

An agent based design process for cognitive architectures in robotics

Antonio Chella(1), Massimo Cossentino(2), Ignazio Infantino(1), Roberto Pirrone(1)
(1) DIAI, Università di Palermo, Palermo, Italy, (2) DIE, Università di Palermo, Palermo, Italy

chella@unipa.it, cossentino@unipa.it, infantino@csai.unipa.it, pirrone@unipa.it

Abstract

Nowadays, robots have to face very complex tasks,
often requiring collaboration between several
individuals. As a consequence, robotics can be
considered one of the most suitable paradigms for
agent-based software.
In this work, we present an approach to the design of
distributed multi-agent architectures for mobile
robotics, that is based on the Unified Modeling
Language.
Our main goal is to provide a framework to perform a
rigorous agent-based design process for this kind of
systems both in the case of a single robot, and in a
multi-robot scenario. Our methodology allows the
designer to use system requirements in order to identify
agents, and decide if they have to be implemented in a
single mobile platform, or they’re spread over many
cooperative ones, or even shared by some repository.
Details of the methodology, system implementation
using FIPA-OS environment, along with real and
simulated experiments are reported.

1. Introduction

In recent years, mobile robots have been involved in
more and more complex tasks often requiring the
collaboration among several individuals that in general
differ in their skills, and in the way they perceive the
external environment.
From the architectural point of view, two different
philosophies have been carried on: the reactive and the
behaviour-based paradigms.
In this context, our work aims to propose a novel
methodology for the design of multi-agent robotic
architectures using the Unified Modeling Language.
Several other authors have used UML in the design of
multi-agent systems. Some of them have discussed the
possibility of using the UML to represent ontologies
[20], role of agents and communications [18], others
have proposed extensions of the UML to better deal
with specific agent related problems like the agent
interaction protocols [19], these efforts have produced
various different proposal about AUML (Agent UML).
We have applied our methodology to the cognitive
architecture previously developed by some of the

authors, that could be viewed as an extension of the
behaviour-based approach.
Particularly, the proposed methodology begins with the
requirements analysis for the whole system, identifies
agents, and defines behaviours also by means of
classical FSA diagrams.
The agents defined in such a way are deployed on the
required hardware platforms, thus allowing both single
robot and multi-robot scenarios.
The paper is arranged as follows. Section 2 deals with
the overall description of the multi-agent architecture;
section 3 explains the design methodology; section 4
reports experimental results, while in section 5 some
conclusions are drawn.

2. Description of the architecture

From the cognitive point of view, in our approach we
refer to the architecture of fig. 1. In this structure it’s
possible to devise three main components: the
perception, which is responsible to map the stream of
raw data in an intermediate form, that in turn is provided
to the cognitive component where the symbolic
computation and, in general, deliberative behaviours of
the system are located. The cognitive part can also
support perception with some hints aimed to refine the
perceptive process, and focus the attention on those
external stimuli that are judged to be more useful for the
current task completion. The third component is the
actuation one, which communicates with the other two,
in order to drive the robot hardware during perception
tasks, and in attention focusing. The perception-action
link allows also reactive behaviours.
Some of the authors already presented this architectural
structure [14],[15],[16]. Its main goal is to go beyond the
classical behaviour-based model, and to provide the
robot with true “symbol grounding” capabilities due to
the intermediate representation of sensory data, that is
used to instantiate pieces of knowledge at the symbolic
component. Through this mechanism the robot is able to
act in a deliberative fashion more effectively.
The aim of this work is to provide a framework for our
architecture allowing us to define a rigorous design
methodology.
In particular, the scheme reported in figure 1 can be
regarded as a categorisation of the possible agents
typologies both if we look at the single robot

Figure 1: The architecture of a single robot from the

cognitive point of view

architecture and if we consider a multi-robot scenario. In
the second case we address the interaction between the
external actors, and the whole team in order to perform
cooperative tasks. In other words figure 1 is the highest
level of abstraction in the system design, without taking
into consideration the implementation details.
It’s also possible to look at this issue as the holonic
enterprise introduced by Brennan and Ulieru in [11].
The intra-enterprise level of a holonic enterprise can be
matched to the architecture of fig.1. In fact, the entire
system could be viewed as a distributed colony of
agents interacting to achieve their own objectives; in so
doing, they participate to accomplish the goal of the
whole system.
In our point of view, the system can be viewed as a
multi-robot, multi-agent structure. Each robot contains
several agents; some of them interact with the external
environment, while some other ones issue commands to
the robot’s hardware or they communicate with the
agents of another robot.
Each agent is composed by a colony of tasks and plays
a role that can be put into relation with one of the three
areas reported in the general architecture of fig. 1. We
suppose that there is a one-to-many relation between
each one of these three areas and the agents of the
system.

3. The design methodology

Design has been performed using an extension of the
AODPU (Agent-Oriented Design Process with UML)
methodology [7],[8] that is particularly useful in the case
of robotic software architectures. The process is an
iterative one, and it’s described in fig. 2.
In a single iteration we could find the following phases:
• Requirements analysis
• Agents identification
• Definition of the agents’ structure
• Description of the behaviours.
The “agent structure identification” and the “behaviour
description” phases can be viewed as mutually
dependent and cyclically performed to define the agents
implementation. At the end of this process all the
requirements are fixed (for this iteration) and the

Figure 2: The phases of the AODPU design process

implementation can start. In what follows, these design
steps are described more in detail.

3.1 Requirements Analysis

A functional description of the system is provided
through a hierarchical series of UML use-case diagrams.
The first diagram (we could consider it as some kind of
‘context’ diagram) will only represent one use-case (the
system), some actors in the environment and any
external entity interacting with the system. Other use-
case diagrams will give more details on the system. In
these diagrams the functions of the system will be
formalized and in so doing it is also possible to use
sequence diagrams in order to better illustrate the
scenarios involved with the requirements.

3.2 Identification of the agents

Starting from the definition of an agent given by
Jennings in [5] and looking at the definition of use case
in the UML standard [6], we can prove that in a multi-
agent system an use case can represent an agent and an
actor can represent the environment [7].
It is also useful to consider that:
• the interactions between the agent and the world

are a series of communication acts;
• the agent can achieve its scope through its own

knowledge and functionalities (we suppose so);
• the knowledge of each agent can be increased using

the communications with other agents or the real
world;

• the behaviours of a single agent are implemented
through a series of tasks.

It is important to underline that the relations among
different agents in the use case diagram should be
characterised by a “communicate” stereotype. Different
kinds of relationships (for example “extend,” “include”
or “generalize”) are not typical of a suitable agent
identification schema; however they are also possible
like in the case of direct method invocation to control
device drivers (fig. 3). These communications will be

 Environment

Target

User
Perception Cognitive Components

Hardware Actuators

Figure 3: The use-case diagram for the identification of
agents

obviously implemented through messages following a
specifically designed ontology. Communications among
(external) actors and the software agents are not
implemented in such a way. The agents receive
information from those actors through some sensing
devices that are under their control.
This is a mediated communication whose ontology is
constrained by the hardware devices and their drivers.
Detailing each use-case (which will be implemented as
an agent) with another use-case diagram we can identify
the tasks of the agent that are needed to perform the
required functionalities. In this phase, it is possible to
formalize the functionalities of the agent itself. With
regards to the “Planner” agent in fig. 3 we could identify
the tasks described in fig. 4.
The agent communicates with several other agents in
order to receive information about the environment, the
target and so on. For this reason a communication
request handler (“IdleTask”) is provided. It passes the
communication to the specific handler for a particular
message that will be responsible for it (for example the
IRSensorMsgResponse handler is interested to the
communications with the IR sensors agent). Using this
strategy we could use a different ontology for the
communication with each different agent.

3.3 Definition of the agents’ structure

The next step of the process is the specification of the
structure for each agent. Agents’ structure can be
provided through a class diagram. In order to perform
experiments, we selected FIPA-OS [12],[13] as target
architecture for implementation.
This choice is essentially based on the wide diffusion of
this programming environment in the agent software
community. Moreover, using Java ensures portability
and a very efficient thread management. Inside FIPA-OS
an agent is represented as a class, and it has to
accomplish to several “tasks” regarding both
communication with other agents, and performing its
own duties. Tasks are represented as subclasses of the

Figure 4: Detailed use case diagram for the “Planner”

agent

agent class. Following this approach, each use-case that
has been identified as an agent is represented as a new
class. The tasks of the agent are implemented through
subclasses (one for each task).
With such a structure each agent can play its own role
in the system organization using its own tasks
(performed by the methods of its subclasses),
knowledge (attribute of the agent class) and interactions
with other agents (messages are sent/received by
dedicated handlers tasks).
Tasks of a same agent interacts in a conventional object-
oriented way without message exchanging but through
methods invocation and attributes access [10] therefore
a new task (being a subclass of the agent class) could be
initialised or destroyed during runtime, each task could
access the knowledge (attributes) of the agent it belongs
and so on.
From the situation described in fig. 3 and fig. 4 it’s
possible to derive the structure depicted in fig. 5.

3.4 Description of the behaviours

It’s possible to describe the scenarios relative to the use
cases diagrams using some sequence diagrams: in this
way we can also detail the agents’ behaviour taking into
account the time variable that is one of the key factors in
real-time problems as in the case of mobile robotics.
Similarly, one can describe the cooperation between
agents in a particular scenario by the UML collaboration
diagram.
In this phase we have to specify the behaviour of each
task and the interactions between different tasks of the
same agent or of different agents.
We can start looking at the behaviours of a single agent
using the FSA approach of Arkin [9]. For the Planner
agent of fig. 4 we can design the FSA diagram of fig. 6.
The agent is in the “waiting” state until a message
arrives. Then it turns to a state in which the message is
processed, and the new information brings to the
planning of a new strategy that enables execution by the
actuators. The use cases of this agent as described in

Hardware

Another Agent

MsgToEngCtrl

IRSensMsgResponse

VisionMsgResponse

Simulator
OdometryMsgResponse

IdleTask
 <<communicate>>

Strategies Producer

VocalSensMsgResponse

 Environment

Target

User

IR Sensors

Vision

Vocal sensor

Hardware

EngCtrl Planner

Odometry

Figure 5: The class diagram illustrating the structure of

the robot we developed for our experiments

fig. 4 could easily be mapped onto the states of the FSA
diagram. The “IdleTask” use-case actuates the
behaviour described in the “waiting” task; when a
message arrives, this task forwards it to the most
suitable message-response task; this brings the system
in the “Handling incoming communication” state.
When the information is extracted from the message and
the required response procedure is completed the
“Strategies Producer” initiates its work (state
“Planning”). Once a new strategy has been defined the
“MsgToEngCtrl” task is invoked to communicate it to
the engine control agent (state “Handling outgoing
communication”).
 Classical approaches to behaviours definition like the
one reported in fig. 6 are mainly focused on single
behaviours composition. When we use such a
methodology we assume that a general framework is
already present in order to manage the complexity of the
whole system (subsumption, scheduling, dashboards
and so on). Moreover, we are not able to derive any
valuable information from this schema about
implementation.
On the contrary, our design methodology allows us to
explicitly detail relationships between robots, agents, or
even behaviours. On the implementation side, we are
able to derive not only the code structure in terms of
class skeletons (see fig. 5) but the key elements of the
methods’ code.
The last issue can be addressed by the correspondence
between the FSA-like diagram and a new UML activity
one, describing the flow of methods invocations (fig. 7).
In this diagram each swim-lane is used to show the
agent main class or a specific task. In the swim-lanes we
put the methods of the correspondent agent/task class.
Between the previous FSA and this activity diagram we
can establish some precise relations:
• the states of the FSA diagram correspond to one or

more swim-lanes of the activity diagram.
• the transitions of the FSA diagram correspond to

some of the transitions of the activity diagram in
which the context related events are present.

For example in the “Planner.IdleTask” swim-lane we

Figure 6: The behaviour of the “Planner” agent

described with a FSA diagram

have the actions corresponding to the “waiting” state
and the transition “message arrived” corresponds to the
“new task (VisionMsgResponse)” invocation.

4. Experimentation

Experimental phase has been performed using both a
software simulator and real robots. Simulator was
needed to easily implement multi-robot scenarios. Two
experiments have been set up: a prey-hunter competition
using the simulator, and target reaching in the real case.
In both experiments, robots were provided with obstacle
avoidance capabilities.
All the implemented behaviours are quite simple because
our study was mainly focused on testing architecture
implementation rather than developing high quality
solutions to accomplish the robot’s tasks.
In particular, we were interested to stress multi-platform
communication features of the FIPA-OS environment,
and to cope with its lack of real-time control capabilities.
Our robot was a K-Team Koala equipped with IR
sensors, and controlled by a PC through a serial link.
Vision was provided by a calibrated camera looking at
the action field, and reporting localisation information to
the rest of the system. In order to test distribution of
agents software across multiple platforms, the camera
was connected to a separate PC running also the vision
agent’s code.
In what follows, a typical simulation experiment as long
as the implementation of the vision agent will be
reported in detail.

4.1 Prey-Hunter Simulation

Simulations were implemented using a Java GUI
displaying a scaled action field, along with the obstacles
layout. Robots are displayed using their 2D outline: in
our simulation we used a Koala and a Kephera model.
The Kephera plays the role of the prey and it is
programmed to perform random trajectories.
It is to be noted that the only difference between
simulation and real experiments is the implementation of

User

Hardware

EngCtrl <<Agent>>
Vocal Sensor <<Agent>>

Odometry <<Agent>>

Vision <<Agent>>
Target

 Environment

Planner
IdleTask : Task
IRSensMsgResponse : Task
OdometryMsgResponse : Task
VisionMsgResponse : Task
VocalMsgResponse : Task
Strategy Producer : Task
Simulator : Task
MsgtoEngCtrl : Task

<<Agent>>

IR Sensors <<Agent>>

Waiting

Handling incoming
communication

Planning

Handling outcoming
communication

message arrived new data available

strategy establishedmessage
sent

no new message

message not processed

strategy not completed

message
not sent

Figure 7: An activity diagram describing the details of the tasks’ invocations

the core methods for the vision and motion control agents.
Their communication interface with the rest of the system
is the same as in real robot tests.
Simulation includes also time delays due to physical
inertia. This approach allows us to make an extensive use
of simulation in order to stress our design process.

4.2 Vision in Target Reaching

This section describes the process of localisation of the
Koala robot during his task, in order to give useful
feedbacks to the planning component [1].
We use a fixed CCD camera, connected to a computer,
viewing the scene. The software component implemented
can run on a different machine from that runs the rest of
the system, communicating to it by socket over the local
net. In this way we have the possibility of performing the
vision task in real time without adding high computational
costs to the whole system.
The valuable capabilities of the vision agent in the whole
system are:
• to individuate and segment the Koala robot also in

contrasted and irregular backgrounds;
• to perform a estimation of the position of the robot by

camera images;
• to interpret the sequence of movements of the robot

giving information of the direction followed by it.
The implemented computer vision task can be
decomposed in three main steps:

• localisation of the robot on image by low-level image
processing on the single frame;

• estimation of the 2D location of the robot;
• reconstruction of the 3D position of the robot .

4.2.1 Localisation of the robot on image. The position
of the robot on image is calculated by simple low-level
image processing operations. The current frame is
subtracted to the previous (grey level images), obtaining
the pixels related to moving objects in the viewed scene. If
there are more than one object moving, Koala shape is
selected using colour and texture features [2].
Naturally, some standard filtering operations are
performed to reduce noise.
Moreover, a corner detector is applied in the area of the
image representing Koala shape to have feature points to
tracking. The estimation of the position of the robot on the
floor is based on this tracked points.

4.2.2 Estimation of the 2D – 3D location. The position of
the robot respect a reference system is estimated using the
homography between image plane and floor [3],[4]. A
generic 3D point X generates the point w on image:

[]XtRKXPw ˆ|ˆˆ ==λ
if the 3D points are on a plane (for instance Z=0), the
transformation is simplified to a 3x3 matrix H:

[] planeplane XtrrKXHw ˆˆˆ 21==λ
where H is the homography matrix, decomposable on
calibration 3x3 matrix K, and 3x3 matrix has the first two
columns of the rotation matrix R and the translation vector

VisionMsg

IdleTask.
handleRequest

message

done_Vision
MsgResponse

done_
Strategy_Producer

done_
MsgtoEngCtrl

VisionMsgResponse.
VisionMsgResponse

new task(VisionMsgResponse)

VisionMsgResponse.
startTask

done

Strategy_Producer.
Strategy_Producer

new Task(Strategy_Producer)

Strategy_Producer.
startTaskdone()

MsgtoEngCtrl.
MsgtoEngCtrl

new task(MsgtoEngCtrl)

MsgtoEngCtrl.
startTask

done()
listener

message

EngCtrl AgentPlanner.MsgtoEngCtrlPlanner.Strategy_ProducerPlanner.VisionMsgResponsePlanner.IdleTaskVision Agent

t. X and w are indicated using homogeneous coordinates.
H is estimated using detected points belonging to the
floor during a preliminary framework that also includes a
calibration process: a grid placed in front of camera is used
to obtain the calibration matrix K and fixes the rotation and
translation referred to a reference system.
The tracked points on image are translated in 2D
coordinates using estimated homography. The exact 3D
position is recovered using the known real dimensions of
the koala robot and the data coming from calibration
framework.
The estimated 2D coordinates of the robot and the
direction of the detected movements are communicate by a
message to the system every time are calculated.

5. Conclusions

A novel methodology for the design of multi-agent robot
architectures has been presented that extends the classical
behaviour-based approach.
It has been showed that it can be profitably used both in
the case of a single robot design, and in a multi-robot
scenario.
The methodology has been implemented using a FIPA
compliant, and the experimental results are very
encouraging.

We’re currently extending the methodology towards
automatic code generation for a great part of the agents’
implementation. In particular, regarding the agents’
structure, we are looking at the classical categorisation
reported by Russel and Norvig [17].

6. References

[1] Chella A., Gaglio S., Guarino M. D., Infantino I., “An
artificial high-level vision agent for the interpretation of
the operations of a robotic arm”, Proc. 5th Int. Symp. on
Artificial Intelligence, Robotics and Automation in Space,
Noordwijk, 1999.
[2] Chella A., Di Gesù V., Infantino I., Intravaia D.,
Valenti C., “A Cooperating Strategy for object
Recognition”, in: R. Cipolla, D. Forsyth (eds): Proc. Of Int.
Workshop on Shape, Contour and Grouping in Computer
Vision (invited paper), Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1998.
[3] Faugeras O., “Three-Dimensional Computer Vision”,
MIT Press, Cambridge, MA, 1993.
[4] Horn B.P.K., “Robot Vision”, MIT Press, Cambridge,
MA, 1986.
[5] Jennings N.R., “On agent-based software
engineering”, Artificial Intelligence 117 (2000), pp. 277-296
[6] OMG, “Unified Modeling Language”, version 1.3,
June 99, Object Management Group document ad/99-06-

08, available from http://cgi.omg.org/ docs/ ad/ 99-06-
08.pdf
[7] Chella A., Cossentino M., Lo Faso U., “Applying
UML use case diagrams to agents representation”,
Convegno AI*IA 2000, Milan, Sept. 2000.
[8] Chella A., Cossentino M., Lo Faso U., “Designing
agent-based systems with UML”, IEEE International
Symposium on Robotics and Automation, ISRA'2000,
Monterrey, Mexico, Nov. 2000.
[9] Arkin R., “Behavior Based robotics”, The MIT Press,
Cambridge, Massachussets, London, England, 1998.
[10] Odell J., “Objects and Agents: how do they differ?”,
on-line at: www.jamesodell.com/publications.html.
[11] Ulieru M., Walker S. S., Brennan R. W., “The holonic
enterprise as a collaborative information ecosystem”, to
appear in Proc. of Autonomous Agents 2001 workshop
“Holons: Autonomous and Cooperative Agents for
Industry”.
[12] O’Brien P., and Nicol R, FIPA – “Towards a Standard
for Software Agents”, in: BT Technology Journal, 16, (3),
1998, pp. 51-59.
[13] Poslad S., Buckle P., Hadingham R., “The FIPA-OS
Agent Platform: Open Source for Open Standards”, in:
Proc. of the 5th International Conference and Exhibition on
the Practical Application of Intelligent Agents and Multi-
Agents, UK, 2000, pp. 355-368.
[14] Chella A., Frixione M., Gaglio S., “Understanding
dynamic scenes”, Artificial intelligence, 123, 2000, pp. 89-
132.
[15] Chella A., Gaglio S., Pirrone R., “Conceptual
representations of actions for autonomous robots”,
Robotics and Autonomous Systems, 34, 2001, pp. 251-263.
[16] Chella A., Frixione M., Gaglio S., “An architecture for
autonomous agents exploiting conceptual
representations”, Robotics and Autonomo us Systems, 25,
1998, pp. 231-240.
[17] Russel S., Norvig P., “Artificial Intelligence: A
Modern Approach”, Prentice Hall Int. Ed., 1995.
[18] Bergenti F., Poggi A., “Exploiting UML in the design
of multi –agent systems ”, ESAW Worshop at ECAI 2000.
[19] Odell J., Parunak H., Bauer B., “Extending UML for
agents”, Proc. of the AOIS Worshop at AAAI 2000,
Austin, TX, pp. 3-17, 2000.
[20] Cranefield S., Pruvis M., “UML as an ontology
modelling language”, in Proc. Of the Workshop on
Intelligent Information Integration, 1999.

