
MAS Meta-models on Test:
UML vs. OPM in the SODA Case Study

Ambra Molesini1 Enrico Denti1 Andrea Omicini2

1 DEIS, Alma Mater Studiorum, Università di Bologna
Viale Risorgimento 2, 40136 Bologna, Italy

amolesini@deis.unibo.it, enrico.denti@unibo.it
2 DEIS, Alma Mater Studiorum, Università di Bologna a Cesena

Via Venezia 52, 47023 Cesena, Italy
andrea.omicini@unibo.it

Abstract In the AOSE (Agent-Oriented Software Engineering) area,
several research efforts are underway to develop appropriate meta-models
for agent-oriented methodologies. Meta-models are meant to check and
verify the completeness and expressiveness of methodologies.
In this paper, we put to test the well-established standard Unified Mod-
elling Language (UML), and the emergent Object Process Methodology
(OPM), and compare their meta-modelling power. Both UML and OPM
are used to express the meta-model of SODA, an agent-oriented method-
ology which stresses interaction and social aspects of MASs (multi-agent
systems). Meta-modelling SODA allows us to evaluate the effectiveness of
the two approaches over both the structural and dynamics parts. Further-
more, this allow us to find out some desirable features that any effective
approach to meta-modelling MAS methodologies should exhibit.

1 Meta-models for MAS

The definition of a methodology is an interactive process, in which a core is
defined and then extended to include all the needed concepts. Meta-modelling
enables checking and verifying the completeness and expressiveness of a meth-
odology by understanding its deep semantics, as well as the relationships among
concepts in different languages or methods [1]. According to [2],

the process of designing a system (object or agent-oriented) consists of
instantiating the system meta-model that the designers have in their mind
in order to fulfil the specific problem requirements. In the agent world
this means that the meta-model is the critical element(...) because of the
variety of methodology meta-models.

In the context of MASs, a meta-model should be a structural representation of
the elements (agents, roles, behaviour, ontology, . . . ) that constitute the actual
system, along with their composing relationships. Several meta-models of AOSE
methodologies can be found in the literature—for instance, GAIA [2], PASSI [2],
ADELFE [2], Tropos [3], MESSAGE [4], IGENIAS [5]. Although a number of



these (PASSI, MESSAGE, ADELFE) adopt some kind of UML extensions to
express system models, while others (GAIA, TROPOS, IGENIAS) adopt some
ad-hoc symbology for the same purpose, the meta-models of all such methodo-
logies are still expressed in UML.

1.1 Why UML for Meta-models

The Unified Modeling Language (UML)[6] is the industry-standard language for
specifying, visualising, constructing, and documenting the artifacts of software
systems. Like other methods, UML is based on the decomposition principle, here
in the form of aspect decomposition. A system is then expressed as a multiplicity
of different models, each representing a specific system aspect: actually, UML
defines 12 types of diagrams, whose 4 represent the static application structure,
5 are devoted to capture the system’s dynamic behaviour, and 3 are related to
the organisation and management of application modules. Altogether, all these
models are expected to convey a complete system specification.

However, although the availability of so many models constitutes a richness
from the expressiveness viewpoint, each model introduces its own set of symbols
and concepts, thus leading to an unnatural complexity in terms of vocabulary,
model multiplicity and model integration [7]. This is a problem both for main-
taining consistency among the different system models and views, and for the
mental integration of such views, since integrating several models within one’s
mind an is a very difficult process. That is why the need to concurrently refer
to different models in order to understand a system and the way it operates
and changes over time is a critical issue, known as the multiplicity problem [8].
Despite this issue, however, the general adoption of UML as a world standard for
system modelling makes it the first natural choice for representing meta-models.

Adopting UML to express meta-models of methodologies endorses some spe-
cific issues, since representing a methodology is inherently different from repres-
enting a system at the object level. In particular, when meta-modelling method-
ologies, UML leads to emphasise objects and object relations, leaving aside the
procedural aspects, which can be revealed only indirectly, by object operations
and message exchanges. Moreover, the five behavioural diagrams provided by
UML to capture the dynamic behaviour of a system at the object level become
of little use at the meta-level, as they were defined to express which and how in-
teraction occurs, rather than what interaction is and what role it plays—which is
what is needed when representing a methodology. So, UML-based meta-models
usually exploit only package diagrams, class diagrams, and associations.

1.2 Why OPM for Meta-models

In order to better address the issues of representing the dynamics at the meta-
level, and possibly reduce the risk of inconsistency related to the multiplicity
problem, it is natural to “look outside” the UML world, looking for some al-
ternative approach. The Object Process Methodology (OPM henceforth) [9] is an
integrated approach to the study and development of systems in general, and



of software systems in particular. OPM is also a reflective methodology, i.e. a
methodology that can model itself without requiring any auxiliary means or ex-
ternal tools. OPM unifies the system’s life-cycle stages (specification, design and
implementation) within one single frame of reference, using a single diagram-
ming tool—Object-Process Diagrams (OPDs)—and a corresponding subset of
English, called Object-Process Language (OPL).

The basic assumption of OPM is that not only objects, but objects and pro-
cesses constitute two equally-important classes of things, which together describe
the functioning, structure and behaviour of a system in a single framework (i.e.,
without multiplying diagrams) in virtually any domain. Indeed, OPM’s basic
principle is that structure and behaviour in a system are so intertwined that
effectively separating them is extremely harmful, if not impossible. Therefore,
unlike the object-oriented approach, behaviour in OPM is not necessarily encap-
sulated within a particular object class construct: using stand-alone processes,
one can model a behaviour that involves several object classes and is integrated
into the system structure. Processes can be connected to the involved object
classes through procedural links, which are divided, according to their function-
ality, into three groups: enabling links, transformation links, and control links.

Opposite to UML’s aspect-based decomposition, which intrinsically violates
the OPM’s goal of a single all-describing model, OPM adopts detail decom-
position: rather then decomposing a system according to its various aspects,
decomposition proceeds by exploring the system’s abstraction levels. This is
done via three refinement/abstraction mechanisms: unfolding/folding, which re-
fines/abstracts from the structural parts of a thing (mainly an object), in-
zooming/out-zooming, which exposes/hides the inner details of a thing (mainly
a process) within its enclosing frame, and state expressing/suppressing, which
exposes/hides the states of an object.

1.3 Why Meta-modelling SODA

Interaction is a major source of complexity in software systems. This is partic-
ular true in multi-agent systems, where interaction can take different forms: for
instance, social interaction is concerned with agents interacting with each other,
while environmental interaction regards the agents’ interaction with their en-
vironment. Although most methodologies still focus on intra-agent issues, more
recently, methodologies like GAIA [10] and Hermes [11] have begun emphasising
the role of interaction, shifting their focus toward social interaction.

So, since our purpose here is to exploit an agent-oriented methodology as a
reference for stressing the pros and cons of different meta-modelling approaches,
a methodology addressing only intra-agent issues would not fit: we need a meth-
odology that widely deals with inter-agent issues, so that the social aspects of
multi-agent systems are in the front line. SODA [12] is a methodology which
explicitly focuses on suitably modelling the social aspects of a MAS. As such,
it assumes interaction to be the key aspect of its modelling process: a system
entity appears in a SODA model only in that it is involved in some interactions.
So, designing a multi-agent system in SODA amounts to defining agents in terms



of their required observable behaviour, i.e., of the interactions in which agents
are involved, and of the agents’ roles in the MAS. In addition, taking interac-
tion into account implies to consider relevant coordination issues, addressed by
SODA in the design phase. Therefore, in the following we first define the SODA
meta-model in UML (Section 2.1) and in OPM (Section 2.2), then comparat-
ively discuss the pros and cons of such meta-models and, by doing so, of the two
approaches in general (Section 3).

2 SODA Meta-models

SODA (Societies in Open and Distributed Agent spaces) [12] is an agent-oriented
methodology for the analysis and design of agent-based systems. SODA focuses
on inter-agent issues, like the engineering of societies and infrastructures for
multi-agent systems. Since this conceptually covers all the interaction within an
agent system, the design phase deeply relies on the notion of coordination model
[13]. In particular, coordination models and languages are taken as a source of
the abstractions and mechanisms required to engineer agent societies: social rules
are designed as coordination laws and embedded into coordination artifacts, and
the social infrastructure is built upon coordination system.

The analysis phase is characterised by three models: the role model, the
resource model and the interaction model. The design phase is based on three
strictly-related models, deriving from the models defined in the analysis phase; in
particular, the analysis’ role model maps on the design’s agent model and society
model, while the analysis’ resource model maps on the design’s environment
model. The analysis’ interaction model, in its turn, generates the interaction
protocols and coordination rules referenced by the design’s models (see [12] for
more details).

2.1 SODA Meta-model in UML

The UML meta-model of SODA (Figure 1) reflects the SODA distinction between
the analysis phase (top) and the design phase (bottom). In the analysis phase,
the boundaries between the resource model, the interaction model, and the role
model are well defined; in the design phase, instead, no such boundaries are
shown, because the entities of the analysis sub-models do not map one-to-one
onto analogous entities of the design model. It is worth noting that this UML
model clearly emphasise the centrality of interaction which is typical of the
SODA approach: in fact, if the interaction model were deleted, along with the
corresponding classes in the design phase, concepts such as roles and resources
would turn out to be separate and unrelated from one another.

Although this model captures the SODA concepts and associations as far as
UML’s (large yet somehow limited) graphical vocabulary makes it possible, the
result is not completely satisfactory, for several reasons. First, UML provides
basically a unique type of concept/symbol (the class) to represent entities which
are conceptually distinct in the meta-model. More precisely, while using the



Figure 1. SODA Meta-model in UML

UML class notion to capture the SODA organisational structure—i.e., entities
such as roles, tasks, groups, society, agents, resources, infrastructure classes—
leads to a satisfactory representation of these aspects, the same cannot be said
for interaction, whose classes are qualitatively different from the others (both
in the analysis and in the design phase), as they try to model an intrinsically
dynamic dimension by means of an intrinsically static abstraction.

The model entities are connected to each other by different relations—
inheritance, composition, aggregation, and generic association. In particular, the
relations between Group and (respectively) Individual role / Social role emphas-
ise that a Social role may either coincide with an already defined Individual
role (aggregation), or be defined ex-novo (composition). Moreover, the relations
between the structural entities and the “interaction entities” are critical from
the modelling viewpoint, since such entities are qualitatively different; this is
why they are expressed by a generic (tagged) association.

Another key aspect concerns the connections from the analysis phase to the
design phase. The label “map onto” is somehow vague, yet underlines the in-
trinsic difficulty in expressing the complex mapping from the analysis to the
design phase via a single association link. For instance, when mapping Role onto
Agent, the association itself is unable to express that Agent inherits task, per-
missions and interaction protocols from Role: so, a suitable label is the only (yet
unsatisfactory) way to express this fact.

2.2 SODA Meta-model in OPM

Figure 2 shows the SODA meta-model in OPM. Of course, many aspects dis-
cussed above—the distinction between the two phases, the analysis sub-models,



the centrality of interaction, the association “map onto”,—still hold: so, the
overall model structure is basically the same as in Figure 1.

However, the richer expressiveness of OPM’s graphical vocabulary with re-
spect to UML makes it possible to model the key aspect of interaction as an
OPM process, rather than as a class, thus expressing the dynamic aspects that
the (static) class notion alone could not capture. By doing so, the OPM meta-
model of SODA captures the transient nature of interaction in much a better
way than its UML counterpart. Furthermore, the richness of the OPM graphical
vocabulary offers a better alternative to replace UML generic (tagged) asso-
ciations with a new, semantically-clear symbology. For instance, the relation
between Resource and Policy (and between Coordination Medium and Coordin-
ation Rule) now adopts a specific symbol to express that Policy not only has a
structural relation with Resource, but is also an attribute of Resource.

On the other hand, since OPM introduces just one symbol (the solid black
triangle) to represent both composition and aggregation, distinguishing between
different relations (e.g Group/Individual Role, Group/Social Role) now requires
a careful reading of the participation constraint of the relation (where * means
“optional”, m means “many”, etc.). However, this aspect can be easily faced by
using OPM’s textual counterpart, OPL, that provides a human-readable descrip-
tion of the Object Process Diagram; the OPL of SODA meta-model is shown
in Figure 2 (bottom). Despite the richness of OPM’s vocabulary, some meta-
modelling relations are still difficult to express: this is particularly true for the
relations between structural entities and “X -Interacting” processes, that even
the (several) object/process link types provided by OPM are unable to capture
at a semantically-satisfactory level (more details in Section 3.2).

3 Discussion

In this Section, we discuss and compare the SODA meta-models in UML and
OPM, outlining the respective pros and cons. Generally speaking, both meta-
models fall short in modelling the SODA concept of interaction and the relations
between the structural parts and dynamic parts; in particular, this applies to
the relation of “participation”, as we outline below.

3.1 Pros and Cons of SODA Meta-model in UML

The structural parts of the SODA methodology are well modelled. Due to its
graphical vocabulary, UML is forced to model the SODA concept of interaction
via its class notion, thus giving a static view of interaction, as if it were always
present in the system—which is obviously misleading, since interaction has in-
trinsically a transient nature; indeed, capturing the transient aspects through a
class diagram can be difficult.

On the other hand, UML enables the concept of “participation” to inter-
action to be expressed better than in OPM, thanks to the a generic tagged
association: interestingly, this is possible just because interaction is represented



Figure 2. SODA Metamodel in OPM: OPD (top) and OPL (down)



as a class. However, distinguishing the semantic peculiarities of such associations
based just on the label is not easy. For instance, although we used the same gen-
eric association for modelling the participation both in the analysis and in the
design phases, in the first case the semantics is that Role participates to Inter-
action, while in the latter we mean that not only Agent plays an active part in
interaction, but its internal state is changed by interaction, too.

3.2 Pros and Cons of SODA Meta-model in OPM

As mentioned above, the main advantage of OPM with respect to UML concerns
interaction modelling, which exploits OPM’s notion of process to represent the
dynamic aspects. During the construction of the meta-model, however, we per-
ceived the lack of a sort of “tagged instrument link” to connect objects and
processes: currently, OPM’s instrument link is only untagged. Such a link would
have been appreciable, for instance, to express that Role participates to the A-
Interacting process—not just that it is necessary, as expressed by the standard
instrument link. In fact, necessity is a static concept, while playing an active
part in interaction, as Role does, implies dynamics. A similar problem emerged
in the relation between the A-Social Interacting process and the Interaction
Rule object, where we could not express that Interaction Rule governs the so-
cial interaction—again, a more specific concept than just “being necessary”.

Analogously, in the design phase, we used an Effect link to represent the
relations between the Agent object and the X -Interacting processes; this is se-
mantically correct because the internal state of Agent is modified by interaction,
but does not express the crucial fact that Agent takes an active part to interac-
tion, while the Effect link just expresses that its internal state is modified as a
consequence of interaction. As a last issue, in the relation between the D-Social
Interacting process and the Coordination Medium object, we could not express
that the Coordination Medium mediates the social interaction by enacting the
Coordination Rule—which, again, is more than just a mere “necessity”.

3.3 Summing up

Both UML and OPM proved expressive enough to capture in their meta-model
the structural parts of the SODA methodology: so, for instance, the role model
and the resource model are expressed in a clear way, with a specific semantics. At
the same time, as partially mentioned above, both approaches present some prob-
lems, the main being that they fall short when asked to appropriately model the
concept of interaction. In particular, the relation of participation, even though
existing in both approaches, seems unable to capture the general concept of
“participating to interaction” in a satisfactory way. This seems to indicate that
while both UML and OPM methodologies are suitable to model the dynamic
behaviour of systems, this ability is not conserved if they are used to build
meta-models—actually, quite a different usage—although OPM expressiveness
under this viewpoint is a little better than UML’s.



So, we feel that neither OPM nor UML are fully adequate to capture the
real essence of MAS methodologies, where interaction, in all its nuances—from
a simple message exchange to mediated interaction via coordination media—is a
key issue. In fact, suitably meta-modelling MAS methodologies seems to call for
a specific approach, which is able to model both the structural and the dynamic
parts of a methodology, and to explicitly express the idea of participating to
interaction.

4 Conclusions

Several research efforts are being devoted to developing meta-models for MAS
methodologies, however standardisations of methodologies for develop meta-
models are not going still along way off. Although UML is often used for that
purpose, meta-modelling methodologies (and in particular agent-oriented meth-
odologies) presents several peculiarities. In this paper, we put to the test two
meta-modelling approaches—UML and OPM—in order to check their express-
iveness and suitability to the meta-modelling of MAS methodologies. While UML
was an obvious reference for its widespread adoption, OPM was selected because
even though it is an emergent methodology, it is stable and exhibits several inter-
esting features—in particular, the explicit notion of process, and the capability
of describing in a single framework all the crucial aspects of a system, instead of
spreading them onto separate diagrams. Among MAS methodologies, we took
SODA as our reference because it is explicitly focused on the MAS social aspects,
thus putting interaction in clear evidence: this made it possible to evaluate the
effectiveness of the UML and OPM approaches with respect to the issue of suit-
ably representing interaction and, more generally, the dynamic aspects, other
than the structural part.

The results of the mutual comparison between the two SODA meta-models
indicates that neither approach is actually able to capture all the desired aspects
in a satisfactory way. In particular, while the structural part is reasonably well
modelled in both cases, the dynamic part is captured only partially—probably
because both UML and OPM were introduced to model object-oriented systems,
rather than systems in general; so as a consequence, they are not particularly
suited to meta-modelling AOSE methodologies, especially because of their lim-
ited expressive power in capturing agent-oriented abstractions.

It should be noted that research on meta-models is also active in other field
of computer science. Some papers (e.g. [14] and [15]) present meta-models for
the construction of methodologies in general: meta-models are used there to
“instantiate” a new methodology with the desired characteristics. Instead, our
approach to meta-models moves from an existing methodology (SODA) and aims
at creating a meta-model that could well capture the methodology concepts and
their mutual relationship as well.

Therefore, future work will be mainly devoted to explore how to overcome
such modelling weaknesses, and to devise out some meta-modelling approach to
AOSE methodologies that couldfully capture the core interaction aspects.



References

1. van Hillegersberg, J., Kumar, K., Welke, R.J.: Using metamodeling to analyze
the fit of object-oriented methods to languages. In: 31st Hawaii International
Conference on System Sciences (HICSS 1998). Volume 5:Modeling Technologies
and Intelligent Systems., Kohala Coast, HI, USA, IEEE Computer Society (1998)
323–332

2. Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of
some multi-agent meta-models. In Odell, J., Giorgini, P., Müller, J.P., eds.: Agent-
Oriented Software Engineering V. Volume 3382 of LNCS., Springer (2004) 62–77
5th International Workshop, AOSE 2004, New York, NY, USA, July 19, 2004,
Revised Selected Papers.

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
An agent-oriented software development methodology. Autonomous Agent and
Multi-Agent Systems (8) 3 (2004) 203–236

4. Gòmez-Sanz, J.J., Pavòn, J., Garijo, F.: Meta-models for building multi-agent
systems. In: 2002 ACM Symposium on Applied Computing (SAC 2002), New
York, NY, USA, ACM Press (2002) 37–41

5. IGENIAS: Home page. (http://grasia.fdi.ucm.es/ingenias/metamodel/)
6. UML: Home page. (http://www.uml.org/)
7. Dori, D., Reinhartz-Berger, I.: An OPM-based metamodel of system development

process. In Song, I.Y., Liddle, S.W., Ling, T.W., Scheuermann, P., eds.: ER.
Volume 2813 of LNCS., Springer (2003) 105–117

8. Peleg, M., Dori, D.: The model multiplicity problem: Experimenting with real-time
specification methods. IEEE Transactions on Software Engineering 26 (2000) 742–
759

9. Dori, D.: Object-Process Methodology: A Holistic System Paradigm. Springer
(2002)

10. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12 (2003) 317–370

11. Cheong, C., Winikoff, M.: Hermes: A methodology for goal-oriented agent interac-
tions. (2005) 4th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS05). Poster.

12. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In Ciancarini, P., Wooldridge, M.J., eds.: Agent-Oriented
Software Engineering. Volume 1957 of LNCS., Springer (2001) 185–193 1st Inter-
national Workshop (AOSE 2000), Limerick, Ireland, 10 June 2000. Revised Papers.

13. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: The
coordination viewpoint. In Jennings, N.R., Lespérance, Y., eds.: Intelligent Agents
VI. Agent Theories, Architectures, and Languages. Volume 1757 of LNAI., Springer
(2000) 250–259 6th International Workshop (ATAL’99), Orlando, FL, USA, 15–17
July 1999. Proceedings.

14. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process metamod-
els and the creation of a new generic standard. Information & Software Technology
47 (2005) 49–65

15. Gonzalez-Perez, C., McBride, T., Henderson-Sellers, B.: A metamodel for assess-
able software development methodologies. Software Quality Journal 13 (2005)
195–214


