
An Expert System for the Design of Agents

Massimo Cossentino
SET - Université de Technologie Belfort-Montbéliard

Belfort cedex, France,
also with ICAR, Consiglio Nazionale delle Ricerche

Palermo, Italy
cossentino@pa.icar.cnr.it

Luca Sabatucci,
Valeria Seidita and
Salvatore Gaglio

Dipartimento di Ingegneria Informatica
University of Palermo, Italy

sabatucci,seidita@csai.unipa.it
gaglio@unipa.it

Abstract

The growing interest for the design and development of
multi-agent systems has brought to the creation of a specific
research area called Agent-Oriented Software Engineering
(AOSE), specifically conceived for the development of com-
plex systems. The development of such systems needs the
support of appropriate tools that could help the designer in
producing the design artefacts. We developed a tool called
Metameth that may be used to define a new (agent-oriented)
design process as well as to apply it. In this paper, we de-
scribe only a slice of this complex tool, specifically address-
ing the interaction with human actors (the designers). This
subsystem is conceived as a collaborative multi-agent ex-
pert system, where each agent is capable of reasoning and
adapting itself in order to support the designer in perform-
ing different kinds of design activities, regarding the use of
various notations, and process life-cycles.

1. Introduction

In the last decade the need for a support during the de-
velopment of more and more complex software has been
partially fulfilled by a significant advancement in the ap-
plication of software engineering. Moreover, the growing
interest for the design and development of multi-agent sys-
tems, has brought to the creation of a specific branch called
Agent-Oriented Software Engineering (AOSE) [24] [16]
specifically conceived for dealing with the development of
complex systems. Several design methodologies have been
developed in the last years, each one with a specific atten-
tion to some categories of problems, development context
or design approach. A great number of these methodologies
are supported by CASE tools; in a not exhaustive list we can
report Adelfe [5], Desire [1], INGENIAS [20], MaSE [12],

PASSI [9] [7], Prometheus [19], and Tropos [2].
The positive effect of a CASE tool in the design phases is
universally recognized, both in research and in industrial
contexts. However we verified that a CASE tool has also
negative effects on the evolution of a design process. This
because even a small change in a part of of the method-
ology may require a new version of the tool, with a great
effort spent in introducing new functionalities or modifying
the existing ones. In other words, the effort for evolving a
methodology is not proportional to the cost for modifying
the correspondent tool. This is a real problem, especially in
the research field, where the natural inclination towards ex-
perimentation and development of new ideas are hindered
by the complexity of updating the software to new require-
ments.

We faced this problem by using the principles of Sit-
uational Method Engineering (SME) in order to find the
proper way for building a new Software Engineering Pro-
cess (SEP) 1; in other words we aim at defining a Process
for SEP Definition (PSEPD) with the specific goal of sup-
porting the design of multi-agent systems.

In this paper we present the cooperation between the hu-
man designer and a part of the multi-agent system that we
used to realize MetaMeth, the tool we developed in order
to support our theories about Situational Method Engineer-
ing. The tool offers two main features: i) supporting the
construction of a new process, and ii) supporting its enact-
ment. Presenting the details of Metameth would require a
lot of space, and for the sake of clarity, in this paper we
only briefly introduce it; besides we prefer focusing the dis-
cussion on the subsystem devoted to provide the designer
with a useful support features like automatic compilation of
some artefacts, validation of the design and syntax checks.
This multi-agent system is a collaborative expert system,

1other authors prefer terms like methodology, design process or simply
process, in our work we use all of them as synonymous

capable of reasoning and adapting itself to the requirements
coming from the new process definition phase; more in de-
tails, these agents support the designer in different kinds of
activities, they understand different notations, and they can
manage different process life-cycles.

The paper is organized as follows: section 2 describes
our approach to the construction of a new design process,
section 3 presents the MetaMeth tool, and its main func-
tionalities. Section 4, details the implemented expert sys-
tem and the agent society mediating between it and the tool
users and, finally, some conclusions are given in section 5.

2. Building a New Software Engineering Pro-
cess

In our work we have been focussing on the construc-
tion of ad-hoc design processes for developing multi agent
systems. We found very promising the use of Situational
Method Engineering and we are applying it to our research
activity. Situational Method Engineering, provides means
for constructing ad-hoc Software Engineering Processes
(SEP) following an approach based on the reuse of process
components [17] [13] [18] [4].
In Situational Method Engineering, a process is seen as
composed of components (usually called textitmethod frag-
ments or textitchuncks [3] [17]) regarded as elementary
building blocks that can be extracted from existing design
processes (or created from scratch), and then stored in a
repository (sometimes called method base) from which they
can be retrieved (during the Method Fragment Selection ac-
tivity) for reuse in the new process assembly activity.
The approach we adopt for building a new process is re-
ported in figure 1, for space constraints in the following of
this section we will only give a brief description of this pro-
cess, pointing out our attention to the contribution given by
design tools (CAPE/CASE) during the process design activ-
ities; further details can be found in [8] [10]. During Pro-
cess Requirements Analysis the designer (of the new pro-
cess) achieves the necessary inputs for defining some fun-
damental requirements about the new process to be built.
These requirements define the domain of interest this pro-
cess should take into account. For instance, if the problem
to be faced deals with transportation of human beings and
someone in the development group has a good experience
in applying formal methods then some safety properties of
the system may be formally validated and the correspond-
ing activities introduced in the new process.
A design process defines when and how someone does
something in order to reach a specific objective [15], so the
process requirements analysis should provide an initial list
of the elements composing the new process. These elements
can be: (i) activities (describing the work to be done), (ii)
process roles (stakeholders performing the work), and (iii)

Figure 1. The adopted Process for Software
Engineering Process Definition (PSEPD)

work products (artefacts resulting from some activities); we
think that these elements can also be profitably used for the
retrieval of method fragments (that will compose the new
process) from a repository as discussed in [21].
This set of elements obviously affects the Process Life Cy-
cle Definition activity where the designer makes decisions
about the process model (or life-cycle) to be adopted in the
new design process.
The Method Fragments Assembly activity results in the new
process. This activity consists in putting together, follow-
ing specific assembly techniques, the selected method frag-
ments according to the structure prescribed by the identified
process life cycle.
The definition of the new design process can be supported
by a CAPE (Computer Aided Process Engineering) tool.
Finally, during the System Design activity, the MAS de-
signer adopts the new process with the aid of a CASE tool
(as it will be clear in the next sections this is instantiated by
the previously cited CAPE tool). After that, the designed
system is deployed and a Results Evaluation activity occurs
in order to measure and evaluate the performance of the new
process. Gathered information can be used in a further iter-
ation of the construction process (if necessary).

3. Supporting the New Process Construction:
The MetaMeth Tool

This section provides an overview of the Metameth tool,
including an explanation of the requirements that lead us
during its development and a brief description of its archi-
tecture. More details can be found in [10]. The development
started with a requirement elicitation phase, driven by our
previous experiences with the production and use of a cou-
ple of other tools for the PASSI design process. The first

Method
Engineer

Designer

MMM
Metamodel

Editor
Protegè)

Rule
Editor

Workflow
Editor

(JaWE)

Expert
System
(Jess)

Workflow
Engine
(Jade)

Knowledge

Base

UML Editor
(Eclipse)

PROCESS
DEFINITION

XPDL

PROCESS
EXECUTION

Figure 2. The architecture of MetaMeth

one was the PASSI ToolKit (PTK), a plug-in for Rational
Rose, which introduced several semantic checks on some
aspects of the produced diagrams, the automatic composi-
tion of several artefacts, and the support of a design pattern
repository. PTK has also been enriched with a code gen-
eration algorithm based on a multi-step transformation pro-
cess.
The main limit of PTK is due to the direct integration of
design rules in the source code, that led to a complex ar-
chitecture, very difficult to be modified; as a consequence,
while the PASSI process was evolving with improvements
and new activities, the tool could not be easily updated.
The second experience in developing design tools was
APTK (Agile PASSI Toolkit) [11], that is an add-in of
a commercial design tool (Metaedit+ by Metacase [22]).
APTK offers several features to the designer such as the au-
tomatic composition of some diagrams and patterns reuse
support. The development of such a tool resulted in an in-
teresting experiment, but with a high cost in terms of ef-
fort. The main lesson we learned from these experiences
is the importance of separating the internal semantics of a
methodology, from the graphic notation used to express it:
a diagram is just a representation of the model according to
some notation, not the model itself.
One of the major problems in applying the approach dis-

cussed in section 2, consists in ensuring the availability of
adequate CAPE/CAME tools (for supporting the new pro-
cess construction), and the development of a customised
CASE tool for each new methodology.
The strategy we adopted for reducing the complexity of
such a tool was to use a workflow-based approach as a core
for process definition and execution: the employment of
a couple of open source tools (JaWE and Shark by Enhy-
dra [23]) provided several basic functionalities thus reduc-
ing the total required effort.

Basically, MetaMeth is structured in two macro-areas
(Figure 2): process definition (corresponding to the func-
tionalities offered by a CAPE tool) and process execution

Figure 3. A screenshot of the JaWE tool used
to describe a portion of a process.

(corresponding to the application context of a CASE tool);
these may be considered two separate systems able to inter-
act because of the adoption of a common exchange data for-
mat (XPDL, the workflow specification language adopted
by WFMC [6]).

The first system, concerning process definition (shown in
figure 2) was mainly built over the JaWE component. The
method engineer (the stakeholder devoted to construct the
new process) is the main actor involved in working with this
tool; he uses a graphical interface (see an example in figure
3) for defining the new process workflow, and for specify-
ing additional information for each activity, such as the in-
volved stakeholder and the user agent that will be responsi-
ble to manage it. Other useful functionalities offered by the
Process Definition area are: i) ontology editor (here we use
an existing tool: Protegé) and ii) rule editor. Together they
enable the definition of ad-hoc procedures that will support
the designer activities (as discussed in section 4).

The process execution part of the Metameth architecture
(shown in Figure 2) is based on Shark [23], a workflow en-
gine, that orchestrates the different design activities thus
allowing their distribution and asynchronous collaborative
execution. The global architecture of the process execution
was conceived as a multi-agent system, where all the indi-
vidual agents share a common knowledge about the object
of the designer work (changing at run-time). Each designer
involved in the project is essentially supported by a user-
agent, which takes care of providing a set of functionali-
ties conceived to support his activity. These functionalities
are committed to a society of Activity Agents. A particular
kind of Activity Agent is responsible for interacting with
some external editors that are used by the designer to model
the system. Actually, we have created a specific agent that
works as an IBM Eclipse plug-in and supports the design of
UML and PASSI-specific diagrams.

4. An Expert System for Supporting Design
Process Activities

In this section we detail the part of MetaMeth conceived
for supporting an intelligent interaction with the designer
during the enactment of the process (CASE tool).

4.1. Motivation

While studying the intelligent part of our tool we focused
our attention on the actions a designer performs while us-
ing a CASE tool in order to extract the sub-set of them that
could be automated or anyway supported by the tool; results
of this study are summarized in Table 1 [10]. The first cate-
gory (GUI Actions) collects all the actions performed by the
tool in order to support the design work of the user. These
for instance include displaying forms where the user can in-
troduce details of some elements; these forms can be com-
posed of free text fields as well as lists of elements that have
been already introduced in the design and can be reused in
the specific context.
Just to provide an example, let us consider two PASSI ac-
tivities [7]: Agent Identification and Roles Identification.
Agents’ names in the Role Identification activity (a se-
quence diagram used to represent agents’ interactions) de-
pend on those defined during the Agent Identification activ-
ity (delivering a use case diagram used to define agents and
assign responsibilities to them). This kind of link between
the two different activities of the design process can be sup-
ported by the automatic compilation of a list of elements
from which the designer may select the items he wants to
introduce in the current work.

Table 1. An overview of the operations that
can be supported by a tool during the design
process.

Action Type of support
GUI Action The tool interacts with the user (using

a GUI) in order to support him in some
operation.

WP Composi-
tion

The tool (partially) creates/updates a
work product on the basis of the already
introduced design information.

Rule Check The tool grants a semantic/syntax check
of the work product, alerting the de-
signer to minor problems (warnings),
major problems or conflicts (errors),
and if possible, suggesting a solution.

Automatic composition of (part of) a work product is an-

Activity agent

Controller agent

Shark

ProcessModel agent

Jess

Editor agent

Eclipse

Designer

Project
Manager

Figure 4. The agent society cooperating with
the Metameth users.

other way for a tool to support the design and development
phases (WP Composition actions of Table 1). This scenario
occurs, for instance, when two diagrams represent different
views reporting the same information (from different points
of view or with different levels of abstraction). Another ap-
plication of the WP composition consists in the (automatic)
production of documentation and source code for the sys-
tem (since both documentation and source code are work
products). Semantics that is behind diagrams may sug-
gest an example for the third category of tool actions (Rule
Check): referring again to the Agent Identification activity,
we can say that the presence of a relationship between use
cases assigned to different agents shows that those agents
shall probably communicate (for instance for exchanging
a service); if none interaction is depicted in the following
Role Identification sequence diagrams, the system alerts the
user to a possible error.

4.2. Expert System Overview

Process enactment is supported by an agent society com-
posed of four basic types of agents (shown in Figure 4):

• A Controller agent

• A community of Activity agents

• A ProcessModel agent

• An Editor agent

The Controller agent is responsible for the execution of
the process: it activates the Enhydra Shark workflow engine
and coordinates the execution of all the activities within the

instantiated process. The description of the process is pro-
vided to this agent by the process definition module in form
of a XPDL file. The Controller agent interacts with the
Project Manager that is in charge for assigning designers’
roles (analyst, system architect,. . .) and for assigning rights
to components of the design team. After this phase the Con-
troller agent instantiates the design process. During the ex-
ecution of the design process, the Project Manager can use
this agent to access several information (list of completed
activities, running activities and so on) and if the case he
can also stop or terminate the process execution.

The ProcessModel agent is aware of the instantiated pro-
cess and is responsible for managing the related design in-
formation. It owns a knowledge base where all the infor-
mation about designed models is maintained, as a set of
facts and rules. These elements are based on an ontology
that describes all the concepts of the design process. On-
tology concepts come from our definition of method frag-
ment [8], and from the description of the multi-agent sys-
tem in terms of its meta-model. As an instance we can
consider the WorkProduct concept that is the result of an
Activity (another concept of the ontology) of the process; a
WorkProduct has a property called WorkProductKind rep-
resenting the specific type of artefact (depending on the spe-
cific process, for example in PASSI we have Agent Identi-
fication, Role Identification and so on). Notation is another
important property associated to a WorkProduct, it is used
to define a graphic representation for the semantics that is
behind an artefact.
The ProcessModel agent has reasoning capabilities (it uses
a Jess module for that) and is able to perform some of the
actions analyzed in the previous subsection (some others
do not need the participation of the expert system to be
realised). Actions performed by this agent are the conse-
quence of the activation of Jess rules as it will be discussed
in the next sub-section.
We can classify these rules according to five categories: i)
validation rules, ii) semantic interpretation rules, iii) auto-
composition rules, iv) update rules and v) import rules.
The first two categories of rules perform the Rule Check ac-
tions discussed in Table 1 while other rules realise the WP
Composition actions of the same Table. The activation of
a rule produces different results on the base of the specific
category; as an instance, validation and semantic interpre-
tation rules produce messages for the user; these can be Er-
rors, Warnings and Messages. Other rules produce internal
events thus triggering the execution of specific actions (such
as a diagram auto-composition).
Errors and Warnings may be generated by syntactic and
semantic validation rules; syntactic errors occur when the
notation of an artefact is not respected (for example, in an
UML class diagram it is not possible to draw a generaliza-
tion relationship between a class and a package). Semantic

Table 2. Rules defined for the two method
fragments (AID and RID) of the PASSI method-
ology reported in the example in sub-section
4.1.

!"! #$! "$! !"!#

#%&'(')*'+,&,'- . / . $

$)*'0& 12 12 1/ $%

34)5-&,(6$-&40*04&5&,'- 7 8. 8. &'

9*:5&4 7 8/ 8. (%

;5<,:5&,'- 7 81 8= ((

!"!#)' $* +* !"#

#$! "$! !"!#

#%&'(')*'+,&,'- / . $

$)*'0& 12 1/ %,

34)5-&,(6$-&40*04&5&,'- 8. 8. &*

9*:5&4 8/ 8. &$

;5<,:5&,'- 81 8= &%

!"!# $* +* !$%

#$! "$!

#%&'(')*'+,&,'- / .

$)*'0& 12 1/

34)5-&,(6$-&40*04&5&,'- 8. 8.

9*:5&4 8/ 8.

;5<,:5&,'- 81 8=

!"!# $* +*

!"! #$! "$!

#%&'(')*'+,&,'- . / .

$)*'0& 12 12 1/

34)5-&,(6$-&40*04&5&,'- 7 8. 8.

9*:5&4 7 8/ 8.

;5<,:5&,'- 7 81 8=

!"!#)' $* +*

coherence regards the elements of the MAS Meta Model of
the methodology; for instance in a Role Identification di-
agram the designer cannot introduce an agent that has not
been defined in the previous Agent Identification activity.
The Activity agent organization is conceived to interact with
the designer by showing messages, proposing choices, and
allowing the user to introduce data. When the Project Man-
ager assigns an activity to a designer, the corresponding Ac-
tivity agent is instantiated by the Controller agent; it moves
to the designer location (if necessary) and then it asks to the
designer if he accepts the new assignment. If the designer
decides to accept, he can interact with the devoted Activity
agent to start the activity and after completing that to mark it
as done. The Activity agent is also responsible for contact-
ing the Editor agent that opens (and manages) the diagram
editor used for performing the activity. The Editor agent
interacts with Eclipse in order to start the right plug-in and
it also provides several user interfaces that realise the Gui
Actions of Table 1. When the designer completes his work
(or anyway saves it) this agent sends information about the
designed artefact to the Activity agent using an XMI file.
The Activity agent translates that to the RDF format (used
in the ProcessModel agent by the ontology and expert sys-
tem) and forwards the new file to the ProcessModel agent
that in this way is updated about last design information.

4.3. Examples of Rules

As already discussed, we classify the rules processed
by our expert system in five categories: i) validation rules,
ii) semantic interpretation rules, iii) auto-composition rules,
iv) update rules and v) import rules.

In the following we will provide two rule examples: one
for syntactic validation and another for semantic interpreta-
tion.
The rule reported below performs a generic syntactic val-
idation check that alerts a designer if he uses an incorrect
element of the notation:

if

1. a notation element (NE) exists

2. and NE is a notation element of NE-T kind

3. and NE belongs to a work product (WP)

4. and WP is of WP-K kind

5. and it does not exist a composition rule MME-NE-Link for WPK
working on NE-T

then

print a syntax error

The error message is shown to the designer because the spe-
cific kind of work product (WP-K) does not allow the pres-
ence of a notation element (of NE-T kind). The following
code shows a portion of the corresponding Jess rule imple-
menting the condition reported at the fifth point of the pre-
vious rule:

(defrule SYNTACTIC-VALIDATION::
not-allowed-notation-element

"Warn if in a Work Product a not allowed
notation element is present"
..........
/* it does not exist a composition rule in
WPK specifying that a notation element
of NE-T kind is allowed*/
(not (MAIN::object
(is-a MMM-ElementNotationElementLink)

(NE-Type ?NE-T)
(MappingRuleOf $? ?WPK $?)

)
)
=> /* print an error message to
the standard error output stream */
(printout t "<Error>" crlf) (printout t "<![CDATA[")
(printout t "Syntax error, ")
(printout t "the work product " ?WP-NAME

" is of kind "
(slot-get (slot-get ?WPK DomainNamespace) Name)
"::" (slot-get ?WPK Name))
(printout t " so it can’t contains " ?NE-T
"::" (slot-get ?NE Name)"]]>" crlf)
(printout t "</Error>" crlf))

This rule, working on generic elements of the ontology
such as WorkProduct and WorkProductKind, can be applied
to any kind of artefact, but it needs a specialization in order
to fit a specific artefact. For instance, in order to create a
validation rule for the Domain Description Diagram (DRD)
of PASSI, it is necessary to add a pattern matching with the
specific diagram kind:

/* WPK is a PASSI::DRD-Diagram kind*/
(test (and
(eq ?WPK-Name "DRD-Diagram")
(eq ?WPK-DN-Name "PASSI")
)
)

In this way it is possible to specify the real nature of an
artefact by creating a binding with a specific validation rule
for a DRD-Diagram of the PASSI methodology.
As anticipated, the second example regards a semantic
interpretation rule; this is devoted to map the concepts
of the adopted notation to those of the MAS meta-model
(and viceversa); for instance let us suppose that in a PASSI
Domain Requirements Description diagram (an use case

diagram used to define system’s requirements) there is a
UML use case named x; the expert system knows, through
the composition rules defined in the ontology for the spe-
cific work product, that a UML use case should be mapped
(in the knowledge base) to a Requirement element of the
PASSI metamodel; the consequence of the corresponding
semantic interpretation rule is therefore that the expert
system instantiates an entity Requirement named x in the
MAS Model.
We will now detail the case of an element that is introduced
for the first time in a specific diagram. The semantic
interpretation rule is the following:

if

1. a work product (WP) exists

2. WP is of kind WP-K

3. NE is of NE-T kind

4. NE-T kind in the context of WP-K is related to a MAS Meta Model
element kind (MMMe-K)

5. a new element (NE) of MMMe-K is inserted in WP

6. NE has name NE-Name

then

instantiate a new MAS Meta Model element of MMM-T kind, with NE-

Name

Looking at the antecedent of this rule it is possible to note its
generality: in fact there is no explicit reference to a specific
diagram; the part of a JESS rule implementing the fourth
item is reported below:

(defrule SEMANTIC-INTERPRETATION::
general-semantic-interpretation-1

(MAIN::object
(is-a MMM-ElementNotationElementLink)

(NE-Type ?NE-T)
(NE-Stereotype ?NE-ST-Rule &:(or

(eq ?NE-ST ?NE-ST-Rule)
(eq ?NE-ST-Rule "Any")
)
)
(MappingRuleOf $? ?WPK $?)
(MMME-Type ?MMME-T)
(MME-DefinedHere ?WPK))
(test (not (eq ?MMME-T nil)))
=>
(printout t "<Message>" crlf)
(printout t "<![CDATA[")
(printout t "The notation Element " ?NE-T

"::" ?NE-Name " has been mapped in the
MAS-Model as " ?MMME-T "::" ?NE-Name "]]>" crlf)
(printout t "</Message>" crlf)
(modify-instance (instance-name ?NE)
(Represented-MMM-Element (make-instance of
?MMME-T (Name ?NE-Name) (MAS-Model ?MM) [map]))))

The previous rule presents a generic structure; in our work
we have defined all of these rules with a generic approach
depending only on the ontological representation of the pro-
cess elements, this is general enough and independent from
the specific design process; as a consequence, our rules can
be applied to every kind of work product in the ontology.
Despite of our efforts, for only a few rules, for instance

some semantic interpretation and auto-composition rules,
we could not establish a totally generic structure; some of
them are too much dependent on the specific design process
and the specific work product to be completely generalized.
These special cases require the introduction of new rules
in the expert system at the time of the introduction of a new
method fragment in the process under construction. Table II
reports the rules we produced for the two method fragments
examined in the two previous examples (Agent Identifica-
tion and Role Identification fragments). It is interesting to
note the presence of several rules for automatically compos-
ing the Agent Identification diagram. This is in fact an use
case diagram reporting (at the beginning) the same informa-
tion of the previous Domain Requirements Description di-
agram. Starting from that, the designer can identify agents
by clustering use cases in packages that will represent each
agent by collecting its responsibilities. Conversely no au-
tomatic composition work is provided for diagrams of the
other method fragment; they are sequence diagrams used
to depict scenarios and no automation is possible for them.
As regards the other types of rules, as it is possible to see,
there is no significant difference in the number of rules de-
fined for the two fragments per category. This happens for
the majority of fragments although there is a loose depen-
dency on the amount of notation elements used in the di-
agram in some cases. Similar results we obtained for the
other method fragments that are not here reported for length
constraints.

5. Conclusions and Future Works

Several tools for supporting the development of a multi-
agent system are discussed in literature, each of them is
usually associated to a specific design methodology and
provides different kinds of functionalities; some of them,
for instance, provide graphical aids, some others verify the
proper use of the notation and/or support the automatic gen-
eration of code. In the past we had some experiences in the
production of similar tools; more specifically we developed
PTk and APTk, respectively supporting the PASSI and Ag-
ile PASSI methodologies.
In this paper we presented a portion of the tool we devel-
oped to support our experiments of methodologies compo-
sition and, more specifically, we here focus our attention
on the cooperation offered by an agent society (also em-
ploying an expert system) to the designer during the appli-
cation of a design process; this system is able to perform
syntactic validation, semantic validation/interpretation and
auto-composition activities on the produced artefacts thus
reducing the design time and lowering the risk of errors.
Besides we also wanted our tool to be general enough for
being applied to every methodology, this requirement was
(almost totally) satisfied by the generality of the rules we

produced for our expert system which knowledge base con-
tains the description of both the used process model and
the designed MAS model. However, some rules (for in-
stance those related to semantic understanding of diagrams)
remain in someway context specific and need a customiza-
tion before being applied in a new diagram. Actually we
are now working to introduce in the Metameth repository
all the fragments discussed in [21]. In the future we will
provide the tool with more features such as the possibility of
interfacing it with an agent-oriented pattern reuse tool that
allows code generation for one of the most diffused agent
development platforms (Jade). The production of an exten-
sive and well-formatted documentation of design artefacts
is also scheduled and will be obtained by adopting a trans-
formational approach implemented by a devoted society of
agents.

References

[1] F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and
J. Treur. DESIRE: Modelling multi-agent systems in a com-
positional formal framework. Int Journal of Cooperative
Information Systems, 6(1):67–94, 1997.

[2] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini. Tropos: An agent-oriented software development
methodology. Autonomous Agent and Multi-Agent Systems
(8), 3:203–236, 2004.

[3] S. Brinkkemper. Method engineering: engineering the in-
formation systems development methods and tools. Infor-
mation and Software Technology, 37(11), 1995.

[4] S. Brinkkemper, R. Welke, and K. Lyytinen. Method Engi-
neering: Principles of Method Construction and Tool Sup-
port. Springer, 1996.

[5] D. Capera, J.-P. George, M.-P. Gleizes, and P. Glize. The
amas theory for complex problem solving based on self-
organizing cooperative agents. In Proc. of the 1st Interna-
tional Workshop on Theory And Practice of Open Compu-
tational Systems (TAPOCS03@WETICE 2003), pages 383–
388, Linz, Austria, June 2003.

[6] T. W. M. Coalition. http://www.wfmc.org/.
[7] M. Cossentino. From requirements to code with the PASSI

methodology. In Agent Oriented Methodologies [14], chap-
ter IV, pages 79–106.

[8] M. Cossentino, S. Gaglio, A. Garro, and V. Seidita. Method
fragments for agent design methodologies: from standardi-
sation to research. International Journal of Agent-Oriented
Software Engineering (IJAOSE), 1(1):91–121, 2007.

[9] M. Cossentino and C. Potts. A case tool supported method-
ology for the design of multi-agent systems. In The 2002
International Conference on Software Engineering Research
and Practice, Las Vegas (NV), USA, June 24-27 2002. ICSE
’98, SERP’02.

[10] M. Cossentino, L. Sabatucci, V. Seidita, and S. Gaglio. An
agent oriented tool for method engineering. Proc. Of the
Fourth European Workshop on Multi-Agent Systems. Lisbon,
Portugal., 2006.

[11] M. Cossentino and V. Seidita. Composition of a New Pro-
cess to Meet Agile Needs Using Method Engineering. Soft-
ware Engineering for Large Multi-Agent Systems, 3:36–51,
2004.

[12] S. A. DeLoach, M. F. Wood, and C. H. Sparkman. Multia-
gent systems engineering. International Journal on Software
Engineering and Knowledge Engineering, 11(3):231–258,
2001.

[13] B. Henderson-Sellers. Method engineering: Theory and
practice. In ISTA, pages 13–23, 2006.

[14] B. Henderson-Sellers and P. Giorgini. Agent Oriented
Methodologies. Idea Group Publishing, Hershey, PA, USA,
June 2005.

[15] I. Jacobson, G. Booch, and J. Rumbaugh. The unified soft-
ware development process. Addison-Wesley Longman Pub-
lishing Co., Inc. Boston, MA, USA, 1999.

[16] N. R. Jennings. Agent-Oriented Software Engineering. In
F. J. Garijo and M. Boman, editors, Proceedings of the
9th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World : Multi-Agent System Engineering
(MAAMAW-99), volume 1647, pages 1–7. Springer-Verlag:
Heidelberg, Germany, 30– 2 1999.

[17] K. Kumar and R. Welke. Methodology engineering: a pro-
posal for situation-specific methodology construction. Chal-
lenges and Strategies for Research in Systems Development,
pages 257–269, 1992.

[18] I. Mirbel and J. Ralyté. Situational method engineering:
combining assembly-based and roadmap-driven approaches.
Requirements Engineering, 11(1):58–78, 2006.

[19] L. Padgham and M. Winikof. Prometheus: A methodology
for developing intelligent agents. In F. Giunchiglia, J. Odell,
and G. Weiss, editors, Agent-Oriented Software Engineering
III, volume 2585 of LNCS, pages 174–185. Springer, 2003.
3rd International Workshop (AOSE 2002), Bologna, Italy,
15 July 2002. Revised Papers and Invited Contributions.

[20] J. Pavòn, J. J. Gòmez-Sanz, and R. Fuentes. The INGENIAS
methodology and tools. In Agent Oriented Methodologies
[14], chapter IX, pages 236–276.

[21] V. Seidita, M. Cossentino, and S. Gaglio. A repository of
fragments for agent systems design. Proc. Of the Workshop
on Objects and Agents (WOA06), 2006.

[22] J.-P. Tolvanen and M. Rossi. Metaedit+: defining and us-
ing domain-specific modeling languages and code genera-
tors. In OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, pages 92–93, New York,
NY, USA, 2003. ACM Press.

[23] T. E. Website. http://www.enhydra.org/.
[24] M. Wooldridge. Agent-based software engineering. IEE

Proceedings Software Engineering, 144(1):26–37, 1997.

