
From Requirements to Code with the PASSI Methodology 79

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

From Requirements to
Code with the

PASSI Methodology
Massimo Cossentino

ICAR-CNR, Italy

Abstract

A Process for Agent Societies Specification and Implementation (PASSI) is
a step-by-step requirement-to-code methodology for designing and
developing multi-agent societies, integrating design models and concepts
from both object-oriented (OO) software engineering and artificial
intelligence approaches using the UML notation. The models and phases of
PASSI encompass representation of system requirements, social viewpoint,
solution architecture, code production and reuse, and deployment
configuration supporting mobility of agents. The methodology is illustrated
by the well-known Bookstore case study.

Introduction

At present, several methods and representations for agent-based systems have
been proposed (Aridor & Lange, 1998; Bernon, Camps, Gleizes, & Picard, 2004;

80 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bresciani, Giorgini, Giunchiglia, Mylopoulos, & Perini, 2004; DeLoach & Wood,
2001; Jennings, 2000; Kendall, Krishna, Pathak, & Suresh, 1998; Zambonelli,
Jennings, & Wooldridge, 2001, 2003). In order to explore them, we shall consider
a relevant aspect in modelling software, that is, fidelity. Robbins, Medvidovic,
Redmiles, and Rosenblum (1998) have defined fidelity as the distance between
a model and its implementation. This means that low fidelity models are problem-
oriented, while high fidelity models are more solution-oriented.

Since agents are still a forefront issue, some researchers have proposed methods
involving abstractions of social phenomena and knowledge (Bernon et al., 2004;
Bresciani et al., 2004; Jennings, 2000; Zambonelli, Jennings, & Wooldridge,
2001, 2003) (low-fidelity models); others have proposed representations involv-
ing implementation matters (Aridor & Lange, 1998; DeLoach & Wood, &
Sparkman, 2001; Kendall et al., 1998) (higher fidelity models).

There exists one response to these proposals, which is to treat agent-based
systems the same as non-agent based ones. However, we reject this idea
because we think it is more natural to describe agents using a psychological and
social language. Therefore, we believe that there is a need for specific methods
or representations tailored for agent-based software. This belief originates from
the related literature. To give an example, Yu and Liu (2000) say that “an agent
is an actor with concrete, physical manifestations, such as a human individual.
An agent has dependencies that apply regardless of what role he/she/it happens
to be playing.” On the other hand, Jennings (2000) defines an agent as “an
encapsulated computer system that is situated in some environment and that is
capable of flexible, autonomous action in that environment in order to meet its
design objectives.” Also, Wooldridge and Ciancarini (2001) see the agent as a
system that enjoys autonomy, reactivity, pro-activeness, and social ability.

Therefore, multi-agent systems (MAS) differ from non-agent based ones
because agents are meant to be autonomous elements of intelligent functionality.
Consequently, this requires that agent-based software engineering methods
encompass standard design activities and representations as well as models of
the agent society.

Two more responses exist. They both argue that agents differ from other
software but disagree about the differences. The first, proposed by supporters
of low-fidelity representations, is that agents are distinguished by their social and
epistemological properties, only these need different abstractions. The second,
proposed by supporters of high-fidelity representations, is that the difference is
in the deployment and interaction mechanisms. With regard to the agent notion,
DeLoach, Wood, and Sparkman (2001) argue that “an agent class is a template
for a type of agent in the system and is analogous to an object class in object-
orientation. An agent is an actual instance of an agent class,” and “… agent
classes are defined in terms of the roles they will play and the conversations in

From Requirements to Code with the PASSI Methodology 81

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

which they must participate.” This definition in some way conjugates the social-
(conversational) and deployment- (implementation) oriented theories and posi-
tions DeLoach, Wood, and Sparkman in the middle.

We also reject these two views in their extreme forms. A designer may want to
work at different levels of detail when modeling a system. This requires
appropriate representations at all levels of detail or fidelity and, crucially,
systematic mappings between them. Because such issues are, at present, not
addressed by any of the existing MAS analysis and design methodologies, we
have decided to create a brand new one.

The methodology we are going to illustrate is named a Process for Agent
Societies Specification and Implementation (PASSI) or “steps” in the Italian
language. It is our attempt at solving the scientific problem arising from the above
considerations. In fact, it is a step-by-step requirement-to-code methodology for
designing and developing multi-agent societies integrating design models and
concepts from both object-oriented (OO) software engineering and MAS, using
the Unified Modeling Language (UML) notation. It is closer to the argument
made above for high-fidelity representations, but addresses the systematic
mapping between levels of detail and fidelity. The target environment we have
chosen is the standard, widely implemented Foundation for Intelligent Physical
Agents (FIPA) architecture (O’Brien & Nicol, 1998; Poslad, Buckle, &
Hadingham, 2000). PASSI is the result of a long period of theoretical studies and
experiments in the development of embedded robotics applications (Chella,
Cossentino, & LoFaso, 2000; Cossentino, Sabatucci, & Chella, 2003).

Figure 1. The models and phases of the PASSI methodology

82 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The remainder of this chapter is structured as follows. The next section gives a
quick presentation of the methodology’s models and provides a justification for
PASSI. The third section presents the application of PASSI to the “Juul Møller
Bokhandel A/S” case study (Andersen, 1997), giving a detailed description of the
steps and the use of UML notations within each of them. A comparison of PASSI
with the Gaia (Zambonelli, Jennings, & Wooldridge, 2003) and MaSE (DeLoach,
Wood, & Sparkman, 2001) is then given, and some conclusions are presented in
the final section.

A Quick Overview of the
PASSI Methodology

In conceiving this design methodology, we followed one specific guideline: the
use of standards whenever possible. This justifies the use of UML as modeling
language, the use of the FIPA architecture for the implementation of our agents,
and the use of XML in order to represent the knowledge exchanged by the agents
in their messages.

PASSI (Process for Agent Societies Specification and Implementation) is a
step-by-step requirement-to-code methodology for developing multi-agent soft-
ware that integrates design models and philosophies from both object-oriented
software engineering and MAS using (more properly extending) the UML
notation (OMG, 2003b). Because of the specific needs of agent design, the UML
semantics and notation will be used as reference points, but they will be extended,
and UML diagrams will be often used to represent concepts that are not
considered in UML and/or the notation will be modified to better represent what
should be modeled in the specific artifact. The PASSI process is composed of
five process components: System Requirements, Agent Society, Agent Imple-
mentation, Code, and Deployment, and several distinct work definitions within
each of them (Figure 1). Code production is strongly supported by the automatic
generation of a large amount of code thanks to the PASSI ToolKit (PTK) used
to design the system and a library of reusable patterns of code and pieces of
design managed by the AgentFactory application.

In what follows, the five process components will be referred to as models and
the work definitions as phases; in order to clarify the meaning of these terms, we
will provide a parallelism with the Software Process Engineering Metamodel
(SPEM) concepts (SPEM, 2002). Referring to SPEM, we could say that a
process is composed of process components; each process component could be
made by phases (a kind of work definition) that are in turn decomposable into
activities and steps (both activities and steps are again work definitions). In the

From Requirements to Code with the PASSI Methodology 83

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PASSI process, the element that corresponds to the SPEM process component
is called model, and it is composed of phases (for instance, in Figure 1, we can
see that the System Requirements model is composed of the Domain Require-
ments Description, Agents Identification, … phases). The “models” and “phases”
of PASSI are:

1. System Requirements Model: a model of the system requirements in
terms of agency and purpose. It is composed of four phases:

(a) Domain Requirements Description (D.R.D.): a functional description
of the system using conventional use case diagrams;

(b) Agent Identification (A.Id.): the phase of attribution of responsibili-
ties to agents, represented as stereotyped UML packages;

(c) Role Identification (R.Id.): a series of sequence diagrams exploring
the responsibilities of each agent through role-specific scenarios; and

(d) Task Specification (T.Sp.): specification of the capabilities of each
agent with activity diagrams.

2. Agent Society Model: a model of the social interactions and dependen-
cies among the agents involved in the solution. Developing this model
involves three steps:

(a) Ontology Description (O.D.): use of class diagrams and OCL con-
straints to describe the knowledge ascribed to individual agents and
their communications;

(b) Role Description (R.D.): class diagrams are used to show the roles
played by agents, the tasks involved, communication capabilities, and
inter-agent dependencies; and

(c) Protocol Description (P.D.): use of sequence diagrams to specify the
grammar of each pragmatic communication protocol in terms of
speech-act performatives.

3. Agent Implementation Model: a classical model of the solution architec-
ture in terms of classes and methods; the most important difference with the
common object-oriented approach is that we have two different levels of
abstraction, the social (multi-agent) level and the single-agent level. This
model is composed of the following steps:

(a) Agent Structure Definition (A.S.D.): conventional class diagrams
describe the structure of solution agent classes; and

(b) Agent Behavior Description (A.B.D.): activity diagrams or state-
charts describe the behavior of individual agents.

4. Code Model: a model of the solution at the code level requiring the
following steps to produce it:

84 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(a) generation of code from the model using one of the functionalities of
the PASSI add-in. It is possible to generate not only the skeletons but
also largely reusable parts of the method’s implementation based on
a library of reused patterns and associated design descriptions; and

(b) manual completion of the source code.

5. Deployment Model: a model of the distribution of the parts of the system
across hardware processing units and their migration between processing
units. It involves one step: Deployment Configuration (D.C.): deployment
diagrams describe the allocation of agents to the available processing units
and any constraints on migration and mobility.

Testing: the testing activity has been divided into two different steps: the
single-agent test is devoted to verifying the behavior of each agent
regarding the original requirements for the system solved by the specific
agent (Caire, Cossentino, Negri, Poggi, & Turci, 2004). During the Society
Test, integration verification is carried out together with the validation of
the overall results of this iteration. The Agent Test is performed on the
single agent before the deployment phase, while the society test is carried
out on the complete system after its deployment.

In the following, each of the above cited models will be discussed in details in a
specific subsection.

The Agent in PASSI

The concept of agent will be central to our discussion and therefore a definition
of what we mean by an agent will be helpful before proceedings.

In PASSI, we consider two different aspects of the agent: during the initial steps
of the design, it is seen as an autonomous entity capable of pursuing an objective
through its autonomous decisions, actions, and social relationships. This helps in
preparing a solution that is later implemented, referring to the agent as a
significant software unit. An agent may undertake several functional roles during
interactions with other agents to achieve its goals. A role is a collection of tasks
performed by the agent in pursuing a sub-goal or offering some service to the
other members of the society. A task, in turn, is defined as a purposeful unit of
individual or interactive behavior. Each agent has a representation of the world
in terms of an ontology that is also referred to in all the messages that the agents
exchange.

From Requirements to Code with the PASSI Methodology 85

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Iterations

PASSI is iterative, as are most widely accepted object-oriented methods. There
occur two types of iterations in it. The first one is led by new requirements and
involves all the PASSI models.

The second iteration occurs, involving only modifications to the Agent Implemen-
tation Model. It is characterized by a double level of iteration (see Figure 2). We
need to look at this model as characterized by two views: the multi-agent and
single-agent views. The outer level of iteration (dashed arrows) concerns the
dependencies between multi-agent and single-agent views. The first (multi-
agent) view relates to the agents’ structure (in terms of cooperation and tasks
involved) and behaviors (flows of events depicting cooperation). The second one
instead relates to the single-agent structure (attributes, methods, inner classes)
and behavior (specified in an appropriate way). The inner level of iteration
(Agent Structure Definition – Agent Behavior Description) takes place in both
the multi-agent and single-agent views and concerns the dependencies between
structural and behavioral matters.

As a consequence of this double level of iteration, the Agent Implementation
Model is composed of two steps (A.S.D. and A.B.D.) but yields four kinds of
diagrams, taking into account the multi- and the single-agent views.

A More Detailed Description of PASSI

Throughout the following subsections, we refer to the “Juul Møller Bokhandel A/
S” Case Study (Andersen, 1997) that describes the problems of a small
bookstore coping with rapidly expanding Internet-based book retailers. The
bookstore has a strong business relationship with the Norwegian School of

Figure 2. The agents’ implementation iterations

86 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Management. Nevertheless, there are communication gaps between them. As
a consequence, the bookseller is in trouble, for example, when pricing the books
(due to a lack of information about the number of attendees of some courses) or
when the School changes the required literature. In addition, there are problems
with the distribution chain. This requires a strong knowledge of distributors’ and
publishers’ processes and practices.

Domain Requirements Description Phase

Although many authors make use of goals in requirements engineering (Antón
& Potts, 1998, Potts, 1999), we prefer the approach coming from Jacobson,
Christerson, Jonsson, and Overgaard (1992), and we describe requirements in
terms of use case diagrams. The Domain Requirements Description Phase, as
a result, is a functional description of the system composed of a hierarchical
series of use case diagrams. Scenarios of the detailed use case diagrams are then
explained using sequence diagrams. Figure 3 shows part of the Domain
Requirements Description diagram depicting our analysis for the bookstore case
study. Stereotypes used here come from the UML standard.

Throughout this chapter, we will only examine one scenario—the one that takes
place every time that the bookstore needs to purchase some books (Provide
Books use case in Figure 3). This may happen, for example, before the beginning
of every semester, so as to provide the store with the requested books and
therefore anticipate the students’ needs; or when some faculty has changed the
required literature or switched a book from “recommended” to “required.” The
scenario begins with the prediction of the students’ needs in order to establish
whether there is a sufficient number of copies of that book in the store or not.
If not, and if the book is needed, a new purchase must be made; this in turn
includes (see Figure 3):

• Definition of the desired quotation (Define Purchase-Money use case) by
the use of an expert system that holds the history of previous purchases,
especially with regard to courses, teachers, number of attendees, books
purchased and books sold, suppliers, time elapsed for negotiation and
delivery, and so forth.

• Negotiation of the price (Negotiate Purchase-Money use case).

• Execution of the order (Carry Out Order).

• Updating of the purchase history archive (Update Purchase History) in
order to increase the knowledge of the purchase expert system.

• Receiving delivery information about the purchase (Receive Delivery) in
order to close the case related to it.

From Requirements to Code with the PASSI Methodology 87

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Agent Identification Phase

If we look at a MAS as a heterogeneous society of intended and existent agents
that in Jackson’s terminology can be “bidden” or influenced but not determinis-
tically controlled (Jackson, 2001), it is more reasonable to locate required
behaviors into units of responsibility from the start. That is why we have put this
phase in the System Requirements Model.

Agents’ identification starts from the use case diagrams of the previous step.
Using our definition of agent, it is possible to see identification as a use case or
a package of use cases in the functional decomposition of the previous phase.
Starting from a sufficiently detailed diagram of the system functionalities (Figure
3), we group one or more use cases into stereotyped packages so as to form a
new diagram (Figure 4). In so doing, each package defines the functionalities of
a specific agent.

Relationships between use cases of the same agent follow the usual UML syntax
and stereotypes (see the “include” relationships in the Purchase Monitor and
Purchase Advisor agents in Figure 4), while relationships between use cases of
different agents are stereotyped as “communicate.”

The convention adopted for this diagram is to direct communication relationships
between agents from the initiator towards the participant.

Figure 3. A portion of domain requirements description diagram

88 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Note, for example, how the “include” relationship between the use cases
Provide Books and Receive Delivery (Figure 3) turned from “include” into
“communication” and also changed the navigability direction. This reflects the
fact that in an autonomous organization of agents in a distributed system, we can
organize things in a departmental manner, so as to have a StoreKeeper actor that
records any stock’s delivery that occurs. The StoreUI agent may then notify the
Purchase Manager agent of that delivery. In so doing, the Purchase Manager
does not need to keep bothering about the delivery of a stock, but rather it
continues to work while another agent is taking care of this task.

The selection of the use cases that will be part of each agent should be done
pursuing the criteria of functionality coherence and cohesion. These are impor-
tant attributes of the design, and if the adopted agent identification does not
produce a satisfactory result from this point of view, a change in it is strongly
advised. In a limited number of cases (for instance when relevant limits in
communication bandwidth are predictable, as occurs for agents deployed in small

Figure 4. The agents identification diagram obtained from the requirements
described in the previous phase

From Requirements to Code with the PASSI Methodology 89

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and mobile devices), agents should be composed also considering how big are the
information banks they exchange, although this cannot be evaluated at this stage.
The iterative and incremental nature of PASSI provides great help in solving this
problem; an initial hypothesis for agent identification is done and, if problems
occur, it can be changed in successive iterations.

Roles Identification Phase

This phase occurs early in the requirements analysis since we now deal more
with an agent’s externally visible behavior than its structure – only approximate
at this step.

Roles identification (R. Id.) is based on exploring all the possible paths of the
Agents Identification diagram involving inter-agent communication. A path
describes a scenario of interacting agents working to achieve a required behavior
of the system. It is composed of several communication paths. A communication
path is simply a “communicate” relationship between two agents in the above
diagram. Each of them may belong to several scenarios, which are drawn by
means of sequence diagrams in which objects are used to symbolize roles.

Figure 5 shows the already presented scenario, arising when a new purchase is
required from the role Informer of the PurchaseMonitor agent to the role
BooksProvider of the Purchase Manager agent. Although the diagram
resembles an UML sequence diagram, the syntax is a bit different. Each object
in the diagram represents an agent’s role, and we name it with the following
syntax:

<role_name> : <agent_name>

An agent may participate in different scenarios playing distinct roles in each. It
may also play distinct roles in the same scenario (as happens to the Purchaser
and the Purchase Advisor agents in Figure 5). Usually, UML sequence
diagrams begin because of some actor’s action; in PASSI, being agents
autonomous and active, they can trigger a new scenario and actors can appear
later (or not). For this reason, the PurchaseMonitor agent (while playing its
Informer role) can be the first element of this diagram and can fire it.

The messages in the sequence diagram may either signify events generated by
the external environment or communication between the roles of one or more
agents. A message specifies what the role is to do and possibly the data to be
provided or received.

90 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We can describe the scenario as follows:

• The Informer informs the BooksProvider that the bookstore needs to
purchase a specified stock of books.

• Given a list of suppliers for the needed books, the BooksProvider requests
that the Consultant suggest purchase conditions (number of stocks,
purchase money, etc.) on the basis of past business.

• Whether the Consultant has returned any advice or not, the BooksProvider
gives the Negotiator the data about the supplier with which to negotiate and
the conditions to be negotiated; at the same time, it requests the negotiation
to be started. The BooksProvider is then ready to take care of other
requests that may come from the cooperating agents’ roles.

Figure 5. The roles identification diagram for the scenario in which the
Purchase Monitor agent announces the need for a book purchase

From Requirements to Code with the PASSI Methodology 91

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The Negotiator negotiates via fax or e-mail (this is the case of the present
scenario) and gets the best offer. It then returns it to the BooksProvider.

• The BooksProvider establishes whether the offer is good enough or not,
according to its budget and considerations such as the pricing of the book
and the number of students that would then buy it. In this scenario, we
assume that the offer is good enough and so the BooksProvider proposes
that the OrderPlacer buys the books. Therefore, the BooksProvider is
then ready to take care of other requests.

• When the books are delivered, a notification is then forwarded from the
DeliveryNotifier to the BooksProvider.

The rest of the scenario is straightforward. Data contained in the messages of
the above sequence diagram are specified more in details later in the Ontology
Description phase.

Task Specification Phase

At this step, we focus on each agent’s behavior in order to conceive of a plan
that could fulfil the agent’s requirements by delegating its functionalities to a set
of tasks. Tasks generally encapsulate some functionality that forms a logical unit
of work. For every agent in the model, we draw an activity diagram that is made
up of two swimlanes. The one from the right-hand side contains a collection of
activities symbolizing the agent’s tasks, whereas the one from the left-hand side
contains some activities representing the other interacting agents.

A Task Specification diagram (T.Sp.) (see Figure 6) summarizes what the agent
is capable of doing, ignoring information about roles that an agent plays when
carrying out particular tasks. Relationships between activities signify either
messages between tasks and other interacting agents or communication be-
tween tasks of the same agent. The latter are not speech acts, but rather signals
addressing the necessity of beginning an elaboration, that is, triggering a task
execution or delegating another task to do something. In order to yield an agent’s
T.Sp. diagram, we need to look at all of the agent’s R.Id. diagrams (i.e., all of
the scenarios in which it participates). We then explore all of the interactions and
internal actions that the agent performs to accomplish a scenario’s purpose.
From each R.Id. diagram, we obtain a collection of related tasks. Grouping them
all together appropriately then results in the T.Sp. diagram.

Because drawing a Task Specification diagram for each agent would require too
much space in this chapter, we proceed from now on by focusing on a single
agent: the Purchase Manager. In Figure 6, we can see its T.Sp. diagram. In this

92 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

example, we suppose that a Listener task is needed in order to forward incoming
communication to the proper task; this is common in many MAS platforms (for
example, in FIPA-OS [Poslad, Buckle, & Hadingham, 2000]), while this is not
necessary in some others. We decided to present this situation because all the
others can be reduced to this one. Further tasks are needed to handle all the
incoming messages of the R.Id. scenario (see ReceivePurchaseRequest and
ReceiveDeliveryNotification tasks in Figure 6 that correspond to the R.Id.
messages coming from the Purchase Monitor and StoreUI agents, respec-
tively, in Figure 5). Likewise, a task is introduced for each outgoing message (or
series of messages that could be unified in one communication) of the R.Id.
scenario (see AskForAdvice , AskNegotiation , AskOrdering ,
UpdatePurchaseHistory, and NotifyEndOfPurchase in Figure 6). In this way,
we dedicate one task to deal with each communication and, if necessary, with
minor other duties (for example, simple elaboration of received data). If a
relevant activity follows/prepares the incoming/outgoing communication, extra
tasks may be introduced to face a better decomposition of the agent (see
StartPurchase task in Figure 6).

Figure 6. The tasks of the purchase manager agent

From Requirements to Code with the PASSI Methodology 93

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Ontology Description Phase

In the PASSI methodology, the design of ontology is performed in the Domain
Ontology Description (D.O.D.) Phase and a class diagram is used. Several
works can be found in the literature about the use of UML for modeling ontology
(Bergenti & Poggi, 2000, Cranefield & Purvis, 1999). Figure 7 reports an
example of a PASSI D.O.D. diagram; it describes the ontology in terms of
concepts (categories, entities of the domain), predicates (assertions on proper-
ties of concepts), actions (performed in the domain), and their relationships. This
diagram represents an XML schema that is useful to obtain a Resource
Description Framework (RDF) encoding of the ontological structure. We have
adopted RDF to represent our ontologies, since it is part of both the W3C (1999)
and FIPA (2001) specifications.

Elements of the ontology are related using three UML standard relationships:

• Generalization, which permits the “generalize” relation between two
entities, which is one of the essential operators for constructing an ontology;

• Association, which models the existence of some kind of logical relation-
ship between two entities and allows the specification of the role of the
involved entities in order to clarify the structure; and

• Aggregation, which can be used to construct sets where value restrictions
can be explicitly specified; this originates from the W3C RDF specification
where three types of container objects are enumerated, namely the bag (an
unordered list of resources), the sequence (an ordered list of resources),
and the alternative (a list of alternative values of a property), and is
therefore not UML-compliant.

The example in Figure 7 shows that each Purchase is related to a
SuccessfulNegotiation, a predicate that reports if an order has been issued
(attribute orderIssued is true in this case) as a consequence of a negotiation. It
includes a request from the library (ourRequest) for a specific Stock and an
offer from the supplier (theirBestOffer) for that Stock. Delivery is an example
of action—it describes the activity done by the Supplier of delivering to the
Storekeeper some books listed in an ordered stock.

The Communication Ontology Description (C.O.D.) diagram (Figure 8) is a
representation of the agents’ (social) interactions; this is a class diagram that
shows all agents and all their interactions (lines connecting agents). In designing
this diagram, we start from the results of the A.Id. (Agent Identification) phase.
A class is introduced for each identified agent, and an association is then

94 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

introduced for each communication between two agents (ignoring, for the
moment, distinctions about agents’ roles). Clearly, it is also important to
introduce the proper data structure (selected from elements of the Domain
Ontology Description) in each agent in order to store the exchanged data. The
association line that represents each communication is drawn from the initiator
of the conversation to the other agent (participant) as can be deduced from the
description of their interaction performed in the Role Identification (R.Id.)
phase. According to FIPA standards, communications consist of speech acts
(Searle, 1969) and are grouped by FIPA in several interaction protocols that
define the sequence of expected messages. As a consequence, each communi-
cation is characterized by three attributes, which we group into an association
class. This is the characterization of the communication itself (a communication

Figure 7. The domain ontology diagram

From Requirements to Code with the PASSI Methodology 95

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

with different ontology, language, or protocol is certainly different from this one)
and its knowledge is used to uniquely refer this communication (which can have,
obviously, several instances at runtime, since it may arise more than once). Roles
played by agents in the interaction (as derived from the R.Id. diagrams) are
reported at the beginning and the end of the association line.

In Figure 8, the PurchaseManager agent starts a conversation (see
QueryForAdvice association class) with the PurchaseAdvisor agent. The
conversation contains the Course ontology, the Query protocol, and the RDF
language. This means that the PurchaseManager wants to perform a speech
act based on the FIPA’s query protocol in order to ask the PurchaseAdvisor for
advice on how to purchase (supplier, number of stocks, number of items per each,
purchase-money) provided the Course information.

Roles Description Phase

This phase models the lifecycle of an agent taking into account its roles, the
collaborations it needs, and the conversations in which it is involved. In this phase,
we can also introduce the social rules of the society of agents (organizational
rules) (Zambonelli, Jennings, & Wooldridge, 2001) and the behavioral laws as

Figure 8. The communication ontology diagram

96 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

considered by Newell (1982) in his “social level.” These laws may be expressed
in OCL or other formal or semi-formal manner depending on our needs.

The Roles Description (R.D.) phase yields a class diagram in which classes are
used to represent roles (the UML syntax and notation is here modified slightly
in order to represent agents’ related concepts). Each agent is symbolized by a
package containing its roles’ classes (see Figure 9). Each role is obtained by
composing several tasks in a resulting behavior. In order to show which tasks are
necessary to compose the desired behavior, in this diagram, we put tasks in the
operation compartment of the related role’s class. Each task is related to an
action or a set of actions, and therefore the list of tasks describes what a role is
able to do; it can also be helpful in the identification of reusable patterns. An R.D.
diagram can also show connections between roles of the same agent, represent-
ing changes of role (dashed line with the name [ROLE CHANGE]). This
connection is depicted as a dependency relationship because we want to signify
the dependency of the second role on the first. Sometimes the trigger condition
is not explicitly generated by the first role, but its precedent appearance in the
scenario justifies the consideration that it is necessary to prepare the situation
that allows the second role to start. Conversations between roles are indicated
by solid lines, as we did in the Communication Ontology Diagram, using exactly
the same relationships names; this consistency, like other quality aspects of

Figure 9. The roles description diagram for our scenario

From Requirements to Code with the PASSI Methodology 97

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

design, is ensured by the use of PTK (PASSI ToolKit, an open source add-in for
Rational RoseTM) that automatically builds portions of several diagrams and
performs several checks on the inputs provided by the designer to verify their
correctness with regards to the other parts of the design.

We have also considered dependencies between agents (Yu & Liu, 2000).
Agents are autonomous, so they could refuse to provide a service or a resource.
For this reason, the design needs a schema that expresses such matters so as to
explore alternative ways to achieve the goals. In order to realize such a schema,
we have introduced in the Roles Description diagram some additional relation-
ships that express the following kinds of dependency:

• Service dependency: a role depends on another to bring about a goal
(indicated by a dashed line with the service name).

• Resource dependency: a role depends on another for the availability of an
entity (indicated by a dashed line with the resource name).

Protocols Description Phase

As we have seen in the Ontology Description phase and as specified by the FIPA
architecture, an Agent Interaction Protocol has been used for each communica-
tion. In our example, all of them are FIPA standard protocols (FIPA, 2000).
Usually the related documentation is given in the form of AUML sequence
diagrams (Odell, Van Dyke Parunak, & Bauer, 2001). Hence, the designer does
not need to specify protocols on his own. In some cases, however, existing
protocols are not adequate and, subsequently, some dedicated ones need to be
properly designed; this can be done using the AUML diagrams.

Agents Structure Definition Phase

As argued in subsection “Iterations,” this phase influences and is influenced by
the Agent Behavior Description phase as a double level of iteration occurs
between them. The Agent Structure Definition phase produces several class
diagrams logically subdivided into two views: the multi-agent and the single-
agent views. In the former, we call attention to the general architecture of the
system and so we can find agents and their tasks. In the latter, we focus on each
agent’s internal structure, revealing all the attributes and methods of the agent
class together with its inner tasks’ classes (the FIPA-platform classes that will
be coded).

98 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Multi-Agent Structure Definition (MASD)

At this stage, one diagram represents the MAS as a whole (Figure 10). The
diagram shows classes, each symbolizing one of the agents identified in the A.Id.
phase. Actors are reported in order to represent significant agents’ interactions
with the environment (for instance through sensing devices or actuators).
Attributes compartments can be used to represent the knowledge of the agent
as already discussed in the Communication Ontology diagram, whereas opera-
tions compartments are used to signify the agent’s tasks.

Single-Agent Structure Definition (SASD)

Here one class diagram (Figure 11) is used for each agent to illustrate the agent’s
internal structure through all of the classes making up the agent, which are the

Figure 10. The multi-agent structure definition diagram for the bookstore
case study

From Requirements to Code with the PASSI Methodology 99

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

agent’s main class together with the inner classes identifying its tasks. At this
point, we set up attributes and methods of both the agent class (e.g., the
constructor and the shutdown method when required by the implementation
platform) and the tasks’ classes. The result of this stage is to obtain a detailed
structure of the software, ready to be implemented almost automatically.

Agents Behavior Description Phase

As was seen in the previous phase, this phase influences and is influenced by the
Agent Structure Definition phase in a double level of iterations. The Agent
Behavior Description phase produces several diagrams that are subdivided into
the multi-agent and the single-agent views. In the former, we draw the flow of
events (internal to agents) and communications (among agents) by representing
method invocations and the message exchanges. In the latter, we detail the above
methods.

Multi-Agent Behaviour Description (MABD)

At this stage, one or more activity diagrams are drawn to show the flow of events
between and within both the main agent classes and their inner classes
(representing their tasks). We depict one swimlane for each agent and for each
task. The activities inside the swimlanes indicate the methods of the related
class. Unlike DeLoach, Wood, and Sparkman (2001), we need not introduce a
specific diagram for concurrency and synchronization since UML activity
diagrams’ syntax already supports it.

Figure 11. The single-agent structure definition diagram for the
purchasemanager agent.

100 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The usual transitions of the UML standard are depicted here as signifying either
events (e.g., an incoming message or a task conclusion) or invocation of
methods. A transition is drawn for each message recognized in the preceding
phases (e.g., from the R.Id. diagram). In this kind of transition, we indicate the
message’s performative as it is specified in the Communication Ontology
Description diagram and the message’s content as described in the Domain
Ontology Description diagram. This results in having a comprehensive descrip-
tion of the communication including the exact methods involved.

Figure 12 shows an example of a multi-agent behavior description. The
StartPurchase task of the PurchaseManager agent instantiates the
StartNegotiation task by invoking the newTask super-class method. This has
to be done in order to ask the Purchaser agent to perform a negotiation with a
supplier. The invocation of the StartNegotiation task implies its startTask
method to be invoked (according to the FIPA-OS implementation platform we
have used). What the startTask method does is send a message to the
Purchaser agent. This contains the Request performative (as required by the
FIPA Request protocol) and the content OurRequest (coming from the D.O.D.
diagram, Figure 7). The handleRequest method of the Purchaser’s IdleTask
task receives the incoming communication and sends it to the
ReceiveNegotiationRequest task after this one has been instantiated as above.
When a task completes its job, the done method is invoked.

This kind of diagram often becomes very huge and difficult to draw/read. In
order to deal with this problem, an extended version of it has been presented in
Caire et al. (2004) where the revised syntax supports different levels of detail.

Figure 12. An example of multi-agent behaviour description diagram

From Requirements to Code with the PASSI Methodology 101

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Single-Agent Behaviour Description (SABD)

This phase is quite a common one as it involves implementation of methods,
exactly the ones introduced in the SASD diagrams. Designers are free to
describe them in the most appropriate way (for example, using flow charts, state
diagrams, or semi-formal text descriptions).

Code Reuse Phase

In this phase, we try to reuse predefined patterns of agents and tasks. With the
term pattern, we do not only mean code but also design diagrams. As a matter
of fact, the reuse process typically takes place in some CASE tool environment,
where the designer looks more at diagrams detailing a pattern’s libraries than
rough code. So we prefer to look at patterns as pieces of design and code to be
reused in the process of implementing new systems.

We have extended the Rational Rose UML CASE tool by developing an add-in
supporting PASSI (PTK) and a specific pattern reuse application (AgentFactory).
PTK and AgentFactory are complementary and responsible for two different
stages of the design-implementation activities: initially, PTK helps in compiling
the PASSI diagrams, then AgentFactory is used to generate the agents’ code
when patterns have been used in the design. PTK initial releases were able to
generate agents’ code, but this duty has been, more recently, assigned to the
AgentFactory application. It works in this way: the PTK (PASSI ToolKit) add-
in can export the multi-agent system model to AgentFactory or generate the code
for just the skeletons of the designed agents, behaviors, and other classes
included in the project. AgentFactory code generation capabilities (Cossentino,
Sabatucci, Sorace, & Chella, 2003) are much more advanced than similar
functions of PTK; AgentFactory can, very quickly, create complex multi-agent
systems by using patterns from a large repository and can also provide the design
documentation of the composed agents. The tool can work online as a Web-
based application, but can also be used as a stand-alone application. This
approach has proven quite flexible (Cossentino, Sabatucci, & Chella, 2003) in
reusing patterns, thanks to its binding of design elements to code.

Due to the most common FIPA-compliant implementation platforms that del-
egate a specific task for each specific communication, it has turned out that in
our applications, which are mainly JADE or FIPA-OS based, some of the most
useful patterns are the ones that could be categorized as interaction patterns.

Our patterns (whose discussion is out of the scope of this chapter) result from
the composition of three different aspects of a multi-agent system:

102 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. the static structure of one or more agent(s) or parts of them (i.e. behaviors);

2. the description of the dynamic behavior expressed by the previously cited
elements; and

3. the program code that realizes both the static structure (skeletons) and the
dynamic behavior (inner parts of methods) in a specific agent platform
context (for example JADE).

In reusing patterns from our repository, the designer can select the generic
agent pattern (that has the capability of registering itself to the basic platform
services), and he/she can introduce it in the actual project. In this way, with a few
mouse clicks, he/she created a totally new agent, the design diagram has been
updated (although with some limitations due to the actual level of integration
between Rational Rose and AgentFactory), and the agent’s code is properly
functional.

The repository also includes a list of behaviors that can be applied to existing
agents. For example, we have behaviors dedicated to deal with the initiator/
participant roles in the most common communications. When a pattern is
introduced in the design, not only are some diagrams (like the structural and
behavioral one of the implementation level) updated. but the resulting code also
contains large portions of inner parts of methods; the result is a highly affordable
and quick development production process.

Code Completion Phase

This phase is the classical work of the programmer, who just needs to complete
the body of the methods yielded to this point, by taking into account the design
diagrams.

Deployment Configuration Phase

The Deployment Configuration (D.C.) phase has been thought to comply with
the requirements of detailing the agents’ positions in distributed systems or more
generally in mobile-agents’ contexts.

The Deployment Configuration diagram is a UML deployment diagram and
illustrates the location of the agents (the implementation platforms and process-
ing units where they live), their movements, and their communication support.
The standard UML notation is useful for representing processing units (by
boxes), agents (by components), and the like. What is not supported by UML is
the representation of the agent’s mobility, which we have done by means of a

From Requirements to Code with the PASSI Methodology 103

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

syntax extension consisting of a dashed line with a move_to stereotype connect-
ing an agent reported in both its initial and final positions.

Discussion

Methodologies differ in commitments about the target agent architecture.
PASSI is a requirement-to-code analysis and design methodology characterized
by an iterative step-by-step refinement of the system, producing at its final stage
a concrete design and implementation based on the FIPA architecture. Gaia, by
contrast, regards the output of the analysis and design process as an abstract
specification that necessitates being further developed by extra lower-level
design methodologies. So does MaSE, but, on the other hand, it goes further in
the design process if compared with Gaia. Now, one might think that a general
approach such as Gaia is more advantageous, given the present proliferation of
agent technologies. However, PASSI does not lead to a narrow scope concrete
technology but rather actually yields executable code for a concrete and
increasingly utilized standard architecture such as FIPA.

A key issue in modeling multi-agent system is the conversation among agents.
In order to obtain a proper model of conversation, it would be desirable to have
an ontology description of the system. Excluding PASSI, none of the other
methodologies compared throughout this book specifically addresses such a
matter (to be more precise, Dileo, Jacobs, and DeLoach [2002] have recently
proposed a method to introduce ontology in MaSE). The PASSI Ontology
Description phase describes the society of agents taking into account its
ontological point of view. As counterpart, in MaSE, there is a detailed description
of conversations by means of complementary state automata (couples of
Communication Class Diagram) representing agents’ state involved in commu-
nication. Together, the complementary sides of conversation make up a protocol
definition. As for Gaia, a definition of protocols is provided in the Interaction
Model.

Conclusion and Further Work

The methodology proposed here has proved successful with multi-agent and
distributed systems, both in robotics and information systems. It has been used
in several research projects and in the Software Engineering course at the
University of Palermo for final assignments. Students and researchers appreci-

104 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ated the step-by-step guidance provided by the methodology and have found it
rather easy to learn and to use. Among the most appreciated features, we can
list: (1) the ease of transition for designers coming from the object-oriented
world, since the initial parts of PASSI adopt concepts of requirements analysis
that are very common in that context; (2) the multiple views that permit an easy
analysis of complex systems from many different aspects; (3) the support of a
specific design tool (PTK, an add-in for Rational Rose), and (4) the patterns
reuse that allows a rapid development of MASs. The implementation environ-
ments that we have used were based on the FIPA architecture in accordance
with the aim of adopting standards whenever possible. We are now working on
the enhancement of the CASE tool supporting PASSI and on the enlargement of
the pattern repository in order to further increase the productivity of the PASSI
developer.

References

Andersen, E. (1997). Juul Møller Bokhandel A/S. Norwegian School of
Management. Retrieved from: http://www.espen.com/papers/jme.pdf.

Antón, A.I. & Potts, C. (1998). The use of goals to surface requirements for
evolving systems. In Proceedings of International Conference on
Software Engineering (ICSE ’98). pp.157-166.

Aridor, Y. & Lange, D.B. (1998). Agent design patterns: Elements of agent
application design. In Proceedings of the Second International Confer-
ence on Autonomous Agents. pp.108-115.

Bergenti, F. & Poggi A. (2000). Exploiting UML in the design of multi-agent
systems. In Proceedings of First International Workshop Engineering
Societies in the Agents World.

Bernon, C., Camps, V., Gleizes, M-P., & Picard, G. (2004). Tools for self-
organizing applications engineering. In Proceedings of the First Interna-
tional Workshop on Engineering Self-Organising Applications (ESOA).
Springer-Verlag.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. (2004).
TROPOS: An agent-oriented software development methodology. Jour-
nal of Autonomous Agents and Multi-Agent Systems, 8(3), 203-236.

Caire, G., Cossentino, M., Negri, A., Poggi, A., & Turci, P. (2004). Multi-agent
systems implementation and testing. In Proceedings of the Agent Tech-
nology to Agent Implementation Symposium (AT2AI-04).

From Requirements to Code with the PASSI Methodology 105

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chella, A., Cossentino, M., & Lo Faso, U. (2000). Designing agent-based
systems with UML. In Proceedings of International Symposium on
Robotics and Automation ISRA’2000.

Cossentino, M., Sabatucci, L., & Chella, A. (2003). A possible approach to the
development of robotic multiagent systems. In Proceedings of IEEE/WIC
IAT’03 Conference.

Cossentino, M., Sabatucci, L., Sorace, S., & Chella, A. (2003). Patterns reuse
in the PASSI methodology. Fourth International Workshop Engineer-
ing Societies in the Agents World.

Cranefield, S. & Purvis, M. (1999). UML as an ontology modelling language. In
Proceedings of the Workshop on Intelligent Information Integration at
16th International Joint Conference on Artificial Intelligence (IJCAI-
99).

DeLoach, S. A., & Wood, M. (2001). Developing multi-agent systems with
agentTool. Intelligent Agents VII - Proceedings of the 7th International
Workshop on Agent Theories, Architectures, and Languages
(ATAL’2000). Springer Lecture Notes in AI. Berlin: Springer Verlag.

DeLoach, S.A., Wood, M.F., & Sparkman, C.H. (2001). Multi-agent systems
engineering. International Journal on Software Engineering and Knowl-
edge Engineering, 11(3), 231-258.

DiLeo, J., Jacobs, T. & DeLoach, S. (2002). Integrating ontologies into multi-
agent systems engineering. In Proceedings of the Fourth International
Conference on Agent-Oriented Information Systems (AIOS-2002).

FIPA. (2000). Communicative Act Library Specification. FIPA Document
#FIPA00037. Retrieved from: http://www.fipa.org/specs/fipa00037/

FIPA. (2001). FIPA RDF Content Language Specification. FIPA Document
FIPA XC00011B. Retrieved from: http://www.fipa.org/specs/ fipa00011/
XC00011B.html

Jackson, M. (2001). Problem frames: Analyzing and structuring software
development problems. Reading, MA: Addison Wesley.

Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G. (1992). Object-
oriented software engineering: A use case driven approach. Reading,
MA: Addison-Wesley.

Jennings, N.R. (2000). On agent-based software engineering. Artificial Intel-
ligence, 117, 277-296.

Kendall, E. A., Krishna, P. V. M., Pathak, C. V., & Suresh, C. B. (1998).
Patterns of intelligent and mobile agents. In Proceedings of the Second
International Conference on Autonomous Agents. pp. 92-99.

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18, 87-127.

106 Cossentino

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

O’Brien, P. & Nicol, R. (1998). FIPA - Towards a standard for software agents.
BT Technology Journal, 16(3), 51-59.

Odell, J., Van Dyke Parunak, H., & Bauer, B. (2001). Representing agent
interaction protocols in UML. In Agent-Oriented Software Engineering,
pp. 121-140. Berlin: Springer-Verlag.

OMG. (2003a). Software Process Engineering Metamodel Specification. Ver-
sion 1.0.

OMG. (2003b). Unified Modeling Language Specification. Version 1.5.

Poslad S., Buckle, P., & Hadingham, R. (2000). The FIPA-OS agent platform:
Open source for open standards. In Proceedings of the 5th International
Conference and Exhibition on the Practical Application of Intelligent
Agents and Multi-Agents. pp.355-368.

Potts, C. (1999). ScenIC: A strategy for inquiry-driven requirements determina-
tion. In Proceedings of IEEE Fourth International Symposium on
Requirements Engineering (RE’99). pp.58-65.

Robbins, J., Medvidovic, N., Redmiles, D., & Rosenblum, D. (1998). Integrating
architecture description languages with a standard design method. In
Proceedings of the Twentieth International Conference on Software
Engineering (ICSE ’98). pp.209-218.

Searle, J.R. (1969). Speech acts. Cambridge, UK: Cambridge University Press.

SPEM (2002) — MISSING HERE

W3C. (1999). Resource Description Framework. (RDF), Model and Syntax
Specification. W3C Recommendation 22-02-1999. Retrieved from: http:/
/www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

Wooldridge, M. & Ciancarini, P. (2001). Agent-oriented software engineering:
The state of the art. In P. Ciancarini & M. Wooldridge (Eds.), Agent-
Oriented Software Engineering, No.1957 in LNCS, pp.1-28. Berlin:
Springer-Verlag.

Yu, E. & Liu, L. (2000). Modelling trust in the i* strategic actors framework. In
Proceedings of the 3rd Workshop on Deception, Fraud and Trust in
Agent Societies at Agents 2000.

Zambonelli, F., Jennings, N., & Wooldridge, M. (2001). Organizational rules as
an abstraction for the analysis and design of multi-agent systems. Journal
of Knowledge and Software Engineering, 11(3), 303-328.

Zambonelli, F., Jennings, N., & Wooldridge, M. (2003). Developing multiagent
systems: The Gaia methodology. ACM Transactions on Software Engi-
neering and Methodology, 12(3), 417-470.

