to auto-
matically transform a meta-model into a model depending on a target platform.

This unification problem leads us to some interesting questioning that could repre-
sent (our) future works:

– Is it possible to identify a meta-model from which all the meta-models used in
the multi-agent community could be derived? For instance, this latter could be
defined from an extension of this unification work as well as FIPA Modelling
TC3 standardisation activities.

– What description level has to be reached in the meta-model? For instance, skills
and aptitudes in ADELFE are certainly used to implement the role notion of
Gaia or PASSI.

– How may a designer choose meta-model elements he is interested in? What
kind of tools can we provide him to ease his choices?

References

[1] Bergenti F., Gleizes M-P., and Zambonelli F., Methodologies and Software Engineering
for Agent Systems, Editions Kluwer to appear in 2004.

[2] Bernon C., Camps V., Gleizes M-P., and Picard G., Tools for Self-Organizing Applica-
tions Engineering, In Di Marzo Serugendo G., Karageorgos A., Rana O.F., Zambonelli
F., eds. First International Workshop on Engineering Self-Organising Applications
(ESOA), Melbourne, Australia, July 2003, LNCS 2977, Springer Verlag publ., 2004.

[3] Capera D., Georgé J-P., Gleizes M-P., and Glize P., The AMAS Theory for Complex
Problem Solving Based on Self-organizing Cooperative Agents – In Proc. of the 1st Inter-
national Workshop on Theory And Practice of Open Computational Systems
(TAPOCS03@WETICE 2003), Linz - Austria, June 2003.

[4] Castro J., Kolp M., and J. Mylopoulos J., Towards Requirements-Driven Information Sys-
tems Engineering: The Tropos Project. Information Systems, Elsevier, Amsterdam, The
Netherlands, 2002.

[5] Chandrasekaran B., Josephson J. R., and Benjamins V. R., What are Ontologies, and why
do we Need Them? IEEE Intelligent Systems, Jan/Feb 1999.

[6] Cossentino M., Different Perspectives in Designing Multi-Agent System, AgeS’02 (Agent
Technology and Software Engineering) Workshop at NodE’02, Erfurt, Germany, October
2002.

[7] Cossentino M., and L. Sabatucci L., Agent System Implementation in “Agent-Based
Manufacturing and Control Systems: New Agile Manufacturing Solutions for Achieving
Peak Performance”. M. Paolucci, R. Sacile Editors. CRC Press. ISBN: 1574443364.
April 2004.

3 http://www.fipa.org/activities/modeling.html

[8] FIPA ACL Message Structure Specification. FIPA document n. SC00061G. Available
online at http://www.fipa.org/specs/fipa00061/SC00061G.html

[9] FIPA RDF Content Language Specification. Foundation for Intelligent Physical Agents,
Document FIPA XC00011B (2001/08/10). http://www.fipa.org/specs/ fi-
pa00011/XC00011B.html

[10] Kleppe A., Warmer J, and Bast W., MDA Explained: The Model Driven Architecture :
Practice and Promise, Addison-Wesley, Object Technology Series, ISBN 032119442-X,
2003.

[11] Kruchten P., The Rational Unified Process: An Introduction, Addison Wesley, ISBN0-
201-60459-0.

[12] Resource Description Framework (RDF) Model and Syntax Specification. W3C Recom-
mendation. 22-02-1999. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[13] Saeki M., Software Specification & Design Methods and Method Engineering. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 1994.

[14] Searle, J.R., Speech Acts. Cambridge University Press, 1969.
[15] Wooldridge M., Jennings N.R., and Kinny D., A Methodology for Agent-Oriented

Analysis and Design, In Proceedings of the 3rd International Conference on Autonomous
Agents (Agents 99), pp 69-76, Seattle, WA, May 1999.

[16] Zambonelli F. Jennings N., and Wooldridge M., Developing Multiagent Systems: the
Gaia Methodology, ACM Transactions on Software Engineering and Methodology,
12(3):417-470, July 2003.

[17] Zambonelli F., and Van Dyke Parunak H., Sign of a Revolution in Computer Science and
Software Engineering. 3rd International Workshop on Engineering Societies in the
Agents' World. Sept. 2002, LNAI.

