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Abstract 
 
Nowadays, robots have to face very complex tasks, 
often requiring collaboration between several 
individuals. As a consequence, robotics can be 
considered one of the most suitable paradigms for 
agent-based software. 
In this work, we present an approach to the design of 
distributed multi-agent architectures for mobile 
robotics, that is based on the Unified Modeling 
Language. 
Our main goal is to provide a framework to perform a 
rigorous agent-based design process for this kind of 
systems both in the case of a single robot, and in a 
multi-robot scenario. Our methodology allows the 
designer to use system requirements in order to identify 
agents, and decide if they have to be implemented in a 
single mobile platform, or they’re spread over many 
cooperative ones, or even shared by some repository. 
Details of the methodology, system implementation 
using FIPA-OS environment, along with real and 
simulated experiments  are reported. 
 

1. Introduction 
 
In recent years, mobile robots have been involved in 
more and more complex tasks often requiring the 
collaboration among several individuals that in general 
differ in their skills, and in the way they perceive the 
external environment. 
From the architectural point of view, two different 
philosophies have been carried on: the reactive and the 
behaviour-based paradigms. 
In this context, our work aims to propose a novel 
methodology for the design of multi-agent robotic 
architectures using the Unified Modeling Language. 
Several other authors have used UML in the design of 
multi-agent systems. Some of them have discussed the 
possibility of using the UML to represent ontologies 
[20], role of agents and communications [18], others 
have proposed extensions of the UML to better deal 
with specific agent related problems like the agent 
interaction protocols [19], these efforts have produced 
various different proposal about AUML (Agent UML). 
We have applied our methodology to the cognitive 
architecture previously developed by some of the 

authors, that could be viewed as an extension of the 
behaviour-based approach. 
Particularly, the proposed methodology begins with the 
requirements analysis for the whole system, identifies 
agents, and defines behaviours also by means of 
classical FSA diagrams. 
The agents defined in such a way are deployed on the 
required hardware platforms, thus allowing both single 
robot and multi-robot scenarios. 
The paper is arranged as follows. Section 2 deals with 
the overall description of the multi-agent architecture; 
section 3 explains the design methodology; section 4 
reports experimental results, while in section 5 some 
conclusions are drawn. 
 

2. Description of the architecture  
 
From the cognitive point of view, in our approach we 
refer to the architecture of fig. 1. In this structure it’s 
possible to devise three main components: the 
perception, which is responsible to map the stream of 
raw data in an intermediate form, that in turn is provided 
to the cognitive component where the symbolic 
computation and, in general, deliberative behaviours of 
the system are located. The cognitive part can also 
support perception with some hints aimed to refine the 
perceptive process, and focus the attention on those 
external stimuli that are judged to be more useful for the 
current task completion. The third component is the 
actuation one, which communicates with the other two, 
in order to drive the robot hardware during perception 
tasks, and in attention focusing. The perception-action 
link allows also reactive behaviours. 
Some of the authors already presented this architectural 
structure [14],[15],[16]. Its main goal is to go beyond the 
classical behaviour-based model, and to provide the 
robot with true “symbol grounding” capabilities due to 
the intermediate representation of sensory data, that is 
used to instantiate pieces of knowledge at the symbolic 
component. Through this mechanism the robot is able to 
act in a deliberative fashion more effectively. 
The aim of this work is to provide a framework for our 
architecture allowing us to define a rigorous design 
methodology. 
In particular, the scheme reported in figure 1 can be 
regarded as a categorisation of the possible agents 
typologies both if we look at the single robot  



 
Figure 1: The architecture of a single robot from the 

cognitive point of view 
 
architecture and if we consider a multi-robot scenario. In 
the second case we address the interaction between the  
external actors, and the whole team in order to perform 
cooperative tasks. In other words figure 1 is the highest 
level of abstraction in the system design, without taking 
into consideration the implementation details. 
It’s also possible to look at this  issue as the holonic 
enterprise introduced by Brennan and Ulieru in [11]. 
The intra-enterprise level of a holonic enterprise can be 
matched to the architecture of fig.1. In fact, the entire 
system could be viewed as a distributed colony of 
agents interacting to achieve their own objectives; in so 
doing, they participate to accomplish the goal of the 
whole system.  
In our point of view, the system can be viewed as a 
multi-robot, multi-agent structure. Each robot contains 
several agents; some of them interact with the external 
environment, while some other ones issue commands to 
the robot’s hardware or they communicate with the 
agents of another robot. 
Each agent is composed by a colony of tasks and plays 
a role that can be put into relation with one of the three 
areas reported in the general architecture of fig. 1. We 
suppose that there is a one-to-many relation between 
each one of these three areas and the agents of the 
system. 
 

3. The design methodology 
 
Design has been performed using an extension of the 
AODPU (Agent-Oriented Design Process with UML) 
methodology [7],[8] that is particularly useful in the case 
of robotic software architectures. The process is an 
iterative one, and it’s described in fig. 2. 
In a single iteration we could find the following phases: 
• Requirements analysis  
• Agents identification 
• Definition of the agents’ structure 
• Description of the behaviours. 
The “agent structure identification” and the “behaviour 
description” phases can be viewed as mutually 
dependent and cyclically performed to define the agents 
implementation. At the end of this process all the 
requirements are fixed (for this iteration) and the  

 
Figure 2: The phases of the AODPU design process 

 
implementation can start. In what follows, these design 
steps are described more in detail. 
 
3.1 Requirements Analysis 
 
A functional description of the system is provided 
through a hierarchical series of  UML use-case diagrams. 
The first diagram (we could consider it as some kind of 
‘context’ diagram) will only represent one use-case (the 
system), some actors in the environment and any 
external entity interacting with the system. Other use-
case diagrams will give more details on the system. In 
these diagrams the functions of the system will be 
formalized and in so doing it is also possible to use 
sequence diagrams in order to better illustrate the 
scenarios involved with the requirements. 
 
3.2 Identification of the agents 
 
Starting from the definition of an agent given by 
Jennings in [5] and looking at the definition of use case 
in the UML standard [6], we can prove that in a multi-
agent system an use case can represent an agent and an 
actor can represent the environment [7].  
It is also useful to consider that: 
• the interactions between the agent and the world 

are a series of communication acts; 
• the agent can achieve its scope through its own 

knowledge and functionalities (we suppose so);  
• the knowledge of each agent can be increased using 

the communications with other agents or the real 
world; 

• the behaviours of a single agent are implemented 
through a series of tasks. 

It is important to underline that the relations among 
different agents in the use case diagram should be 
characterised by a “communicate” stereotype. Different 
kinds of relationships (for example “extend,” “include” 
or “generalize”) are not typical of a suitable agent 
identification schema; however they are also possible 
like in the case of direct method invocation to control 
device drivers (fig. 3). These communications will be  
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Figure 3: The use-case diagram for the identification of 
agents  

 
obviously implemented through messages following a 
specifically designed ontology. Communications among  
(external) actors and the software agents are not 
implemented in such a way. The agents receive 
information from those actors through some sensing 
devices that are under their control. 
This is a mediated communication whose ontology is 
constrained by the hardware devices and their drivers.  
Detailing each use-case (which will be implemented as 
an agent) with another use-case diagram we can identify 
the tasks of the agent that are needed to perform the 
required functionalities. In this phase, it is possible to 
formalize the functionalities of the agent itself. With 
regards to the “Planner” agent in  fig. 3 we could identify 
the tasks described in fig. 4. 
The agent communicates with several other agents in 
order to receive information about the environment, the 
target and so on. For this reason a communication 
request handler (“IdleTask”) is provided. It passes the 
communication to the specific handler for a particular 
message that will be responsible for it (for example the 
IRSensorMsgResponse handler is interested to the  
communications with the IR sensors agent). Using this 
strategy we could use a different ontology for the 
communication with each different agent. 
 
3.3 Definition of the agents’ structure  
 
The next step of the process is the specification of the 
structure for each agent. Agents’ structure can be 
provided through a class diagram. In order to perform 
experiments, we selected FIPA-OS [12],[13] as target 
architecture for implementation. 
This choice is essentially based on the wide diffusion of 
this programming environment in the agent software 
community. Moreover, using Java ensures portability 
and a very efficient thread management. Inside FIPA-OS 
an agent is represented as a class, and it has to 
accomplish to several “tasks” regarding both 
communication with other agents, and performing its 
own duties. Tasks are represented as subclasses of the  

 
Figure 4: Detailed use case diagram for the “Planner” 

agent 
 
agent class. Following this approach, each use-case that 
has been identified as an agent is represented as a new 
class. The tasks of the agent are implemented through 
subclasses (one for each task). 
With such a structure each agent can play its own role 
in the system organization using its own tasks 
(performed by the methods of its subclasses), 
knowledge (attribute of the agent class) and interactions 
with other agents (messages are sent/received by 
dedicated handlers tasks).  
Tasks of a same agent interacts in a conventional object-
oriented way without message exchanging but through 
methods invocation and attributes access [10] therefore 
a new task (being a subclass of the agent class) could be 
initialised or destroyed during runtime, each task could 
access the knowledge (attributes) of the agent it belongs 
and so on.  
From the situation described in fig. 3 and fig. 4 it’s 
possible to derive the structure depicted in fig. 5. 
  
3.4 Description of the behaviours  
 
It’s possible to describe the scenarios relative to the use 
cases diagrams using some sequence diagrams: in this 
way we can also detail the agents’ behaviour taking into 
account the time variable that is one of the key factors in 
real-time problems as in the case of mobile robotics. 
Similarly, one can describe the cooperation between 
agents in a particular scenario by the UML collaboration 
diagram. 
In this phase we have to specify the behaviour of each 
task and the interactions between different tasks of the 
same agent or of different agents.  
We can start looking at the behaviours of a single agent 
using the FSA approach of Arkin [9]. For the Planner 
agent of fig. 4 we can design the FSA diagram of fig. 6. 
The agent is in the “waiting” state until a message 
arrives. Then it turns to a state in which the message is 
processed, and the new information brings to the 
planning of a new strategy that enables execution by the 
actuators. The use cases of this agent as described in  
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Figure 5: The class diagram illustrating the structure of 

the robot we developed for our experiments 
 
fig. 4 could easily be mapped onto the states of the FSA 
diagram. The “IdleTask” use-case actuates the 
behaviour described in the “waiting” task; when a 
message arrives, this task forwards it to the most 
suitable message-response task; this brings the system 
in the “Handling incoming communication” state. 
When the information is extracted from the message and 
the required response procedure is completed the 
“Strategies Producer” initiates its work (state 
“Planning”). Once a new strategy has been defined the 
“MsgToEngCtrl” task is invoked to communicate it to 
the engine control agent (state “Handling outgoing 
communication”). 
 Classical approaches to behaviours definition like the 
one reported in fig. 6 are mainly focused on single 
behaviours composition. When we use such a 
methodology we assume that a general framework is 
already present in order to manage the complexity of the 
whole system (subsumption, scheduling, dashboards 
and so on). Moreover, we are not able to derive any 
valuable information from this schema about 
implementation. 
On the contrary, our design methodology allows us to 
explicitly detail relationships between robots, agents, or 
even behaviours. On the implementation side, we are 
able to derive not only the code structure in terms of 
class skeletons (see fig. 5) but the key elements of the 
methods’ code. 
The last issue can be addressed by the correspondence 
between the FSA-like diagram and a new UML activity 
one, describing the flow of methods invocations (fig. 7).  
In this diagram each swim-lane is used to show the 
agent main class or a specific task. In the swim-lanes we 
put the methods of the correspondent agent/task class.  
Between the previous FSA and this activity diagram we 
can establish some precise relations: 
• the states of the FSA diagram correspond to one or 

more swim-lanes of the activity diagram.  
• the transitions of the FSA diagram correspond to 

some of the transitions of the activity diagram in 
which the context related events are present. 

For example in the “Planner.IdleTask” swim-lane we  

 
Figure 6: The behaviour of the “Planner” agent 

described with a FSA diagram 
 
have the actions corresponding to the “waiting” state 
and the transition “message arrived” corresponds to the 
“new task (VisionMsgResponse)” invocation. 
 

4. Experimentation 
 
Experimental phase has been performed using both a 
software simulator and real robots. Simulator was 
needed to easily implement multi-robot scenarios. Two 
experiments have been set up: a prey-hunter competition 
using the simulator, and target reaching in the real case. 
In both experiments, robots were provided with obstacle 
avoidance capabilities. 
All the implemented behaviours are quite simple because 
our study was mainly focused on testing architecture 
implementation rather than developing high quality 
solutions to accomplish the robot’s tasks. 
In particular, we were interested to stress multi-platform 
communication features of the FIPA-OS environment, 
and to cope with its lack of real-time control capabilities. 
Our robot was a K-Team Koala equipped with IR 
sensors, and controlled by a PC through a serial link. 
Vision was provided by a calibrated camera looking at 
the action field, and reporting localisation information to 
the rest of the system. In order to test distribution of 
agents software across multiple platforms, the camera 
was connected to a separate PC running also the vision 
agent’s code. 
In what follows, a typical simulation experiment as long 
as the implementation of the vision agent will be 
reported in detail. 
 
4.1 Prey-Hunter Simulation 
 
Simulations were implemented using a Java GUI 
displaying a scaled action field, along with the obstacles 
layout. Robots are displayed using their 2D outline: in 
our simulation we used a Koala and a Kephera model. 
The Kephera plays the role of the prey and it is 
programmed to perform random trajectories. 
It is to be noted that the only difference between 
simulation and real experiments is the implementation of  
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Figure 7: An activity diagram describing the details of the tasks’ invocations 
 

the core methods for the vision and motion control agents. 
Their communication interface with the rest of the system 
is the same as in real robot tests.  
Simulation includes also time delays due to physical 
inertia. This approach allows us to make an extensive use 
of simulation in order to stress our design process. 
 
4.2 Vision in Target Reaching 
 
This section describes the process of localisation of the 
Koala robot during his task, in order to give useful 
feedbacks to the planning component [1]. 
We use a fixed CCD camera, connected to a computer, 
viewing the scene. The software component implemented 
can run on a different machine from that runs the rest of 
the system, communicating to it by socket over the local 
net. In this way we have the possibility of  performing the 
vision task in real time without adding high computational 
costs to the whole system.  
The valuable capabilities of the vision agent in the whole 
system are: 
• to individuate and segment the Koala robot also in 

contrasted and irregular backgrounds; 
• to perform a estimation of the position of the robot by 

camera images; 
• to interpret the sequence of movements of the robot 

giving information of the direction followed by it. 
The implemented computer vision task can be 
decomposed in three main steps: 

• localisation of the robot on image by low-level  image 
processing on the single frame; 

• estimation of the 2D location of the robot; 
• reconstruction of the 3D position of the robot . 
 
4.2.1 Localisation of the robot on image. The position 
of the robot on image is calculated by simple low-level 
image processing operations. The current frame is 
subtracted to the previous (grey level images), obtaining 
the pixels related to moving objects in the viewed scene. If 
there are more than one object moving, Koala shape is 
selected using colour and texture features [2]. 
Naturally, some standard filtering operations are 
performed to reduce noise. 
Moreover, a corner detector is applied in the area of the 
image representing Koala shape to have feature points to 
tracking. The estimation of the position of the robot on the 
floor is based on this tracked points.       
 
4.2.2 Estimation of  the 2D – 3D  location. The position of 
the robot respect a reference system is estimated using the 
homography between image plane and floor [3],[4]. A 
generic 3D point X generates the point w on image: 

[ ]XtRKXPw ˆ|ˆˆ ==λ  
if the 3D points are on a plane (for instance Z=0), the 
transformation is simplified to a 3x3 matrix H: 

[ ] planeplane XtrrKXHw ˆˆˆ 21==λ  
where H is the homography matrix, decomposable on 
calibration 3x3 matrix K, and 3x3 matrix has the first two 
columns of the rotation matrix R and the translation vector 
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t. X and w are indicated using homogeneous coordinates. 
H is estimated using detected points belonging to the 
floor  during a preliminary framework that also includes a 
calibration process: a grid placed in front of camera is used 
to obtain the calibration matrix K and fixes the rotation and 
translation referred to a reference system. 
The tracked points on image are translated in 2D 
coordinates using estimated homography. The exact 3D 
position is recovered using the known real dimensions of 
the koala robot and the data coming from calibration 
framework. 
The estimated 2D coordinates of the robot and the 
direction of the detected movements are communicate by a 
message to the system every time are calculated.   
 

5. Conclusions 
 
A novel methodology for the design of multi-agent robot 
architectures has been presented that extends the classical 
behaviour-based approach. 
It has been showed that it can be profitably used both in 
the case of a single robot design, and in a multi-robot 
scenario. 
The methodology has been implemented using a FIPA 
compliant, and the experimental results are very 
encouraging. 

We’re currently extending the methodology towards 
automatic code generation for a great part of the agents’ 
implementation. In particular, regarding the agents’ 
structure, we are looking at the classical categorisation 
reported by Russel and Norvig [17]. 
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