
Introducing Pattern Reuse in the Design of Multi-Agent
Systems

Massimo Cossentino1, Piermarco Burrafato2, Saverio Lombardo2, Luca Sabatucci2

1 ICAR/CNR – Istituto di Calcolo e Reti ad Alte Prestazioni / Consiglio Nazionale delle
Ricerche

c/o CUC, Viale delle Scienze, 90128 Palermo, Italy
cossentino@cere.pa.cnr.it

2 DINFO - Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo

Viale delle Scienze, 90128 Palermo, Italy

Abstract. In the last years, multi-agent systems (MAS) have proved more and
more successful. The need of a quality software engineering approach to their
design arises together with the need of new methodological ways to address
important issues such as ontology representation, security concerns and
production costs. The introduction of an extensive pattern reuse practice can be
determinant in cutting down the time and cost of developing these systems.
Patterns can be extremely successful with MAS (even more than with object-
oriented systems) because the great encapsulation of agents allows an easier
identification and disposition of reusable parts. In this paper we discuss our
approach to the pattern reuse that is a phase of a more comprehensive approach
to agent-oriented software design.

1 Introduction

In the last years, multi-agent systems (MAS) have proved successful in more and
more complex duties; as an example, e-commerce applications are growing up
quickly, they are leaving the research field and the first experiences of industrial
applications are appearing. These applicative contexts require high-level qualities of
design as well as secure, affordable and well-performing implementation
architectures. In our research we focus on the design process of multi-agent systems
considering that this activity implies not only modelling an agent in place of an object
but also capturing the ontology of its domain, representing its interaction with other
agents, and providing it with the ability of performing intelligent behaviours. Several
scientific works that address this topic can be found in literature; it is possible to note
that they come from different research fields: some come from Artificial Intelligence
(Gaia [12]) others from Software Engineering (MaSE [11], Tropos [24]) but there are
also methodologies coming directly from Robotics (Cassiopeia [13]). They give
different emphasis to the different aspects of the process (for example the design of
goals, communications, roles) but almost all of them deal with the same basic
elements although in a different way or using different notations/languages.

We can consider that the process of designing a MAS is not very different from
other software design processes, if we look at the process inputs and outputs. In order
to increase the results, we think that an important role can be played by an analysis of
the inputs and of the activities to be performed as well as by the automation of as
many steps of the process as possible (or similarly by providing a strong automatic
support to the designer). In pursuing these objectives we developed a design
methodology (PASSI, “Process for Agent Societies Specification and
Implementation” [5]) specifically conceived to be supported by a CASE tool that
automatically compiles some models that are part of the process, using the inputs
provided by the designer.

PASSI is a step-by-step requirement-to-code method for developing multi-agent
software that integrates design models and philosophies from both object-oriented
software engineering and MAS using UML notation. It has evolved from a long
period of theory construction [16][1][2] and experiments in the development of
embedded robotics applications [3][4][15][17] and now is the design process used in a
more comprehensive approach to robotics that encompasses a flexible vision
architecture and an extensive modelling of environmental knowledge and ontology
[6]. Moreover, it also proved successful in designing information systems [19].

The design process is composed of five models (see Fig. 1): the System
Requirements Model is an anthropomorphic model of the system requirements in
terms of agency and purpose; the Agent Society Model is a model of the structure of
the agents involved in the solution, of their social interactions and dependencies; the
Agent Implementation Model is a model of the solution architecture in terms of
classes and methods; the Code Model is a model of the solution at the code level and
the Deployment Model is a model of the distribution of the parts of the system
(agents) across hardware processing units, and their movements across the different
available platforms.

In PASSI great importance has the reuse of existing patterns. We define a pattern
as a representation and implementation of some kind of (a part of) the system
behaviour. Therefore each pattern in our approach is composed of a model of
(dynamic) behaviour, a model of the structure of the involved elements, and the
implementation code.

During a PASSI design process, the designers will use a Rational Rose add-in that
we have specifically produced. In this procedure they move gradually from the
problem domain (described in the System Requirements Model and Agent Society
Model) towards the solution domain (mainly represented by the Agent
Implementation Model) and, passing through the coding phase, to the dissemination
of the agent in their world.

While they face the problem domain they need to determine the functionalities
required for the system, identify the agents (assigning the previously identified
functionalities to them) and their roles, represent the ontology of the domain, and
describe the agents’ communication. We have not introduced an explicit model of the
goals of the system because several contributes can already be found in literature
([7][8][9][10]), and can be used in order to perform this activity.

In the solution domain the designer essentially produces some representations of
the structure of the agents and of their dynamic behaviour. From this specification, the
designer (or more likely the programmer), after having chosen the implementation
architecture, produces the code and deploys it as described in the deployment model.

It is in this progress of activities, mainly looking at the work performed in the
solution domain, that we identified the most useful structure for our patterns: one
structural representation of the agent (a class diagram), one dynamical representation
of the behaviour expressed by the agent(s) (an activity diagram) and the
corresponding code.

We propose a classification of our patterns in four different categories: the action
pattern (a functionality expressed by an agent – for example a specific task – usually
it represents only a portion of the agent), the behaviour pattern (again a portion of an
agent but it addresses a more complex functionality, often performed by the agent
using more than one of its tasks), a component pattern (a complete agent capable of
performing some kind of behaviours), a service pattern (composed by at least two
component patterns where the involved agents interact in order to actuate some kind
of cooperative behaviour).

Now we are working on the Agent Factory Project funded within the Agentcities
initiative [22], and our goal is to implement a service for the network community, that
is composed of a pattern-based agent production process and a repository that will
contain the patterns that we will identify and many others that will be introduced by
other members of the community.

In order to support the localization of our patterns in both of the two different most
diffused FIPA [18] platforms (FIPA-OS [14] and JADE [23]) we are planning to
represent the models and the code of each pattern using XML. In the case of the
models we will use the diffused XMI representation of the UML diagrams while for
the code we will introduce a meta-representation of the agent using XML. Then
applying to it an XSLT transformation we will instantiate the code localized for the
selected platforms. Obviously this approach is possible because FIPA-OS and JADE
are based on the Java language and share a similar structure, while the solution could
become more difficult without these favourable conditions.

Deployment Model

System Requirements Model

Tasks
Specification

Roles
Identification

Agent Implementation Model

Structure
Definition

Behavior
Description

Code Model

Code
Production

Ontology
Description

Roles
Description

Protocols
Description

Agent Society Model

Initial
Requirements

Agents
Identification

Domain
Description

Deployment
Configuration

Multi-Agent
Structure
Definition

Behavior
Description

Single-Agent

Agent
Test

Society
Test

Next Iteration

Fig. 1. The models and phases of the PASSI methodology

The remaining part of the paper is organized as follows: section 2 gives a quick
overview of the PASSI methodology; section 3 presents the Agent Factory Project;
section 4 provides a discussion on patterns; meta-language representation of agents is
discussed in section 5, and some conclusions are presented in section 6.

2 The PASSI Methodology

PASSI [5] is composed of five models that address different design concerns and
twelve steps in the process of building a model.

In PASSI we use UML as the modelling language because it is widely accepted
both in the academic and industrial worlds. Its extension mechanisms (constraints,
tagged values and stereotypes) facilitate the customized representation of agent-
oriented designs without requiring a completely new language.

The models and phases of PASSI are (see Fig. 1):
1. System Requirements Model. An anthropomorphic model of the system

requirements in terms of agency and purpose. Developing this model involves four
steps: Domain Description (D.D.): A functional description of the system using
conventional use-case diagrams. Agent Identification (A.Id.): Separation of
responsibility concerns into agents, represented as stereotyped UML packages. Role
Identification (R.Id.): Use of sequence diagrams to explore each agent’s
responsibilities through role-specific scenarios. Task Specification (T.Sp.):
Specification through activity diagrams of the capabilities of each agent.

2. Agent Society Model. A model of the social interactions and dependencies
among the agents involved in the solution. Developing this model involves three steps
in addition to part of the previous model: Role Identification (R.Id.). See the System
Requirements Model. Ontology Description (O.D.): Use of class diagrams and OCL
constraints to describe the knowledge ascribed to individual agents and the pragmatics
of their interactions. Role Description (R.D.): Use of class diagrams to show distinct
roles played by agents, the tasks involved that the roles involve, communication
capabilities and inter-agent dependencies. Protocol Description (P.D.): Use of
sequence diagrams to specify the grammar of each pragmatic communication protocol
in terms of speech-act performatives like in the AUML approach [25].

3. Agent Implementation Model. A model of the solution architecture in
terms of classes and methods, the development of which involves the following steps:
Agent Structure Definition (A.S.D.): Use of conventional class diagrams to describe
the structure of solution agent classes. Agent Behaviour Description (A.B.D.): Use of
activity diagrams or state charts to describe the behaviour of individual agents.

4. Code Model. A model of the solution at the code level requiring the
following steps to produce: Code Reuse Library (C.R.): A library of class and activity
diagrams with associated reusable code. Code Completion Baseline (C.C.): Source
code of the target system.

5. Deployment Model. A model of the distribution of the parts of the system
across hardware processing units, and their migration between processing units. It
involves one step: Deployment Configuration (D.C.): Use of deployment diagrams to

describe the allocation of agents to the available processing units and any constraints
on migration and mobility.

Testing: the testing activity has been subdivided into two different steps: the
(single) agent test is devoted to verifying its behaviour with regards to the original
requirements of the system solved by the specific agent. During the society test, the
validation of the correct interaction of the agents is performed, in order to verify that
they concur in solving problems that need cooperation.

2.1 The Support of The CASE Tool in Designing with PASSI

In this section we describe the CASE tool we have developed for designing multi-
agent systems following the PASSI methodology.

Our work starts from the consideration that most commercial CASE tools are only
object-oriented. Besides, the design of a MAS is often very difficult for unskilled
users. We believe that the support of an agent-oriented CASE tool can simplify the
MAS designer’s work, increase the reuse of code (through a database of agents/tasks
patterns), and permit the automatic production of a considerable part of the code.
Moreover, our tool helps untrained users to follow a proper software engineering
approach.

We have realized our tool by building an add-in for the commercial UML-based
CASE tool Rational Rose. It enables the user to follow the PASSI’s process of
analysis and design, providing a set of functionalities that are specific for each phase
of the process by means of sub- and pop-up menus that appear after having selected
some UML elements (classes, use cases and so on). The tool also allows the designers
to perform check operations, which are based on correctness of single diagrams and
consistency between related steps and models. The main functionalities of our tool are
as follows:

Automatic compilation of diagrams: Our Rose add-in allows us to save analysis and
design time by totally or partially drawing some diagrams in an automatic way. This
enables designers to go through the twelve steps of PASSI in a very fast and easy
way. For example, the Agent Identification is totally drawn by the tool once the user
has chosen what functionality to insert into an agent and a consistency check is
positively performed. This simple identification of an agent triggers a series of
automatic operations: a) a Task Specification diagram is assigned to the created agent;
b) the model of the agent skeleton is depicted in the Multi- and Single-Agent
Structure Definition (SASD); c) a Single-Agent Behaviour Description (SABD)
diagram is assigned to the new agent; and so forth. Other diagrams, such as
Communication Ontology Description, Roles Description and Single-Agent Structure
Definition are partially drawn as pieces of new information are gradually inserted into
the PASSI’s models.
Automatic support to execute recurrent operations: Apart full and partial
assembling of diagrams, the tool enable developers to also modify the model at any
point and obtain the automatic update of all of the diagrams that depend on the
modification.

Project consistency: In general, the tool permits a check of the model. When it is
invoked, it verifies the entire model correctness and consistency between the diverse
diagrams yielded till that point. Furthermore, a check operation is automatically run
whenever the user completes any phase. The check will inform the user about any
error or inconsistency.
Automatic compilation of reports and design documents: The add-in can produce
a report of the entire model in a Microsoft Word format. Together with the diagrams,
the document will contain textual descriptions and some tables summarizing the agent
tasks, roles, communication, ontology, etc.
Access to a database of patterns: We intend to provide the tool with a repository of
pattern as described in the next sections.
Generation of code and Reverse Engineering: The Rose add-in can generate code
from the diagrams of the implementation model. The code that is produced is actually
an agent skeleton written in Java, including tasks subclasses. Furthermore, our add-in
enables reverse engineering by the creation of a Single-Agent Structure Definition
diagram in the Rose model from a source Java file. During this operation, the tool will
refresh all the related diagrams. More consistent parts of code will be automatically
produced with the introduction of the patterns.

3 The Agent Factory Project

The Agent Factory Project is an Agentcities.NET [22] deployment project. Our
commitment is to deploy a service that provides Agentcities' designers with a tool for
either building new agents and/or upgrading their existing ones. The agents are meant
to be FIPA compliant that means they need to belong to platforms such as Jade or
FIPA-OS. The key issue of the project is to produce a repository of agents’ patterns
(see next section) that will be described as pieces of model and code.

We intend to provide the Agentcities Network with a web-based application that
enables the MAS designers to easily build their own agents and upgrade them. As for
the building operation, the users will be able to select either the agent platform for
deployment – mainly FIPA-OS and JADE – and the functionalities they want to
introduce from the repository. As for the upgrading operation, the users will be able
to input their UML models of an agent and add new capabilities from the repository
so as to get back the upgraded models. For both operations, the application will
eventually provide some validation mechanisms for designers' inputs.

Agent Factory is thought to accelerate analysis and design phases of multi-agent
systems by easy reuse of patterns to be identified and plugged into the project’s
models and/or the code. Its two main features – creation of new agents and upgrading
of existing ones – will allow multi-agent systems designers to speed up prototyping.

As most Agentcities’ members are concerned with the world of agents, and most of
their teams are involved in the development of multi-agent systems and platforms, we
believe that the service we are going to develop will be a valid support for their work,
allowing them to obtain relevant benefits in terms of productivity.

Among the other things, our work will also focus on the possibility of giving a
contribution to standardization activities such as those of FIPA. Building up a large

repository of patterns may render us important information about their possible
generalization. This could make us address feasible ways of standardization for
patterns of agents, and explore the opportunity of proposing a related specification for
FIPA.

With regard to the solution strategy, we imagine a pattern as a couple of diagrams:
a structural and a behavioural diagram (see next section). Users will be able to input
their original agents’ models in the XMI format, which will then be transformed into
XML representations of the agents (see section 5). This will provide an easy way to
instantiate the target code from such a structured representation of data.

4 Patterns

Regarding the patterns of agents, many works have been proposed (among the others,
[20][21]); as already discussed, our concept of pattern addresses an entity composed
of portions of design and the corresponding implementation code. We look at an
agent as a composition of a base agent class and a set of task classes – this is the
structure. The behaviour expressed by the agents using their structural elements can
be detailed in a dynamic diagram such as an activity/state chart diagram – this is the
behaviour.

From the structural point of view, we consider four classes of patterns. They are
described as follows:

− Action pattern. A functionality of the system; it may be a method of either an

agent class or a task class.
− Behaviour pattern. A specific behaviour of an agent; we can look at it as a

collection of actions; it represents a task.
− Component pattern. An agent pattern; it encompasses the entire structure of an

agent together with its tasks.
− Service pattern. A collaboration between two or more agents; it is an aggregation

of components.

RequestInitiator
AGENT_TYPE : String = "request-initiator-agent"
version : String = "1.0"

RequestInitiatorAgent()
setup()
registerWithAMS()
registerWithDF()
shutdown()

<<Agent>>
IdleTask

IdleTask()
startTask()
done()

<<Task>>
RequestInitiatorTask

agent_to_request : AgentID

RequestInitiatorTask()
startTask()
handleRefuse()
handleAgree()
handleFailure()
handleInform()
sendRequest()

<<Task>>

FIPAOSAgent Task

Fig. 2. Static structure of an agent and its tasks

As we know, some elementary pieces of behaviour are largely used. For example,
if two agents communicate using one of the FIPA standard protocols, the parts of
code devoted to dealing with communication can be reused. On the one hand, we can
consider tasks as encapsulating behaviours that can be put in patterns (patterns of
behaviour). On the other hand, if we consider an agent as an entity capable of
pursuing specific goals, carrying out some operations (e.g. communication, moving
across platforms, getting some hardware resources), we see that we can also identify
patterns of agents. Furthermore, we may put together two or more patterns of agents
to obtain a pattern of service. Thus, we can access and use single patterns or a
composition of them.

It is now important to highlight that we can identify some specific patterns for
some specific fields of application. For example, as for robotics, patterns of tasks may
be useful to reuse common behaviours like planning and obstacle avoidance. Hence, it
turns out that some application domain classification needs to be done. Looking at the
functionality of the patterns, we can consider four categories:

− Mobility. These patterns describe the possibility for an agent to move from a

platform to another, maintaining its knowledge.
− Communication. They represent the solution to the problem of making two agents

communicate by a communication protocol.
− Elaboration. They are used to deal with the agent’s functionality devoted to

perform some kind of elaboration on relevant amounts of data.
− Access to hardware resources. They deal with information retrieval and

manipulation of source data streams coming from hardware devices, such as
cameras, sensors, etc.

The Repository of Patterns will be structure as a database that grants easy update and
retrieval of patterns’ models. As stated above, we are going to represent the latter as
XML files. Each pattern record in the database will have a field containing a link to
the related XML file. The repository will provide some mechanisms to ensure that
coherence rules are met.

Agent
name : CDATA

<<DTDElement>>

Attribute
name : CDATA
type : CDATA

<<DTDElement>>

Constructor
name : CDATA

<<DTDElement>>

Extends
<<DTDElement>>

Implements
<<DTDElement>>

Method
name : CDATA
type : CDATA

<<DTDElement>>

&
Agent_g...

0..n0..n

Attribute

0..n0..n

Constructor

0..10..1

Extends
0..n0..n

Implements

0..n0..n

Method

Task
name : CDATA

<<DTDElement>>

0..n0..n

Task

Fig. 3. The DTD related to the agent structure

5 Meta-language representation of agents

Although patterns represent a good technique for generalization, we however need to
notice that they may depend on the particular target programming language. This is
also true if we talk of multi-agent systems, as different agent platforms and
frameworks exist.

In our work we have adopted the FIPA-OS and the Jade frameworks. As both of
them present agent structures as classes containing attributes, methods and inner-
classes, we have thought to adopt a hierarchical meta-language to describe the agent
and his properties. The hierarchy’s root level entity is the agent, which contains
inherent properties such as attributes, methods and tasks (the inner classes). We have
chosen XML as our meta-language as it is oriented to tree data structure
representations. It proved very useful for managing agents and tasks. As a matter of
fact, this allowed us to easily manipulate their structure and add, edit or delete agents’
properties very easily. This is the key point in the application of a pattern to an
existing agent in terms of skills and behaviors. We believe that the use of a meta-
language can give us a straight way to create and maintain the Repository of Patterns
mentioned above. Moreover, agents’ source code can be automatically generated from
meta-language representation without any manual support.

The choice of XML is also valid in the context of the Agent Factory Project. As a
matter of fact, because of the XML easy portability, agents’ patterns will be shared in
a web server, so that designers of the Agentcities community will be able to access
and update them. In what follows we describe the main issues of our meta-language:
Language definition: In order to build an XML agent representation, we retrieve
information coming from diagrams such as the SASD and MABD of the PASSI
design methodology. In the Single-Agent Structure Definition diagram (see Fig. 2) an
agent is represented by a class, which inherits from a super class called either
FIPAOSAgent or Agent depending on the agent platform selected. Attributes and
methods of this class correspond respectively to data structure and functions that the
agent owns. In the XML file an agent is described inside an Agent tag. The DTD
fraction that describes the Agent tag is shown in Fig. 3. Agent properties such as
attributes or tasks are represented as inner elements of the structure.

Fig. 4. The structural representation of a
very simple pattern

Fig. 5. The behavioural representation of the
pattern of Fig. 4

constructor

startTask

done

constructor

startTask

doYourDuty

setup

ComponentTask2ComponentTask1ComponentAgentTask

ComponentTask1

constructor()
startTask()
done()

<<Task>>

FIPAOSAgent

ComponentAgent

constructor()
setup()
shutdown()

<<Agent>>
ComponentTask2

constructor()
startTask()
doYourDuty()

<<Agent>>

Each of them contains other sub-elements that describe their properties. In the same
manner, a Task tag has got sub-elements to specify its characteristics. For example the
Parent tag describes parent-child relationships between tasks. This specifies that a
task (called parent) instantiates and executes another task (child) from its methods as
it has been specified in the Multi-Agent Behaviour Description (MABD) diagram. In
FIPA-OS this information could be used to automatically add the related done method
to the parent task; this method will be called from the task manager when the child
task terminates its duty.
In Fig. 4 we can see the structural representation (a SASD diagram) of a toy-pattern
of FIPA-OS agent that can be useful to understand our approach. It is composed of
the base agent class and two task classes. The behaviour of the agent is described in
Fig. 5: the setup method of the agent is invoked from its constructor. It calls the first
task that performs some kind of operation and then starts the second task. At the end
of the second task the done method is invoked in the parent task. The consequent
XML description of this agent is shown in Fig. 6.
Patterns and constraints: When a pattern is applied to a project it modifies the
context in which it is placed, that is: it introduces new functionality into the system.
These additions need to satisfy some constraints. For example in FIPA-OS, when we
insert a communication task pattern into an existing agent, the Listener Task should
have a handleX method to catch performative acts of a particular type. This
relationship between the pattern and existing elements could be expressed with a
constraint. A constraint is a rule composed of two elements: a target and a content.
The target specifies what agent/task will be influenced from the rule. The content
expresses the changes to be applied when the pattern is inserted into the project; it
could be an aggregation of attributes, constructors or methods.

Fig. 6. The XML representation of the pattern described in fig. 4.

Code generation: As briefly mentioned before, XSLT application grants to export an
agent described with our meta-language into a specific programming language. This
is possible because the PASSI’s Agent Structure Definition intrinsically represents an
implementation viewpoint. As a matter of fact, UML classes correspond to Java
classes, and UML attributes and methods correspond to the Java classes’ attributes
and methods. This important characteristic of the agent structure allows us to look at
the source code as one of the possible views of an agent: we could imagine agent
representation as an intermediate layer between agent design and agent development.
The use of XSLT enables code generation for both FIPA-OS and Jade frameworks by
only changing the transformation sheet. Although using FIPA-OS and Jade implies
different design processes, because of different mechanisms (e.g., message handling
or task execution control), the same meta-language could be used to represent agents
independently from the used platform.

In fig. 7 we can see the JAVA code of the toy-pattern presented in fig. 4 obtained
applying the FIPA-OS transformation sheet.

6 Conclusions

Our conviction is that pattern reuse is a very challenging and interesting issue in
multi-agent systems as it has been in object-oriented ones. However we are aware that
the problems arising from this subject are quite delicate and risky. Nonetheless, we
believe, thanks to previous experience made in fields such as robotics, that we can
succeed in creating a very useful service for the Agentcities community.

Fig. 7. (Part of) The JAVA code obtained from the XML agent description of fig. 6.

Taking advantage of others projects we are at present working on, we think it is
feasible to create a repository that could contain patterns coming from diverse fields
of research and application – among the others, image processing and robotics. We
are also confident that the contribute of Agentcities members will be precious in order
to quickly broaden our database to include more and more useful elements.

Acknowledgements

This research was partially supported by grants from Engineering Ingegneria
Informatica S.p.A, Rome (Italy) and the Agentcities.NET initiative [22].

References

1. Chella, A., Cossentino, M., Lo Faso, U.: Designing agent-based systems with UML. Proc.
of ISRA'2000. Monterrey, Mexico, Nov. 2000

2. Chella, A., Cossentino, M., Infantino, I., Pirrone, R.: An agent based design process for
cognitive architectures in robotics. Proc. of Workshop on Objects and Agents, WOA’01.
Modena, Italy, Sept. 2001

3. Chella, A., Cossentino, M., Tomasino, G.: An environment description language for
multirobot simulations. Proc. of ISR 2001. Seoul, Korea, Apr. 2001

4. Chella, A., Cossentino, M., Pirrone, R., Ruisi, A.: Modeling Ontologies for Robotic
Environments. Proc. of the Fourteenth International Conference on Software Engineering
and Knowledge Engineering. Ischia, Italy, July 2002

5. Cossentino, M., Potts, C.: A CASE tool supported methodology for the design of multi-
agent systems. Proc. of the 2002 International Conference on Software Engineering
Research and Practice (SERP'02). Las Vegas, NV, USA, June 2002

6. Infantino, I., Cossentino, M., Chella, A.: An Agent Based Multilevel Architecture for
robotics vision systems. Proc. of the 2002 International Conference on Artificial
Intelligence (IC-AI'02). Las Vegas, NV, USA, June 2002

7. Antón, A.I., Potts, C.: The Use of Goals to Surface Requirements for Evolving Systems.
Proc. of International Conference on Software Engineering (ICSE '98). Kyoto, Japan,
April 1998, 157-166

8. van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-Directed Elaboration of
Requirements for a Meeting Scheduler: Problems and Lessons Learnt. Proc. 2nd
International Symposium on Requirements Engineering (RE'95).York, UK, March 1995,
194-203

9. Potts, C.: ScenIC: A Strategy for Inquiry-Driven Requirements Determination. Proc. of
IEEE Fourth International Symposium on Requirements Engineering (RE'99). Limerick,
Ireland, June 1999, 58-65

10. Yu, E., Liu, L.: Modelling Trust in the i* Strategic Actors Framework. Proc. of the 3rd
Workshop on Deception, Fraud and Trust in Agent Societies at Agents2000. Barcelona,
Catalonia, Spain, June 2000

11. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent Systems Engineering.
International Journal on Software Engineering and Knowledge Engineering 11, 3, 231-258

12. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems. 3,3
(2000), 285-312

13. Collinot, A., Drogoul, A.: Using the Cassiopeia Method to Design a Soccer Robot Team.
Applied Articial Intelligence (AAI) Journal, 12, 2-3 (1998), 127-147

14. Poslad S., Buckle P., Hadingham R.: The FIPA-OS Agent Platform: Open Source for
Open Standards. Proc. of the 5th International Conference and Exhibition on the Practical
Application of Intelligent Agents and Multi-Agents. Manchester, UK, April 2000, 355-368

15. Chella, A., Cossentino, M., Pirrone, R.: Multi-Agent Distributed Architecture for a
Museum Guide Robot. Proc. of the GLR worshop at the 2001 AI*IA conference. Bari,
Italy, Sept. 2001

16. Chella, A., Cossentino, M., Lo Faso, U.: Applying UML use case diagrams to agents
representation. Proc. of AI*IA 2000 Conference. Milan, Italy, Sept. 2000

17. Chella, A., Cossentino, M., Infantino, I., and Pirrone, R.: A vision agent in a distributed
architecture for mobile robotics in Proc. Of Worskshop “Intelligenza Artificiale, Visione e
Pattern Recognition” in the VII Conf. Of AI*IA. Bari, Italy, Sept. 2001

18. O’Brien, P., Nicol, R.: FIPA - Towards a Standard for Software Agents. BT Technology
Journal 16,3(1998),51-59

19. Burrafato, P., Cossentino, M.: Designing a multi-agent solution for a bookstore with the
PASSI methodology. Fourth International Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS-2002). May 2002, Toronto, Ontario, Canada at CAiSE'02

20. Kendall, E. A., Krishna, P. V. M., Pathak C. V., Suresh, C. B.: Patterns of intelligent and
mobile agents. Proc. of the Second International Conference on Autonomous Agents.
Minneapolis, May 1998, 92–99

21. Aridor, Y., and Lange, D. B.: Agent Design Patterns: Elements of Agent Application
Design. Proc. of the Second International Conference on Autonomous Agents.
Minneapolis, May 1998, 108–115

22. Agentcities.NET: http://www.agentcities.net
23. Bellifemine, F., Poggi, A., Rimassa, G.: JADE - A FIPA2000 Compliant Agent

Development Environment. In Proc. Agents Fifth International Conference on
Autonomous Agents (Agents 2001), pp. 216-217, Montreal, Canada, 2001

24. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. To appear in Information Systems, Elsevier,
Amsterdam, The Netherlands, 2002

25. Odell, J., Van Dyke Parunak, H., Bauer, B.: Extending UML for Agents. AOIS Workshop
at AAAI 2000. Austin, Texas, July 2000

