
An Environment Description Language
for Multirobot Simulations

Antonio Chella, Massimo Cossentino, Giuseppe Tomasino

Dip. di Ingegneria Automatica ed Informatica
University of Palermo

Viale delle Scienze, 90128 Palermo, Italy
E-mail: maxco@unipa.it

Abstract

A relevant problem of simulation (but also of real

systems) is the knowledge that robots have of the
environment. Generally this is very poor, or quite lacking,
and the robots have to explore the world around them with
their sensors.

In a simulation process, sensor bearings are
particularly lacking and the knowledge of the environment
should be built using informations obtained in other way.

We have designed an environment description
language for multi-robot agent-based simulators. The result
of our approach is a complete test system for robots that
operate in indoor environments whose behaviors are based
upon agents. The resulting language was called EDL.

1. Introduction

Robotics applications and behaviors are becoming

more and more complex and, as a consequence, their testing
more and more onerous. Examples are in transportation of
things on demand or on schedule in hospitals and
communities, night surveillance tasks in large buldings like
museums, banks, and so on. We could also enumerate all
tasks where the human presence may be dangerous for the
human health, such as chemical or nuclear industrial
process, space experiments, and so on.

In addition, to test cooperative behaviors of multirobot
systems, it is necessary to involve several robots. This kind
of test could be a problem, because each robot is an
expensive resource, and the same robots are shared among
several different projects at the same time.

In such a scenario, simulation has proved very
important to perform initial tests of multi-robot systems.

A relevant role in an intelligent system, and
specifically in a multi-robot system, is played by its
knowledge. The knowledge about the environment is
particularly important because from the environment the
robot receives a lot of perceptions, that it uses to plan its
own actions in order to meet its design objectives. Then a
relevant problem is that the necessary knowledge is initially
very poor, or quite lacking, and the robots have to acquire it
by exploring the world around them. In a real system they
can use their sensors, but in a simulation process sensor

bearings are particularly lacking, and the knowledge should
be built using informations obtained in other way.

In the following sections we present EDL
(Environment Description Language), an environment
description language designed to be used in conjunction
with a multi-robot agent-based simulator. EDL has been
thought to generate indoor environments description in a
very simple way, but it is enough flexible to deal with
complex problems.

Using EDL is possible to simulate the robots learning
about environment in very simple manner, because the user
defined map of these environments, is always available for
the vision agent of the robots, and so it can get which parts
of the map its sensors are “seeing” during the navigation.

2. The language

EDL can describe and represent in a simple manner,

but also with great precision, the features of an indoor
environment. The result is a map that contains the
description of all the elements and can be profitable used in
robot simulations.

The simulation area is contained in a rectangular
motion field, and its dimensions (length and width) are user-
defined. These dimensions are real numbers that refer to a
Cartesian co-ordinates system with its origin point in the
bottom left-hand corner of the map. The user has to specify
the components of the environment, and their specific
attributes; these parameters are real numbers representing
the specific geometric features of each component, for
example its length, its width, and its position referring to a
Cartesian co-ordinates system. All the values are measured
in centimetres.

In EDL the components of the environment are called
members. Members currently supported are:

- Point, representing a point of the plane;
- Corridor, representing a corridor inside the

environment;
- Wall, representing a partition wall;
- Door, representing a passage through a partition wall ;
- Junction, representing corridors crossing;
- Notice, representing a graphical element of the

environment (for example a painting).

To define the structure of the EDL members we
referred to Saphira artifacts geometry [3].

2.1 Point

The point member is used to represent an oriented

point of the Cartesian plane. Its parameters are the values of
abscissa and ordinate in the Cartesian co-ordinates system,
but also its orientation, referring to the global co-ordinates
system. It is the angle (α in fig. 1) formed between the local
co-ordinates system fixed on the point, and the global co-
ordinates system.

Figure 1: orientation of the point

We adopted the oriented point instead of a simple not
oriented point because it can be useful in the description of
the movement of a robot. In fact, in this situation, the target
of the motion is often represented not only by the co-
ordinates but also by the orientation that the robot should
have.

2.2 Corridor

The corridor member is used to represent a corridor of
the environment. Its parameters are the length, the width and
the position of its barycentre. The location of this element
inside the environment is obtained by the specification of
the point P in the middle of the corridor; obviously, it is
oriented in the same direction of its length.

Figure 2: example a corridor

2.3 Wall

The wall member is used to represent a partition wall

or any other not crossable obstacle inside the environment.
Its parameters are the length, and the co-ordinates of the
point P in the middle of the wall. The orientation of P is in
the direction of the length of the wall.

Figure 3: example of a wall

2.4 Door

The door member is used to represent a door, or any

other passage in a partition wall inside the environment. Its
parameters are the width of the passage and the co-ordinates
of the point P in the middle of the door. The element is
oriented along the perpendicular of the width.

Figure 4: example of a door

2.5 Junction
The junction member is used to represent the crossing

between two corridors. When a corridor meets another one,
it is necessary to define some junctions, if is possible for the
robot to pass through corridors crossing. In fact, if we do not
introduce the junction, the robot is obstacled by the
boundary of the corridors because the two corridors are in
superposition between them.

The parameters of this member are its width and the
co-ordinates of the point P in the middle of the junction.
This point is oriented in the crossing direction (orthogonal to
the width of the junction).

Figure 5: example of junction

We can note that in a T junction, it is necessary to

define three members, as showed in figures 5; on the
contrary, if the junction is cross-shaped, it is necessary to
define four members, as showed in fig. 6.

Figure 6: T junction and cross-shaped junction

2.6 Notice

The notice member is used to represent a graphical

information about the neighbouring environment. A robot
can use it to obtain an additional information, that can be of
various kind. For example a notice can be an image that the
vision agents of the robot can use to distinguish the various
rooms of the environment.

The sign can also be thought as a traffic signal,
positioned at a fixed height from the floor.

The information is contained into an image file, that
the robot’s vision agents can obtain and process. The
parameters of the notice member in the EDL language are
the name of the image file, the co-ordinates of the
barycentre, and the height from the floor.

This last choice permits us to extend the two
dimensional representation of the world obtaining a two and
half dimensions model.

2.7 Implementation

To design the EDL language we used an object

oriented approach. The coding phase has been performed in
the C++ language.

Map

Member

Corridor Door Notice Junction Wall

Point

Figure 7: The EDL class diagram

Each element of the language is derived from the class
member (see fig.7 for a class diagram of the language
architecture)

The class member is an abstract class that represent a
generic element of the map. In fact, a specific class has been
defined for each element of the language inheriting it from
the member class.

Discussing the structure of the various member in the
previous sections, we have already seen that all of them use
a ‘point’ element to specify their own position. For this
reason, in fig. 7 we can see that the same members have a
one to one ‘aggregate’ relationship with the ‘point’ class.

The map of the environment is represented through the
‘map’ class that can aggregate more instances of the EDL
members. This aggregation gives place to the collection of
elements that we can find in the environment described by
the map.

The map of an environment is represented in a plain
text file that contains the dimensions of the motion field and
the list of all the members of the map. For each member we
have to specify its characteristic values too.

The member’s list must be write in a prefixed format,
according to the syntax rules that constitute the grammar of
the language.

In fig. 8 we can see the EDL description of the
environment graphically depicted in fig. 9.

We can notice that the grammar of the description is
very simple and, consequently, it can be modified by hand
also in the case of very complex environments

Figure 8: an example of map description text file

This description file is not the file that is really

processed by the simulator. In fact it should be processed by
a language translator module, that produce a new file whose
format is more suitable for the needs of the simulation
program. This new format is characterised by the cfg
extension.

The syntax of this cfg file is designed so that it is very
simple for the map class constructor method to read it and to
build the list of the members. The cfg file is composed by
one row for each member of the map plus one (the first) for

the environment dimensions. Each row contains all the
values of the corresponding member separated by a token .

Figure 9: the map described in the text file of fig.8

Because during its navigation in the real world a robot

can discover the position of the obstacles using its sensors
and it cannot discriminate among all kind of members,

The constructor of the class map, adds an additional
wall to the member’s list. This wall is the border and it is
used to prevent the robot from going out of the map.

3. An example

We applied the EDL language to a multi-robot

simulation software built upon the Ethnos multi-agent
operating system that had been developed for the RoboCup
research project. It implemented a rectangular soccer field
with two goals. We have modified this structure to support
all the environments that can be described with EDL.

Ethnos (Expert Tribe in a Hybrid Network Operative
System, [1, 2]) is a real-time programming environment. It
can be used to support agent-oriented multi-robot systems
and can provide advanced communication capabilities
among different agents (called experts) of the same robot
and among different robots. An expert in Ethnos is a
concurrent agent responsible for a specific deliberative or
reactive behavior. All experts are members of a tribe which
are distributed in separeted villages (network computers)
depending on their computational task.

From the communication perspective, Ethnos supports
and optimises transparent inter-robot information exchange
across different media (cable or wireless); in fact it permits
the communication among different agents, through a public
dashboard and a publish/subscribe method, either in the
same robot or in different robots. From the runtime
perspective it provides support for the real-time execution of
periodic and aperiodic tasks, schedulability analysis, event
handling, and resource allocation and synchronization. From
the software engineering perspective, it provides support for
rapid development, platform independence and software
integration and re-use.

To demonstrate the use of the EDL language together
with the Ethnos simulator we have chose a simple example
in which a team of two robots pursues a single robot playing
the role of the prey [12]. The environment is like a labyrinth,
and it has been built using EDL.

In the following description we will omit the
description of the prey robot that is not very interesting. We
will focus our attention upon the two pursuing robots.

To develop each robot we have used a multi-agent
architecture where each agent was dedicated to a specific
task [11].

Figure 10: the architecture of our example

We have used 6 agents. Five of them are present in

both the robot and the last (the Coach) is supposed to run in
another computer :

• the Vision agent acquires information from
the environment. It access the map and
retrieve data about the elements that are near
to the robot.

• the Prey Identifier agent is responsible for
detecting the prey.

• the Localizer agent retrieve all informations
about the position of the robots of the team.

• the Coach agent is responsible for the
definition of the movement strategy of the
team. At this end, it receives all necessary
data from the Vision agent, the Prey Identifier
agent and the Localizer agent.

• The Pursuer agent defines the path from the
robot to the prey according to the planned
strategy.

• The Player agent generates all movement
commands for the robots simulated motors.

In fig. 10 we can see the relations among the agents

that we have used.
During the simulation process, each robot moves in the

environment. To ‘see’ the world it uses a vision agent.
This agent reads the map and returns what a real robot

would see if it would be in that position (and orientation) in
the real world. This is the only agent in the robot who is able
to acces the map [8].

Obviously the vision agent has to be changed with an
image processing agent that uses a real video acquisition
device, before testing the software in a ‘real’ robot.

In order to better simulate the reality, the robot can
only ‘view’ the objects that are closer to itself, and that are
not covered by other ones. In fact, generally the sensors of a
real robot have natural limits in their range of sight.

To co-ordinate and synchronise the actions of the
pursuing robots, we have defined the Coach agent. It has not
sensors to see the world or the prey and so it receives all the
information from the other agents. From the Vision agent, it
receives information about the portion of the environment
map that each robot can see; from the Localizer agent, it
receives informations about the position of each robot; from
the Prey Identifier agent, it receives informations about the
estimated position of the prey, if one robot can ‘see’ it [6].

By processing these informations, the Coach chooses
the best strategy for the team. One of the options is to
surround the prey with the two robots of the team.
Obviously, if the prey has not been localised yet, a further
exploration of the environment has to be planned.

Because the Coach agent is an high level agent, it
doesn’t communicate directly with the robot team. On the
contrary, it sends the strategy to the Pursuer agent that
implements the directives.

Figure 11: the labyrinth we have used for our example

It plans the paths for the robots of the team [13, 14]. The
result of its elaboration is the path that each robot has to
follow[7]. This information is sent to the Player agent of
each robot that directly controls the movement.

The labyrinth we have used in the example, is
represented in fig. 11.

The following pictures present a sequence of images

captured from the simulator. Note that only a part of the
labyrinth is represented because of the chosen magnification
factor. Two robots pursue a prey. The prey has been
localised and according to its position and the position of the
two robots, the surrounding strategy has been chosen.

Figure 12: A sequence of simulation

In figure 12 it is possible to see how EDL is used to

represent the map of the environment.
Only some elements of the environment are shown.
In fact, the robots know only the part of the map that

they have previously explored or that they have in sight.

The black lines represent the walls of the map. The
prey is the dark robot.

4. Conclusion

Using the EDL language we may build all kinds of

structured environments including corridors, rooms,
partition walls, doors, and so on.

In these hypothesis, it is possible to represent domestic
environments, offices, warehouses, and so on.

This language has been thought to be used in
conjunction with many different multi-robot simulators.

It has proved very useful to support the design of many
different examples during the test of some agent-oriented
design process with UML [4, 5].

We are now developing a fipa-os [9, 10] simulator in
Java that will use EDL to define the map of the simulation
environment.

A possible extension of the EDL towards the
representation of three dimensional environments has been
planned for the very next future.

5. Acknowledgments

The authors would like to thank the AIR lab of the

Polytechnic of Milan, and particularly A. Bonarini, and M.
Matteucci that have provided us with the original multi-
robot software simulator.

6. References

[1] M. Piaggio and R. Zaccaria, “An Efficient Cognitive

Architecture for Service Robots”, The Journal of
Intelligent Systems, Freund & Pettman, Endholmes
Hall, England, Vol 9:2, March-April 1999.

[2] M. Piaggio and R. Zaccaria, “Distributing a Robotic
System on a Network - the ETHNOS Approach”,
Advanced Robotics, The International Journal of the
Robotics Society of Japan, Vol. 12, N.8, VSP Publisher,
Aprile1998.

[3] K. G. Konolige: “Saphira - Robot Control System”, SRI
International, Artificial Intelligence Center. On line
at: http://www.ai.sri.com/~konolige/saphira

[4] Chella, M. Cossentino, U. Lo Faso, “Designing agent-

based systems with UML”, Proc. of ISRA'2000,
Monterrey, Mexico. Nov. 2000.

[5] Chella, M. Cossentino, U. Lo Faso, “Applying UML

use case diagrams to agents representation”, Proc. of
AI*IA 2000 Conf., Milano, Sept. 2000.

[6] J. Rossman, “Virtual reality as a control and supervision

tool for autonomous systems”, in Proc. Int. Conf. Intell.
Auton. Syst., Karlsruhe, Germany, Mar. 1995.

[7] Y. Wakita, S. Hirai and K. Machida, “Intelligent

monitoring system for limited communication path:
Telerobotic task execution over internet”, in Proc.
IEEE/RSJ IROS’95, Pittsburgh, PA, Aug. 1995.

[8] G. Tascini, L. Regini, A. Montesanto, P. Puliti,

“Interazione Sistema Autonomo – Mondo in Ambiente
Virtuale”, Proc. of AI*IA 2000 Conf., Milano, Sept.

[9] M. Makelainen, “Open Source FIPA Agent Platform”,

Merito Forum, March 2000.

[10] S. Posland, P. Buckle, R. Hadingham, “The FIPA-OS

Agent Platform: Open Source for Open Standards”,
Manchester, UK, April 2000.

[11] R. C. Arkin, T. Bulch, “Cooperative Multiagent Robotic

Systems”, 1997.

[12] T. Bulch, R. C. Arkin, “Behavior-Based Formation

Control for Multirobot Teams”, 1999.

[13] A. Tsoularis, C. Kambhampati, “On-line Planning for

Collision Avoidance on the Nominal Path”, Journal of
Intelligent and Robotic Systems, Kluwer Academic
Publishers, Netherlands, October 1997.

[14] E. Freund, H. Hoyer, “Collision Avoidance in multi-

robot systems”, in H. Hanafusa and H. Inoue (eds),
Robotics Research, The Second Int. Symp., MIT Press,
Cambridge, MA, 1985, pp. 135-146.

