
Introducing Motivations in Design Pattern
Representation

Luca Sabatucci1, Massimo Cossentino2, and Angelo Susi1

1 Fondazione Bruno Kessler IRST, Via Sommarive, 18 I-38050 Trento, Italy
sabatucci,susi@fbk.eu

2 ICAR-CNR, Consiglio Nazionale delle Ricerche, Palermo, Italy
cossentino@pa.icar.cnr.it

Abstract. Design pattern formalization is aimed at encouraging the use of de-
sign patterns during the design phase. Many approaches focuses on providing
solutions with a graphical notation and complementary text, typically composed
by a static and a dynamic definitions. The weak point is the lack of flexibility
when customizing the generic solution to the specific context of use. This paper
proposes a criterion to motivate design pattern selection and reuse. Designer is
supported with a technique for balancing pattern and context forces for selecting
among alternative implementations. The provided representation summarizes and
organizes relevant information in the classical informal pattern documentation.

Key words: Design Patterns, Goal-Oriented Modeling

1 Introduction

The informal description provided by the Gamma et al. (GoF) book [?] is very rich of
details and it is perfectly suitable for communicating successful experience. Despite of
the clarity of the exposition and the leading example that gives further clarifications
and improves the global understanding, this format is not the best way to quickly and
properly handle a pattern at design time. The description is long-winded and many
important information are scattered along subsections (about 10 pages for each pattern)
thus the reasoning process on the design problem is not properly supported. In addition,
during the design phase many implementing details can be lost thus patterns gets poorer
than in the original intent.

In order to better handle pattern complexity, many representations in literature use
the concept of pattern role [?,?,?]. Originally conceived as a shortcut to talk about
generic collaborating elements [?], the pattern role turned into an holder of responsibil-
ities [?], thus drawing up patterns to social organizations [?]. This concept is the base
for some preliminary works on design patterns, such as [?] where a catalogue of design
patterns for the agent oriented design was presented and [?] dealing with design pattern
composition. These previous experiences raised the need for an instrument for creating
a representation where original design patterns topics, such as motivations, applicabil-
ity, consequences and implementing issues, are maintained but where information is in
a compact and handleable form.

2 L. Sabatucci et al.

The aim of this work is to propose a semi-formal representation for design patterns
that considers motivations underlying the solution structure as the basic key for describ-
ing and reusing design patterns. This representation is different from many approaches
in literature, that provide the detailed specification of “what” is to be done when reusing
a pattern. Here the pattern is primarily concerned with exposing “why” certain choices
for behaviour and/or structure were made or constraints introduced. The approach is
based on the i* framework, that uses goal-oriented analysis for modeling and reason-
ing on strategic relationships among multiple actors of a domain. The approach derives
from a mapping between the design pattern domain and the goal-oriented analysis, thus
creating a framework for reasoning on force balancing, thus allowing the designer to
better understand and customize the solution for the specific reuse context.
The proposed representation summarizes and reorganizes information taken from the
informal textual description with the benefit to present relevant data in a compact for-
mat. The semi-formal nature of the representation is due to two factors: (i) the i* frame-
work is provides a not fully semantically formalized language for defining system re-
quirements, and (ii) a close connection is maintained between the i* pattern formaliza-
tion and its informal textual description.

The paper is organized as follows: Section ?? provides a brief introduction of the i*
framework. Section ?? describes the representation, from designer’s need to the imple-
menting solution. Section ?? discusses the approach, reasoning on benefits, understand-
ability and reuse issues. Some related work are analyzed and compared in Section ??,
and finally some conclusions are given in Section ??.

2 Background: The i* Framework

The i* framework [?] supports goal-oriented modeling and reasoning about functional
and non-functional requirements. It is a conceptual framework for modeling social do-
mains (in which both humans and software systems coexist) and provides constructs
for expressing concepts that appear during the requirement process: actors, intentional
elements (such as, goals, softgoals, tasks and resources) and relationships among those
concepts. A relevant characteristic of the approach is that of offering means for rep-
resenting not only the requirements of the system to be, but also the motivations for
underling design choices. The intentional elements and the relationships between them
allow answering questions such as why particular behaviours, informational and struc-
tural aspects have been chosen to be included in the system requirements, what alterna-
tives have been considered, what criteria have been used to deliberate among alternative
options, and what are the reasons for choosing one alternative against the other. This
representation supports the analysis of strategies, which help reach the most appropriate
trade-offs among (often conflicting) goals and soft-goals. A strategy consists of a set of
intentional elements that are given initial satisfaction values.

Actors are holders of intentions; they are the active entities in the system or its
environment who want goals to be achieved, tasks to be performed, resources to be
available and softgoals to be satisfied. Actors in a system collaborate in order to address
common goals.

Lecture Notes in Computer Science 3

Intentional Elements. The Goal is a condition or state in the world that actors would
like to achieve. How the goal is to be achieved is not specified, allowing alternatives to
be considered. The Soft Goal is similar to a goal, but there are no clear-cut criteria for
whether the condition is achieved, and it is up to subjective judgment and interpreta-
tion of the modeler. Soft goals are often used to describe qualities and non-functional
aspects such as security, robustness, performance and usability. The Task specifies a
particular way of doing something. Tasks can also be seen as the solutions in the tar-
get system, which will address (or operationalize) goals and softgoals. These solutions
provide operations, processes, data representations, structuring, constraints, and agents
in the target system to meet the needs stated in the goals and soft goals. The Resource
represents a physical or informational entity, for which the main concern is whether it is
available. Actors and intentional elements are connected by different types of structural
and intentional relationships. Several modelling perspectives allow to specify relation-
ships between concepts.

Actor Modeling Perspective focuses on the identification of actors that participate
to a social organization. This activity mainly concerns on identifying high-level depen-
dencies relationships among actors. A Dependency describes how a source actor (the
depender) depends on a destination actor (the dependee) for an intentional element (the
dependum). The dependum is expressed by an intentional element thus to specify the
nature of the dependency and its motivation.

The Goal Modeling Perspective is focused on detailing an actor’s boundary, defin-
ing its intentional elements according to various techniques. The Decomposition anal-
ysis allow to refine the goals or plans into sub-goals or subplans generating a goal/plan
hierarchical decomposition. In the AND decomposition, all of the decomposing inten-
tional elements are necessary for the target intentional element to be satisfied. Whereas
OR decomposition provides a description of alternative ways of satisfying a target in-
tentional element. The Means-ends analysis allows to represent the operationalization
of a goal via a task via the specification of means-ends relationships. The Contribution
analysis defines the level of impact that the satisfaction of a source intentional element
has on the satisfaction of a destination intentional element. The i* framework defines a
standard set of contributions: “−−”/“−”, strong/weak negative, the intentional element
is sufficiently/partially dissatisfied; “++”/“+”, strong/weak positive, the intentional el-
ement is sufficiently/partially satisfied.

3 Pattern Intentions: from Purpose to Solution

The introduction of the GoF’s book [?] reports ”Design patterns goal is to capture
design experience in a form that people can use effectively. Design patterns help you
choose design alternatives that make a system reusable and avoid alternatives that com-
promise reusability”. The context gives a dimension of pattern usability, by providing
motivations that justify its reuse and consequences of its application into the system.
This is classically done by using a leading example that illustrates a concrete design
problem and how the class and object structures in the pattern can solve the problem.

Goal-oriented analysis can be profitably employed to describe pattern motivations,
forces and consequences in a semi-formal way, as well as Gross and Yu already did

4 L. Sabatucci et al.

!"#$%&'

()(#(&*'
%+'()(#(&*' ,)-./' 0$*%"&$)('

!"#$%&"'()*+,'(

(

-".#/"($#(+/"(01$&(1*+,'2('"#3,&#$45"(,6(

0,7"5$&%(+/"(#8#+"02(4151&*$&%(6,'*"#(

1&7(/1&75$&%(+'17"9,66#:(

;1++"'&(

',5"(

)*+,'(

(

<+($#(1&($&+"&+$,&15("5"0"&+2(/,57"'(,6(

+/"('"#3,&#$4$5$+8(+,(01&1%"(1(3$"*"(,6(

+/"(31++"'&(#,5=+$,&:(

!"#$%&(

%,15(

>,15(

(

<+('"3'"#"&+#(1(7"#$%&($&+"&+$,&(+/1+($#(

%1+/"'"7(48(+/"(7"#$%&"'(1&7(

7"01&7"7(+,(+/"(31++"'&:(

?,'*"(@,6+9>,15(

(

A,&96=&*+$,&15('"B=$'"0"&+(+/1+(%$C"#(

1(%=$7"5$&"(+,(*/,,#"(10,&%(#"C"'15(

#,5=+$,&($035"0"&+1+$,&#:(

@,5=+$,&(D1#E(

(

<+('"3'"#"&+#(1(#+"3(,6(+/"(351&(+,(13358(

+/"(#,5=+$,&(+,(+/"(#8#+"0:(

@8#+"0(

"5"0"&+(

F"#,='*"(

(

<+('"3'"#"&+(,&"(,6("5"0"&+#(6,'(G/$*/(

+/"(7"#$%&"'($#(*,&*"'&$&%:((

(

designer

pattern

role

design goal

force

solution

system

element

Table 1. Association map between pattern domain terms and i* concepts used in this work.

in [?] even if limited to non-functional requirements. Here, the proposed approach is
based on abstracting the process of modeling a system with the support for reusing
design patterns.

3.1 Designer Needs

The proposed abstraction considers the designer as the main Actor of the design activity
domain, whose job is to balance design forces coming from the system under model-
ing. The pattern reuse activity elicits from designer’s needs that are: (i) Design Goals to
solve specific design problem emerging during the development of the system related
to the correct distribution of responsibilities among classes of the system and (ii) Non-
Functional Requirements (soft goals) that emerge during the analysis phase and specify
qualities of the system-to-be. These needs define some conditions in the model that
designer would like to achieve; non functional requirements are similar to designer’s
needs, but there are no clear-cut criteria for whether conditions are achieved.
The concept of Pattern Role is the core of the proposed representation. Riehle (in [?])
introduces role diagrams that focus on the collaboration and distribution of responsi-
bilities between objects of the system. Roles are holder of responsibilities whereas the
notion of class becomes an implementation construct only. The current work proposes
to enrich this concept of role by giving it the responsibility to handle a piece of the
pattern solution. This upgrades the role from a passive template for the solution, to an
active reasoning element for achieving the solution. In this vision, a design pattern is the
delegation of some design choices to the experience of expert designers. It is composed
by:

(i) Actors, that represent active entities of the system who want goals to be achieved,
tasks to be performed, resources to be available and softgoals to be satisfied. The ab-
straction considers the designer as the main actor of this domain, which job is to balance

Lecture Notes in Computer Science 5

to de-couple
client and

real subject

to create a
smart reference
between client

and real subject design
er

real
subject

role

proxy
role

client
role

access to
real subject

functionalities

to provide
functionality

to introduce a level of
indirection to the real

subject
design goal

force

solution

human/

pattern

role role A

role B

delegation of

responsibility

KEYS

[SG1]

[SG2]

[G1]

[G2]

[T1]

Fig. 1. Actor diagram for the Proxy pattern

forces coming from the context in order to address some design (functional/non func-
tional) objectives. The pattern contains some roles, that represent the proactive parts
that are used to allocate the solution to elements of the context.

(ii) Goals encapsulates the intentional part to solve the problem. A design goal is a
condition or state in the model that designers would like to achieve; how the goal is to
be achieved is not specified, allowing alternatives to be considered.

(iii) Soft Goals are similar to goals, but there are no clear-cut criteria for whether
the condition is achieved, and it is up to subjective judgment and interpretation of the
modeler. Softgoals are used to describe forces coming from the context that represent
specific qualities of the system-to-be.

(iv) Tasks specify a particular way of doing something. Tasks are atomic component
of pattern solutions, addressing design goals and soft goals. Tasks provide operations,
processes, data representations, structuring, constraints to meet the needs stated in the
goals and softgoals. The whole pattern solution is the synthesis of actions, guidelines
and techniques described in pattern tasks.

(v) Resources represent physical or informational entities of the system, for which
design activity is executes. Resources in a pattern are elements of the system such as
data to introduce into the system in order to obtain a good solution.

Summarizing, the proposed map considers a pattern role as an actor that encapsu-
lates a piece of the well-tested experience of an expert. The i* framework models this
situation so that, when reusing a pattern, the designer delegates a part of his/her duty
to pattern roles. Thus each role addresses some goals and proposes a strategic plan to
achieve them. The actor diagram is the instrument to represent the pattern collaboration
view. Table ?? gives an outline the mapping between terms of these two domains.

Figure ?? depicts responsibility organizations for the Proxy pattern. The i* visual
notation represents actor as circles having a balloon associated to represent its internal
rationale; design goals are represented by using rounded rectangles, whereas clouds are
used to specify context forces. The main actor is always the designer of the system, who
orchestrates with pattern roles, by delegating them some design responsibilities. Del-
egation is a dependency represented as an intentional element (goal, soft-goal, task or
resource) that connect two actors. The directions of arrows indicate who is the original
handler and who is the receiver of the responsibility. As an instance, in the Proxy pat-
tern, the designer needs [to create a smart reference between two objects] (SG1) and

6 L. Sabatucci et al.

[to de-couple these two objects] (SG2); this couple of soft-goals represents the main
motivation for the use of this pattern. The commitment of these objectives requires a
delegation of responsibility: the proxy is responsible [to introduce a level of indirec-
tion between these two objects] (G1) and the real subject must be able [to provide the
functionality] (G2). Finally a third role, the client delegates [the access to real subject
functionality] (T1) to the proxy.

3.2 Alternative Solution Implementations

Design patterns are descriptions of communicating objects and classes that are cus-
tomized to solve a general design problem in a particular context. One of the common
limits of most pattern representation techniques in literature is that solutions are pro-
vided as rigid templates that solve problems in a unique and invariant way. A pattern
description should maintain its original informative content: applicability, pitfalls, hints,
criticism and, above all, implementing alternatives and design issues.

This informative core is maintained by using the i* framework goal modeling per-
spective. This perspective uses goal decomposition to explore motivations for each spe-
cific implementing detail. Each role as at least a main goal to address and a collection of
forces concerning qualities of the system. The decomposition analysis is performed by
using AND/OR and means-end analysis techniques that generate a hierarchy of goals,
sub-goals, tasks and resources for addressing role main goals.

Goal Model Hierarchy. Role main goals describe motivations for applying a spe-
cific pattern into a context. By using the AND decomposition, goals are iteratively re-
fined in other sub-goals, thus creating a tree hierarchy. The AND operator implies the
achievement of all decomposing goals are necessary for the target goal to be satisfied.
The means-end relationship is also used for introducing tasks in the goal hierarchy as
the operationalization of goals. Tasks are atomic steps for modifying the current system
as a consequence of pattern instantiation. The means-end link indicates that the achieve-
ment of the task implies the full satisfaction of the target goal. The whole solution is
provided by executing all selected tasks. Some tasks can be connected to resources that
represent elements that will be introduced into the system in order to generate the solu-
tion. They can be structural elements (attributes, methods, abstract classes, interfaces)
or behavioral elements (events, method calls, and so on).

!

!"#$%&"'()*(+,-.+(!"#$%&"'(/*(012,31(

"#$%&'(!to protect the access to an object, to

create objects on demand!
"#$%&'(!to simulate a local representative for

a remote object!

)*+,(!

• -.&!!"#$%&'()"*+!#/0&%-'!+,1!-.&!

,!-./!#/0&%-'!234*&3&,-!-.&!

'5/0&%-!2,-&$6+%&!

• &+%.!,!-./!#/0&%-!3+2,-+2,'!+!

$&6&$&,%&!-#!+!!"#$%&'()"*+!#/0&%-!

• *$0"1+&!#/0&%-'!3+2,-+2,!+!$&6&$&,%&!

-#!&'()"*+!#/0&%-'!

)*+,(!

• -.&!!"#$%&'()"*+!#/0&%-'!+,1!-.&!

,!-./!#/0&%-'!.+,1*&!+!4$#-#%#*!-#!

%#335,2%+-&!

• ,!-./!#/0&%-'!234*&3&,-!-.&!&'()"*+!

2,-&$6+%&!

• *$0"1+&!#/0&%-'!3+2,-+2,!+!$&6&$&,%&!

-#!&'()"*+!#/0&%-'!

! Table 2. Two possible implementing solutions for the Proxy pattern

Lecture Notes in Computer Science 7

 to simulate a local
representative for a

remote object

to create objects on
demand

to protect the access to
an object

proxy
role

maintain a direct
reference to real

subject

to represent the
real object

handle a protocol to send
requests to the real subject

to communicate to
the real subject

to control the
real subject

lifecycle
+

+

++
to receive requests

from client

implement the
subject interface

subject
interface +

OR

AND

real subject
object

[G3]

[G4]
[G5]

[T2]
[T3] [T4]

[SG3]

[SG4]

[SG5]
[G6]

[R1]
[R2]

design goal

force

solution

system
elementboundary

AND
OR

+/++/-/--

decomposition

contribution

means-end

KEY

resource-use

Fig. 2. Goal/Plan diagram for the main role in the Proxy pattern

OR Decomposition. The main strength of this representation is the natural capa-
bility to represent alternative paths for the implementing solution. In fact each OR de-
composition introduces a decisional point in the goal-model that provides a description
of mutually exclusive ways of satisfying a target goal. This alternative is referred to a
specific design choice that designer can select in order to customize the solution for
the context. This analysis uses contributions for giving the designer an instrument to
balance these trade-offs. Contributions are a technique for specifying the impact goals
and tasks have against context forces, in order to give details of pattern applicability or
eventual drawbacks. A (weak/strong) positive impact means the task introduces bene-
fits to the specified force, otherwise a (weak/strong) negative impact indicates a conflict
against that force.

Figure ?? shows a slice of the goal/plan model for the Proxy pattern, built on the
GoF’s book specifications (the client and real-subject roles are omitted). The proxy role
is responsible of [to represent the real object] (G3). This goal is claimed by the achieve-
ment of two sub-goals: [to receive requests from clients] (G4) and [to communicate to
the real subject] (G5). G4 is achieved by the [implement the subject interface] (T2)
task, that introduces a new interface (R1) used by clients to access to some methods.
On the other hand, the communication between proxy and real subject (G5) is possible
in two interchanging ways: [maintain a direct reference to a real subject] (T3) or [han-
dle a protocol to send requests to the real subject] (T4). The solution issue T3 is more
suitable for cases in which the proxy controls the real subject life-cycle (to create ob-
jects on demand, or to protect the access to the object), whereas solution T4 is required
when the real subject is a remote object.

Resolution of Forces. Given this kind of pattern representation, the solution is pro-
vided by choosing among design alternatives and then by selecting the corresponding
tasks. Design issues have to be balanced in according to the specific application con-
text. Context forces are the means for giving different weight to pattern objectives. The
design pattern will solve the context problem whether all main role goals are fully ad-

8 L. Sabatucci et al.

dressed by task selection. AND/OR decompositions, means-end links and contribution
links are fundamental to check this property. As shown in the previous example (Fig-
ure ??), by trading with contextual forces, designer can choose al least two different
solutions (summarized in Table ??), one suitable for local proxies and one for remote
proxies. This example considers the proxy role only, but actually alternatives in the
Proxy pattern are more than the two described before.

4 Approach Analysis and Argumentation

The main idea of this goal-based representation is to focus on the design pattern ra-
tionale rather than on the solution structure only. This provides an instrument, com-
plementary to the traditional textual description, that summarizes pattern motivations
within all implementing details, thus improving understanding and reuse.

Understandability Issues. The traditional textual description (typically found in the
GoF’s pattern catalogue [?]) includes a lot of information spread across various sec-
tions. The comprehension of a design pattern requires a great effort in studying an av-
erage of 10 pages for each pattern. This work proposes to replace or to complement the
very detailed description with a couple of compact diagrams reporting the most relevant
information. The actor diagram provides an explicit structure where intent, applicabil-
ity and consequences are highlighted. This aids in quickly searching in a catalogue for
selecting the best pattern in according to the specific context problem. The explicit refer-
ence to intent and applicability clarifies the actual difference among some patterns that
present very similar structures; for instance State and Strategy patterns have an identi-
cal structure that becomes inexpressive for understanding their totally different intents.
Figure ?? highlights their differences. Instead, the couple actor and goal/plan diagrams
provides means for deeply understanding the rationale of each implementation detail,
and eventually selecting the best alternative solution to apply.

Reuse Issues. The approach provides an useful support for forward engineering and
design traceability that is totally independent of the kind of design methodology the user
is following up. This means that the approach can be exploited in a traditional design
methodology as well as in a goal-oriented one. The approach covers all perspectives
of pattern documentation and reuse, from motivation, applicability and consequences
to the implementation in a compact and readable form. It is not limited to the final
solution to reuse in a specified context, but it also catches the whole reasoning that
led to the pattern definition. The explicit documentation of pattern rationale raises the
reusability of the pattern, allowing for considering design choices leading to the final
desired result. This issue has been already successfully explored by Gross and Yu (in
[?]) and the proposed approach can be considered complementary to the cited paper. It
is worth noting that there is not a direct relationship between functional requirements
and pattern goals, because they belong to different domains: design is the activity to re-
alize objectives emerged during the problem analysis, thus requirements give indication
about desired functionality, whereas design patterns solve problems of design.

Lecture Notes in Computer Science 9

to make state
transitions

explicit

to avoid mixing algorithm
implementations with

context data

designer

strategy
role

execute the
algorithm

+

context
role

to ease to
understand,
maintain and
extend the

context

to remove
conditional

statements for
selecting a

desired behavior

+

clients can choose
among strategies with

different time and
space trade-offs

to define strategy for
algorithm selection

and execution

to define a family
of interchangeable

algorithms+

to allow an object to
modify its behavior as a
consequence of its state

designer

state
role

generate the
state-specific

behavior

+
to encapsulate
the behavior

object behavior
depends on its

state

context
role

to manage the
state

i*

STRATEGYSTATE

request()
Context

handle()
State

handle()
ConcreteStateA

handle()
ConcreteStateB

request()
Context

handle()
Strategy

handle()
Concrete Strategy A

handle()
Concrete Strategy B

UML

Fig. 3. Comparison of two commons patterns from GoF book that present a very similar UML
structure.

5 Related Works

Several works have been proposed for stating design pattern solutions, improving trace-
ability and maintenance issues; such problems become even greater when more patterns
are used in composition. Pattern specification languages that utilize mathematical nota-
tion provide the needed formality, but often at the expense of usability. Mikkonen in [?]
applies rigorous formalization to pattern solution, in a way that reasoning can be made
on pattern temporal behaviors in terms of high-level abstractions of communication.
Many approaches, including the original GoF diagrams [?], use a subset of the UML no-
tation for the pattern formalization. UML is very good at communicating designs, and
it is also continuously evolving for better expressiveness. Class, sequence and activi-
ties diagrams are the most frequently used for representing structure and collaboration
views. Rielhe introduces role diagrams [?], using a notion of role that is more abstract.
These diagrams define roles played by objects and thus the views objects hold on each
other. Rielhe relies on roles mainly to address boundary conditions in recursive struc-
tures, explicitly focusing on developing and documenting object collaboration patterns.
Sabatucci et al [?] front the problem of design pattern composition, by introducing a
fine-grained description of the static and dynamic aspects of a pattern solution. Com-
position is provided by a small set of operators working on solution elements, tracing
transformations before pattern instantiation into the system. They stress the importance
of representing the pattern semantics for increasing the consistence and the reusability
of multi-patterns.
In [?], the author proposes of considering non-functional requirements (NFR), coming
from the analysis phase, during the design. These are treated as design goals, leading the
designer to explore a design history of alternative choices, by reasoning on the impact
of each pattern over non-functional requirements. An extension of this approach was
carried on by Weiss [?] who introduces a rigid form for soft-goal hierarchy to reason
about a pattern. This structure is built starting from a standard set of NFR crossed with
other NFRs coming from the problem context.

10 L. Sabatucci et al.

6 Conclusions and Future Works

Some interesting directions can lead to future developments. The first issue concerns the
independence from a domain. The emphasis given on representing properties and struc-
tures of a solution against a specific need makes the approach domain-independent. It is
interesting to investigate whether the same approach could be extended to support dif-
ferent categories of patterns, for example analysis patterns, architectural pattern, agent-
oriented pattern, aspect-oriented-patterns and so forth.

The second issue concerns the semantics of the solution. The nature of this represen-
tation is semi-formal, in fact, instructions inside each task are given in natural language,
so they mey be unclear, redundant or incomplete. The research question is whether it is
possible to identify a formal semantics to describe these tasks. Some directions that will
be explored are: (i) to use the meta-modeling for defining an ontology of solutions [?]
and (ii) the integration of the approach with the aspect oriented programming in order
to allow automatic generation of aspectized-design patterns (as proposed in [?,?]).

Finally, this representation can be extended to include pattern composition opera-
tors given the importance to consider reciprocal force influence occurring when multi-
patterns are used to solve a conjoined problem [?]. Resolution of forces must consider
possible conflicts and semantically inconsistent situations. It is interesting to analyze
(semi-automatic) reasoning techniques and tools for for identifying these problems.

