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Abstract: A set of software agents can be programmed to provide a large but finite set of services, often defined during
design phase. After an evolution of the external environment, the pre-defined services could be unable to
satisfy the requested quality. In this work it is proposed an agent framework capable to adapt the agents in
order to improve the quality of services provided by an agent society in correspondence with a modification
of the external environment. These agents are based on a biologically inspired structure (genome), that de-
fines all their behaviors and knowledges. The effectiveness of the approach is proved by a set of successful
experimental results.

1 INTRODUCTION

The aim of the proposed system is to improve the
quality of service through the definition of an adap-
tive multi-agent system where agents are specified by
their genome.

We think that the definition of an adaptation mech-
anism that allows the satisfaction of requirements is
an essential step towards a mechanism of agent adap-
tation focused on service improvement. Dissimilarly
from the OO expected passivity of service providers
(objects) that delegates to the system designer the re-
sponsibility to find a solution to each new issue, in
the agent-oriented (AO) context we think the system
should be able to autonomously adapt and solve new
and unforeseeable problems thus developing an ex-
plicit and solid system evolution capability. When
using the system term we are here referring to both
a single agent that could solve alone the problem as
well as to a group of agents that can collaborate in
order to achieve a common goal.

In order to obtain this system capability, we de-
cided to adopt a biological metaphor. Our agent is
regarded as a living entity, whose structure is defined
by its genome. Agent capabilities are described in its
genome and their improvement is possible by means
of a Darwinian evolution of the specie. When a solu-

tion to a problem is not achievable (the corresponding
service is not available or it does not provide the re-
quired quality of service), several agents can repro-
duce themselves thus creating a new generation of
agents that have new capabilities and can satisfy the
requirements. The consequence of this behavior is the
creation of an adaptive system. Adaptation is the abil-
ity of the system to learn from past experiences and to
react to unexpected events (Gleizes et al., 1999). We
realized such an approach by an extensive adoption
of Genetic Programming techniques (Nilsson, 1998)
(Koza, 1992) and the use of advanced methods for au-
tomatic code generation, compilation and execution
from existing agent-oriented platforms (for our pur-
poses we preferred the Java language and the JADE
platform). These techniques are only a tool used to
reach an adaptive behavior inside the system.

The aim of this paper is exploring a new approach
towards the definition of adaptive multi-agent systems
where agents are specified through their genome.
Adaptation is exhibited by agents in improving their
capacities to fulfill some requirements (more properly
provide services) they are not initially able to cope
with. This may occur at both the level of a single
agent (who may adapt itself to provide a service with
the required quality) or at the social level where sev-
eral agents need to adapt themselves and their collab-



Figure 1: A representation of the evolution procedure.
GenomeAgents are represented in white. The agent selected
at the end of the procedure is marked with an “X”, while the
CrosserAgent is marked with a “C”.

oration strategies in order to succeed.
The focus of our attention is not on the agent itself,

but on its genetic makeup. This genetic makeup can
be decomposed in different layers. In the first layer
of the genome there are chromosomes. The genome
of the agent is composed by two kinds of chromo-
somes: a Knowledge Chromosome which describes
knowledge about the environment and a set of Abil-
ity Chromosomes which describe agent’s abilities to
interact with the world. At a deeper layer we have
genes. Each chromosome is made of genes. In the
Knowledge Chromosome, each gene describes an el-
ement of the knowledge (predicates, concepts and ac-
tions), while, genes within Ability Chromosomes de-
scribe plans components.

In order to care only about the genome, three hy-
pothesis are made:

• the genome defines agent’s capabilities;

• all the interesting agent’s features are included in
the genome;

• the agent’s implementation is unique given an
agent’s genome.

During the designing process it is essential to de-
fine and manipulate the genome. In the definition of
the genome an initial set of genes is given. This set
does not have to contain the solution but only the ele-
ments which allow the creation of the first generation.
From this initial set, through manipulation, genes
are combined and activated originating new genomes.
These genomes have to be evaluated through an ob-
jective function for measuring their level of adapta-
tion to the required skill.

The process for manipulating the agent’s genome
is called “reproduction” and it is described in the next
section.

The evolution procedure is represented in Fig.1.
When a service is requested by an agent inside or

outside the society, and that is not available, the re-

questing agent can ask the CrosserAgent to activate
an evolution process.

The CrosserAgent starts the procedure by creat-
ing a first fake generation composed by all the agents
which provide that service with an insufficient quality
(or a similar service according to the problem ontol-
ogy). This generation may include some duplicated
individuals if they are not enough (the number of in-
dividuals per generation is a parameter of the evo-
lution process). The next generations will contain
some agents inherited from the previous generation
and some new agents obtained crossing the agents’
genomes. During the evolution process two agents
merge their chromosomes according to the rules of
genetic programming that will be discussed later. The
parents transmit their genes to the child which evolves
and gains the capability of reaching different results.
The crossing procedure operates both at the knowl-
edge level and at the ability level, in which the subject
of crossing is the agent behavior.

The evolution process ends when an agent in the
current generation provides a satisfying service or if
an a priori defined number of generations has been
reached. The fittest agent is selected and becomes a
member of the society. The CrosserAgent notifies its
name to the requesting agent in order to fulfill the ser-
vice request. This process will be discussed more in
details in Sect.3.

In the proposed approach it is possible to see adap-
tation on both agent and system level because agents
adopt their behavior independently from other agents
but it is also possible to obtain system adaptation
because a whole society of cooperative agents can
evolve in order to reach a specific goal (this will be
further discussed with regards to the last of the pro-
posed case studies).

In both cases adaptation is strong, because there is
no external control and no embedded rules are present
in the system to lead adaptation.

After this summary of the proposed architecture
the next section focuses on the description of the
genome structure.

2 THE GENOME STRUCTURE

Fig.2 shows the genome structure in form of an
UML class diagram. It highlights the two main parts
in which the genome can be decomposed at a logi-
cal level: knowledge and abilities. The division is
pointed out through the inclusion of chromosomes in
two different packages.

Starting from the higher level, the genome (at the
top of Fig.2) contains all the information needed to



Figure 2: The genome structure. Genome is composed of two kinds of chromosome: Knowledge Chromosome and Ability
Chromosome; both are composed by genes.

describe the agent; from this information a new agent
can be created.

It contains a set of Services which makes explicit
the functions offered by the agent to the external en-
vironment.

The genome is composed of chromosomes. It con-
tains a KnowledgeChromosome and a set of Ability-
Chromosomes.

The KnowledgeChromosome aggregates genes
which refer to ontological concepts (OntologyGene)
and that are specialized in three categories:

• ConceptGene: describes an instance of a concept
of the ontology, it can refer to other genes of the
same kind;

• ActionGene: describes an instance of an action of
the ontology, it refers to concept genes on which
the action operates;

• PredicateGene: describes an instance of a pred-
icate of the ontology, it refers to concepts or ac-
tions genes which are needed to compute the pred-
icate value.

The AbilityChromosome is composed of a set of
genes which describe the plan structure (NodeGene)
and by the contents of these nodes which describe the
action associated to them.

The elements can belong to three different kinds:
predicate or action genes (indicated as PredicateGene
and ActionGene in Fig.2) or other Ability Chromo-
somes. Plugging in an Ability Chromosome with a
node allows us to associate a behavior, described by
another plan, to a node, thus creating a sort of recur-
sive structure.

Nodes in the plan are specialized on the basis of
their activation policy. So there are four kinds of
nodes:

• StartNodeGene: this gene describes the first node
in the plan. It can have successors but not ances-
tors. Neither an action nor a predicate can be as-
sociated to this kind of node;

• EndNodeGene: this gene describes the last node
in the plan. It cannot have successors but only
ancestors. As the previous one neither an action
nor a predicate can be associated to this kind of
node;

• ActionNodeGene: this gene describes an action
node in the plan. An action is associated to this
node and can be described by an Ability Chromo-
some or an ontological action. It can be special-
ized in two categories:

– AndNodeGene: action node with a conjunctive
activation policy;

– OrNodeGene: action node with a disjunctive
activation policy;

• IfNodeGene: this gene describes a choice in the
plan. It is associated with a predicate gene.

The node classification reported here is inspired by
(van Der Aalst et al., 2003).

3 THE AGENT ADAPTATION
PROCESS

This section deals with the description of the repro-
duction process that has been adopted. This process
starts when a service is required to the society but no
agent (nor collaboration of agents) can provide that
or can ensure the fulfillment according to a required
level of quality. The final result is one (or sometimes



more than one) agent (or agents) that are able to fulfill
the required service. The service evolution process is
composed of the following steps:

• definition of the parents’ sub-society. This sub-
society includes all the agents that will be used in
the reproduction process and that contribute with
their ability genes and knowledge genes to the
definition of the resulting agent;

• creation of the new generation of agents. This
generation is composed in three ways by crossing,
mutation and elitism;

• evaluation of the results provided by the new
agents;

• if one (or more) agent(s) successfully provide the
required service the process stops, otherwise an-
other generation is created by using the last gen-
eration of agents as a parents’ sub-society.

The agent adaptation process is lead by a particu-
lar agent in the platform: the CrosserAgent(Fig.1).

The CrosserAgent is responsible for three main
functions:

• creation of agent generations;

• execution of new agents;

• evaluation of the results achieved by each agent.

These function are obtained using different behaviors.
This agent selects the agents that provide a similar
service, it collects their genomes and it uses them to
start the agent adaptation process. As already said,
this adaptation is achieved by means of a reproduction
process where quality of service provides the fitness
function.

The CrosserAgent waits for a request and selects
the genomes of all the agents which provide the ser-
vice (or a similar one). Of course, the CrosserAgent is
asked to evolve the society because no existing agent
is able to perform the service with the required fitness.
The CrosserAgent creates each new generation by us-
ing three classical Genetic Programming techniques
(Banzhaf, 1998)(Mitchell, 1998): elitism, reproduc-
tion and mutation.

3.1 Reproduction

The reproduction procedure allows to obtain a new
agent from two individuals of the previous generation.
Genes of the two original individuals are crossed ob-
taining a new genetic code.

The crossing procedure can be divided into two
steps: knowledge crossing and ability crossing.

Knowledge Crossing Knowledge crossing allows
to modify the set of knowledge about the environment
modifying parameters that might improve the agent
interaction with the world.

Knowledge Chromosomes crossing is performed
over each agent’s knowledge gene by using four tech-
niques and the result is a new Knowledge Chromo-
some. The four techniques to generate a new knowl-
edge from the two parents are the following ones:
• fusion: the two parents’ knowledge genes are

melted in a single gene that will contains a weight
or algebraic average of the parents’ knowledges.
In this case, from two knowledges we obtain a sin-
gle knowledge for the new individual;

• selection: one of the parents’ knowledges is cho-
sen and copied in the new individual while the
other one is discarded;

• union: both of the parents’ knowledges are copied
in the new individual. This technique produce re-
dundant agents if frequently used;

• copy: if a particular portion of knowledge is
present only in one of the parent, it is copied to
the generated agent.
So, for each knowledge gene of the parent agent

there will be only one knowledge gene in its son. On
the other side, each son’s gene is related to at least
one parents’ knowledge gene. In case of the union
operation both of the parents genes are chosen and so
two relations are created.

The knowledge crossing procedure is inspired by
(Noy and Musen, 1999). To be crossed, two knowl-
edges have to be considered similar. We suppose that
throughout all the system, the agents refer to the same
ontology although sometimes to different (overlap-
ping or not) parts of it. Two knowledge genes are
similar if they are instances of the same ontological
element.

Once the knowledge crossing is completed, the
ability and tasks crossing can be executed.

Ability Crossing The abilities of an agent are rep-
resented through plans, composed by nodes, and are
labeled with a goal, which indicates the ability pur-
pose. Nodes belong to two different kinds: activity
and control. Control nodes include start/end nodes
as well as control flow structures used to define the
flow of activities. Activity nodes refer to the actions
defined in the ontology (an agent cannot perform an
action it does not even know nor conceive).

Agents in the platform are provided with a higher-
level plan which handles the agent’s life-cycle and al-
lows each agent to interact with the external environ-
ment. This plan is always crossed by a fusion op-



Figure 3: On the left the two plans of the parent agents and on the right the resulting plan. The parts of the plan selected for
the crossover procedure are filled.

eration. All the other plans can be crossed also by
using the selection, union or copy techniques already
described in the previous paragraph.

Since selection, union and copy simply transfers
a plan from a parent to its child, the sole operation
worth of a discussion is plan fusion and therefore it
will be discussed in what follows.

Plan crossing is less complex than knowledge
crossing because all the referenced knowledges have
already been crossed.

As already reported for knowledge crossing, two
plans can be crossed only if they are similar (if they
have the same goal). This means that they have the
same purpose but it might be provide in different ways
and unnecessarily in a satisfactory way. The new plan
is obtained by combining parents’ nodes. Plan cross-
ing is shown in Fig.3.

The two parents’ plans play a different role in
this part of the reproduction process. The receiver’s
agent plan is used as the basis for implanting the con-
tribution from the donor agent. More specifically,
the fragment of plan extracted by the receiver agent
will be composed with the portion of plan extracted
from the donor agent by removing a randomly se-
lected node (node a′ in Fig.3) together with all the
descending nodes and replacing them with a portion
of plan extracted from the donor agent. The plan stub
extracted from the receiver agent will always contain
the start node while the fragment of plan extracted
by the donor agent will be composed of a randomly
selected node (node a in Fig.3) and all of its succes-
sor nodes (nodes that can be reached by the selected
node). The donor’s plan will always contain the end
node but not the start node. An example of donor and
receiver plan fragments are shown respectively in the
right and the middle part of Fig.3. The two fragments

are linked by replacing the node selected from the re-
ceiver’s plan with the one selected from the donor’s
one (and its successors), as shown in the right part of
Fig.3.

3.2 Elitism and Mutation

In the presented approach we perform an off the book
use of elitism and mutation.

Elitism consists in the election of a group of indi-
viduals of the previous generation. After the evalua-
tion of the old generation, a fixed number of agents
is elected to become part of the new generation using
the tournament selection technique.

Mutation allows to add total unexpected features
to the new-born agent. It can occur over a knowledge
or a plan gene. If it acts over a knowledge gene, a
value can be obtained in a random way. For instance,
if the knowledge to be mutated contains a string field,
this string can be mutated adding a random sequence
of chars inside it. If it acts over plans, a node can be
replaced with another similar node or a link between
nodes can be added or removed.

4 EXPERIMENTAL RESULTS

In this section some applications of the presented
framework are briefly reported: the first example
shows a system where an agent-level adaptation oc-
curs when an agent is involved in providing a ser-
vice. In the last case study several agents cooperate
in reaching a goal, thus realizing a system-level adap-
tation.



Figure 4: In (a) the target picture. In (b) and (c) the results
achieved by two agents of the initial society.

4.1 Agent-Level Adaptation Example:
the Trapezium

In this first case study, the society is composed by
agents drawing simple geometrical shapes. The aim
of each agent is to reproduce a given picture, in the
case study a trapezium (Fig.4a).

The agent divides the picture in small chunks by
using a grid and tries to fill each position of the grid
according to the guidance provided by the target pic-
ture. The work is carried on through several iterations
and each iteration is populated by a different genera-
tion of agents. The initial generation is composed by
two simple agents. Each of them is able to fill in a
grid cell with the shape of a triangle: the first agent
draws a dark gray triangle oriented towards the up-
left corner of the cell, the second agent draws a light
gray triangle oriented towards the bottom-right corner
of the cell. The figures that are used to fill a sector of
the grid are called drawing primitives.

The desired result and the pictures produced by
these agents are respectively shown in Fig.4a,b,c. It is
clear that none of two agents supply a fulfilling result.
Besides, it is evident that neither the simple coopera-
tion of the two agents could solve the problem.

In order to obtain the desired result, a reproduction
procedure is needed. During that a lot of agents with
different behaviors are created; there can be agents
having different sizes for the grid cell, different col-
ors, different shapes and different shape orientation.

There are two factors considered during the eval-
uation of the service provided by each agent: the de-
gree of similarity in both color and shape with the tar-
get picture;

In our experiment, after nine generations, several
individuals which perfectly reproduce the desired pic-
ture have been created (obviously because of the ran-
dom characteristic of the new generations production
different runs of the experiment may produce differ-
ent results). Fig.5 reports two examples of such indi-
viduals; as it is possible to see, the two agents use a
different grid to decompose the target picture.

The test case has been evaluated with different
pictures and colors. It has been observed, as it was

Figure 5: Two agents which provide the required service in
different ways.

Figure 6: A successful agent. In (a) its knowledge and in
(b) its plan and its other tasks obtained through the cross-
ing procedure. On the bottom the resulting picture. The
knowledge about the brush shape is the result of an union
crossing procedure while color is obtained by a selection
crossing procedure.

expected, that the number of generations needed to
reach a perfectly fitting outcome grows up with the
complexity of the target picture.

Further details about the implementation of this
case study will be provided in the following para-
graph.



4.1.1 Experiment Discussion

These examples explain how, from two initial agents,
a lot of different individuals can be generated. The
example is simple so that it was possible to analyze it
in details.

We regard this case study as an example of single
agent adaptation since even if the whole society is in-
volved in the evolution process, giving the birth to a
new agent, only this agent provides the service, with-
out any kind of direct cooperation with the other ele-
ments of the society. It could be argued that an indi-
rect cooperation descends from the agreement of each
agent involved in the reproduction process in sharing
its own genome but at the present we consider that as
an ethical rule of the society that enforces all agents to
accept to be part of the reproduction (as in the cooper-
ative agents described in (Bernon et al., 2002)). This
process can also be regarded as a strong adaptation
because it occurs without any external control. The
positive results of applying the proposed framework
to this case study prove that the approach succeeds
in successfully evolve an agent society, that initially
is not able to provide a given service, by generating
new agents that, inheriting portions of their parents
genome, better approximate (or perfectly achieve) the
selected goal.

Summarizing, the adopted adaptation process
proved to be successful but it is to be noted that the de-
velopment framework is undoubtedly complex in use
and the setup of a new experiment requires a lot of
programming. We are at present not really concerned
about that. For sure different techniques may be ex-
plored (and they will be in the future) but the goal of
the current study is evaluating the adoption of the pro-
posed genome-based description of agent capabilities
and knowledge.

Another aspect that deserves attention is the scala-
bility of the system. We are in an early stage of devel-
opment of the system so we did not face this aspect
but obviously if the problem to solve is in the same
domain it is very easy to write down a fitness function
to match the agent behavior to the desired goal, if the
system should face a problem in a different space, a
new fitness function has to be added to the system and
probably a new initial knowledge should be added to
the basic agent society.

Moreover the system can approximate the prob-
lem solution in a smooth way so that it is possible to
stop the evolution of the system to a suboptimal solu-
tion. This smooth approximation is related to the cho-
sen fitness function (for instance the fitness function
uses a measure of the covered area and color match-
ing) but this means that this system can be used to find

an approximate solution to some problems.

5 CONCLUSIONS AND FUTURE
WORKS

In this paper we proposed a service adaptation mecha-
nism as an integral part of an agent-oriented adaptive
and self-organizing society. As a first step towards
our goal we tested an evolutionary system inspired
by the Darwinian evolution theory. In the agents of
the proposed society all the features are codified in a
genome-like structure. In order to improve the quality
of a given service, several agents can reproduce them-
selves creating individuals which better fit the target.
These individuals are provided with new capabilities
derived by their parents.

The approach has been tested through simple case
studies. The application reported in this paper proves
that it is possible to obtain a perfectly working agent
from original agents which provides a service with a
low quality. Using the proposed Genome Framework
the problem moves from the implementation of a so-
lution to the definition of the problem domain as a
starting point from which is possible to reach the de-
sired result.

The obtained results encourage the development
of further release of the proposed framework. The use
of a formalization language to describe the genome
structure might be the following step in order to lay
the groundwork for an agent-oriented language.
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