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Abstract

Robotic systems are often quite complex to develop; they are huge, heavily
constrained from the non-functional point of view and they implement chal-
lenging algorithms. The lack of integrated methods with reuse approaches
leads robotic developers to reinvent the wheel each time a new project starts.
This paper proposes to reuse the experience done when building robotic appli-
cations, by catching it into design patterns. These represent a general mean
for (i) reusing proved solutions increasing the final quality, (ii) communicat-
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ing the knowledge about a domain and (iii) reducing the development time
and effort. Despite of this generality, the proposed repository of patterns is
specific for multi-agent robotic systems. These patterns are documented by a
set of design diagrams and the corresponding implementing code is obtained
through a series of automatic transformations. Some patterns extracted from
an existing and freely available repository are presented. The paper also dis-
cusses an experimental setup based on the construction of a complete robotic
application obtained by composing some highly reusable patterns.

Key words: multi-agent systems; design patterns; pattern oriented design;
robotics systems

1. Introduction

The process of building robotic systems is a complex task principally be-
cause these are intricate systems where different categories of problems have
to be faced. A robotic system encapsulates algorithms that frequently derive
from artificial intelligence and the architecture often includes distributed and
heterogeneous components and must cope with real-time efficiency trade-offs.
Designing a robotic architecture implies not only modelling the robot hard-
ware and managing its sensors and actuators, but also modelling knowledge
about the environment, and the ability to perform intelligent behaviours.

Software development for robotic systems is still today more an art than
an engineering discipline. A few system developers have complete control
all over the software, and typically write it all by themselves. There is an
emerging demand for reuse techniques, with the twofold aim of maintaining
software quality factors across projects [33, 44, 21] and of easily communi-
cating and disseminating knowledge about robotic development issues [44].
The current state of the art in the development of robotic applications suffers
from several problems:

• Robotic application variability makes hard to create ad-hoc standards,
unified architectures and methods, as well as to profitably import them
from other application domains [34, 33, 21].

• Responsibilities and boundaries among applications, frameworks and
middleware are not universally defined [44]. Reuse of code across
projects may easily fail if not complemented with design techniques.
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• Several frameworks support the reuse of components, but a standard
model to create robotic components still lacks because of the difficulty
to find out a unified way to represent data and processes [33, 44]. More-
over, it is not clear the level of granularity to be used for building such
components in order to promote the reuse across varying frameworks
[34]. Therefore a documentation process would help the component
integration process [33, 18, 21].

• Development time and resource limits, typically occurring for exper-
imental robotic systems, demand for environments and tools for fast
prototyping of applications and for verifying and testing the system
[33, 18]. These tools would minimize the effort spent for secondary
aspects of the system, like component integration or system documen-
tation, and would maximize the effort for research objectives.

By now the agent paradigm seems to be one of the most interesting choices
for developing a robotic application by following a rigorous design process
[3, 21, 9]. Autonomous agents offer powerful instruments for decomposing,
abstracting and organizing such complex, distributed and evolving systems.
Several works consider robotic software as a collection of agents, where each of
them is responsible for a specific functional area of the robot. These agents
independently manage robot devices and collaborate in order to exhibit a
collective synchronized behaviour, thus achieving a collective goal that is the
robot mission.

This structure creates a decoupling between hardware and software, that
is a necessary feature of an engineering design in which mission and global
requirements, take priority over details about the implementation and de-
ployment platforms.

This paper presents design patterns for agents, defined as a complement
of the PASSI (Process for Agent Societies Specification and Implementation)
design process [14] for developing multi-agent systems (MAS). The contribu-
tion of this paper is a pattern-based reuse method supported by a specific
tool for automatic code and documentation production. Although other
works exist in this field, the specific innovations proposed by this approach
are multifold. First of all, they regard the integration between the pattern
reuse practice and the PASSI design process; then there is the successful
adoption in the development of complex systems like robotic ones. The gen-
eration of the system code from pattern reuse is another relevant element;
this code is not the common skeleton produced by several design tools nor
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the behavioural code obtained by applying transformations to dynamic di-
agrams (like it can be done for state-charts) but it is a complete and fully
functional portion of code (skeletons and inner code of methods) reused from
a repository and adapted to the specific problem or produced by processing
available system specifications. Finally another contribution is in the defini-
tion of a repository of patterns that can be widely applied to the design of
robotics systems but also in many other developing scenarios.

The paper is organized as follows: Section 2 presents common approaches
for building robotic systems underlining the growing need for frameworks and
methods for a rapid prototyping of these applications. Section 3 describes
a well-known architecture adopted for a robotic case study throughout the
paper. Section 4 illustrates the proposed engineering process consisting in
a reuse technique based on design pattern composition. In addition, a tool
(Agent Factory) is presented for supporting pattern selection, reuse and com-
position; it also provides automatic code and documentation generation. Sec-
tion 5 presents some patterns from a repository for agents. They have been
identified as a solution to typical and recurring robotic design problems. The
section illustrates both pattern features and their usage. Section 6 is focused
on the reuse and composition process applied to the proposed robotic appli-
cation. Section 7 discusses the reusability of this approach and the quality
of the produced system. Finally, some conclusions are drawn in Section 8.

2. Robot Programming Techniques and Methodologies

This section explores possible approaches from literature to the develop-
ment of robotic applications. The analysis starts with specific architectures
and frameworks for reusing robotic components. Successively some method-
ologies for designing multi-agent robotic systems are illustrated and finally
design pattern reuse is discussed.

2.1. Component-Based Frameworks

In the last few years several different platforms have been proposed for
robotics programming. These are mainly based on the principle of modu-
larity and make an extensive use of component-based software engineering
practices. Several frameworks exist where a set of components specialized
for robotic applications can be customized and integrated, thus the process
of building a robotic system is made easier.
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The CLARAty framework [49] proposes a representation of the system
based on two layers: the Decision Layer is the strategic level that drives the
Functional Layer. The upper level provides components for the reasoning
engine while the lower level is layered and can represent different levels of
system abstractions.

The COOLBOT framework [21] explicitly considers software reuse, mod-
ular composition and third-party software integration. This framework pro-
vides means to design and to build units to be reused and to be composed
(hierarchically and dynamically) by using finite state machine diagrams.

The Chimera Methodology [46] addresses the design of dynamically re-
configurable real-time systems and robotic applications. Components are
specified by describing their interfaces. The result is a software model for
objects that can be reused, statically integrated and dynamically reconfig-
ured, it supports real-time applications, and it can be used in a distributed
shared memory environment.

2.2. Multi-Agent System Methodologies

Multi-agent systems represent a means for introducing autonomy, dis-
tribution, collaboration, and other advanced features in robotic (and non-
robotic) programming. Many design methodologies have been proposed for
designing agent systems and most of them can be adopted for the design of
robotic applications. In [47] authors propose to specify agent behaviour for
robotic applications by using UML state-charts. Model checking techniques
are employed to formally analyze behavioural properties of finite state sys-
tems and other issues like concurrency.

The Organizational-based Multiagent Systems Engineering (MaSE) me-
thodology [19] has been conceived for engineering practical multiagent sys-
tems. It prescribes a top-down approach where the key concept is the Goal, a
system-level objective that can be assigned to agents. MaSE has been used to
design a team of autonomous, heterogeneous search and rescue robots. Anal-
ysis and design models proved to be helpful in the maintenance and modifica-
tion of the cooperative robotic systems. A tool (agentTool) is provided with
the methodology that supports the designer during system development.

The Cassiopeia methodology provides a method to proceed from a col-
lective task global specification to the specification of the local behaviours,
which are to be provided to the agents. The methodology has been success-
fully adopted in order to design and implement the organization of a robot
team for the RoboCup.

5



A totally opposed approach is defined in ADELFE [7] that assumes agents
totally ignore system goals and the environment where they live. It em-
ploys cooperative agents whose design is aimed at avoiding non-cooperative
situations descending from incomprehension, ambiguity, incompetence, un-
productiveness, concurrency or other conflicts. ADELFE was employed to
implement a multi-robot resource transportation system [38].

2.3. Reuse with Design Patterns

It is commonly recognized that reuse cannot be limited to the develop-
ment phase [4, 27, 28]. Design patterns are commonly considered the ultimate
way for introducing reuse in a design process [31]. They also allow for over-
coming main limitations of components reuse: (i) libraries of components
usually address specific needs and lack of generality; (ii) people require infor-
mation on how to use each component and how to correctly integrate them
with the system under development; (iii) simply announcing the existence of
a library, a component, or a framework, will not cause their usage; people
requires trusting it.

The Tropos methodology [25] gives a great emphasis to early requirements
analysis by adopting the Eric Yu’s i* modelling framework [51]. This me-
thodology includes a native support for design patterns reuse [20]. In Tropos,
social patterns are idioms inspired by social and intentional characteristics
used to design the details of a system architecture. The process is supported
by a code generator that helps the programmer in choosing the right pat-
tern, and then it generates the multi-agent system skeleton according to the
employed patterns. The repository of patterns is quite generic and does not
comprise robotic specific patterns.

Gaia [50] is another methodology for multi-agent system that includes a
catalogue of design patterns, mainly focused on the social perspective [26].
This methodology uses roles as a key mechanism for social interoperability.
Authors address that robots can use social roles to enable behaviour and to
adapt to new domains. Roles are used as a concrete tool to assign and allo-
cate behaviours, showing that a role-based system can effectively administer
behaviour in an artificial system.

Agent based systems present great advantages in terms of level of abstrac-
tion, design methodologies and reuse frameworks. Next section introduces
the architecture we adopted in several robotic applications. This architecture
is perfectly suitable to be implemented by a multi-agent system and following
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sections will show how the proposed reuse approach supports and simplifies
the whole development process.

3. The Adopted Robotic Architecture

Robotic applications are complex systems affected by different categories
of problems. Robotic systems encapsulate algorithms from artificial intelli-
gence working on distributed architectures where components are developed
to face real-time efficiency trade-offs.

The architecture adopted in this work [9][8] revealed to be highly generic,
since it has been used across several heterogeneous robotic applications. The
architecture is based on symbolic and behavioural processing of data coming
from robot sensors. The integration of these two types of data processing is
realized in three levels of data representation: (i) sub-conceptual, (ii) concep-
tual and (iii) linguistic. The subconceptual level is a repository containing
reactive behaviour modules that are generally connected to the actuators of
the robot. These modules process data coming from sensors and they send
results to the conceptual space that is a metric space composed by a certain
number of cognitive dimensions corresponding to environment qualities. Fi-
nally, the linguistic level acts as a central engagement module that controls
the whole behaviour of the robot. The control of the robot is driven by the
generation of expectations about relevant aspects of the environment. Ex-
pectations trigger actions and decisions, thus determining the rationale and
reactive behaviour of the robot.

Autonomous agents represent a powerful instrument for decomposing,
abstracting and organizing such complex, distributed and evolving systems.
In this view, the robot may be considered as a collection of agents, where
each one is responsible for specific functionalities:

• Agents in the sub-conceptual level access to robot sensors and actuators
and realize reactive behaviours. They also collaborate with agents in
the conceptual level, providing data to process.

• Agents in the conceptual organization create a structured representa-
tion of the surrounding environment.

• Agents in the linguistic level act as a reasoning engine, by using allow-
able information to generate expectations that drive the actions of the
robot, thus determining its behavioural strategy.
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From a software engineering point of view, this architecture maintains a
decoupling between hardware and software, that is a necessary feature of an
engineering process in which the mission of the system, or the global require-
ments, take priority over details about the implementation and deployment
platforms. This architecture also enables to change robot configurations
without modifying high-level components that handle the behaviour.

3.1. Case Study: A Robotic Guide

This section presents the case study that will be adopted throughout
this paper: the architecture of the CiceRobot project, whose mission was
performing guided tours of the Agrigento’s Regional Archaeological Museum
[32, 11].

The whole system is a project of considerable size whose complete descrip-
tion will be omitted because of space concerns. The paper will only detail
a specific functionality of this robotic system: the indoor motion planning.
The path-planning problem consists in the identification of the trajectory the
robot has to follow in order to reach a desired position while operating in an
environment whose map is a-priori partially given and it should be completed
by exploration. The general architecture of such a robotic navigation system
is based on the decomposition of the knowledge and reasoning process in three
different levels: (i) Linguistic, working with symbolic representations of in-
formation, on which high level reasoning is possible (ii) Conceptual, working
with geometrical knowledge, typically diagrammatic representation of an area
and (iii) Sub-Conceptual, working with rawest representation of the environ-
ment around the robot [10, 8, 9]. The proposed architecture encompasses a
society of agents in order to handle different aspects of robot management.
An analogy has been created between knowledge decomposition and agent
organization. Each knowledge level is assigned to one autonomous agent.

Three Level Planner

Strategic
(Cyc Wrapper)

Conceptual
(A*)

Sub Conceptual
(VFH+)

CYC Module MAP Driver

Figure 1: Architectural view of the robotic navigation system
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Namely they are Strategic agent, Conceptual agent and Sub Conceptual agent.

The Strategic agent is responsible for reasoning on the symbolic information
that represents robot’s missions. This agent performs two high level tasks:
(i) interacting with human users and (ii) operating strategic reasoning. The
human user can assign qualitative targets, expressed in a natural language,
to the robot. For instance a command may sound like ”go to the left of
Tom’s desk”. The strategic planner is the reasoning ability owned by this
agent in order to elaborate a strategy for a single robot, or to coordinate the
behaviour of a team of collaborating robots. From the implementing point
of view, this agent contains an expert system that is able to reason on a huge
ontology (provided by the OpenCyc reasoning engine) built over a natural
language (common English).

The Conceptual agent manages a geometrical knowledge of the environment
where the robot operates. This information is extracted from a 2D or 3D
map that may be incomplete or that may contain errors. Knowledge about
the environment is fixed during navigation by using sensorial data. The
reasoning process on the map is enacted when a mission is elaborated by the
Strategic agent: (i) the environment is decomposed in rooms and openings,
then (ii) it is represented as a graph where rooms are nodes and openings are
represented by arcs connecting them; finally (iii) an algorithm calculates the
best navigational path in the graph in order to reach the target. A typical
plan includes a list of the rooms to be navigated, and the openings to pass
through. This plan does not care about details of in-room navigation.

The Sub Conceptual agent maintains a raw representation of the environ-
ment that surrounds the robot during the navigation. The motion space is
described by using a Cartesian grid, where each cell stores a value for indi-
cating the expectation of the presence of an obstacle at specific coordinates.
This information is calculated on the basis of sensorial data, and the degree
of confidence is due to noise and errors that typically affect this data. The
agent is delegated to deal with this type of data and to elaborate a precise
trajectory across the room by using a reactive run-time obstacle avoidance
algorithm.

In the next section, the proposed approach for the development of robotic
software with patterns will be discussed. The section will briefly introduce
the PASSI process and then the definition and documentation style adopted
for patterns.
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Figure 2: Overview of the framework for the development of robotic multi-agent systems.

4. Developing Agents with PASSI and Patterns

Designing a robotic architecture implies not only modelling the robot
hardware and managing its sensorial outputs, but also modelling its knowl-
edge about the environment, and providing the robot with the abilities re-
quired to perform intelligent behaviours.

Previous works (see Section 2) already addressed possible approaches for
designing and developing multi-agent robotic applications by using agents.
The approach that will be discussed in this paper is composed of a complete
framework (Figure 2) that adopts the following components: (i) PASSI (Pro-
cess for Agents Specification and Implementation) [14], a methodology specif-
ically conceived for multi-agent systems design, (ii) PTK (PASSI ToolKit) a
CASE tool that supports the design activity in PASSI, including the Agent-
Factory plug-in for design pattern reuse, (iii) the IEEE FIPA (Foundation
for Intelligence Physical Agents) Abstract Architecture [22], providing a set
of standard specifications for agent architecture, platforms and interaction
protocols, (iv) the Protege’[36] tool for designing and implementing the sys-
tem ontology and, finally, (v) Jade [6], a Java middleware providing a set of
APIs for agent development and deployment easily integrable with (vi) Jess
[1] a rule based engine for realizing the symbolic knowledge level.

All these elements provide a framework for developing multi-agent robotic
systems from design to implementation. The framework is completed by a
repository of design patterns for agents (that will be discussed in the next sec-
tion), and a specific technique for pattern reuse during systems development.
Design patterns encompass a steady way for introducing rapid prototyping of
multi-agent systems in PASSI. Section 6 shows some benefits of the employ-
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Figure 3: The PASSI design process life-cycle

ment of pattern reuse and composition in the development of a robotic ap-
plication. In this approach design patterns are considered as building blocks,
even if the difference with component integration must be clear; the reuse of
each pattern enriches the system with new functionalities and specific issues.
The resulting incremental development technique is the consequence of the
mix of the top-down system functional decomposition (typical of the PASSI
design process) and the bottom-up pattern reuse approach.

4.1. Design Patterns for Agents

Patterns for agents presented in this work are explicitly defined as an
extension of the PASSI design process [14][15]. The PASSI methodology
leads the designer from requirements analysis to the implementation of a
multi-agent system (see Figure 3). The work is carried out through five
phases composed by twelve sequential and iterative activities. The System
Requirements phase produces a functional description of the system-to-be.
The ’agent’ and ’role’ concepts are mainly used in order to realize a func-
tional decomposition and an early assignment of responsibilities. The Agent
Society phase analyzes the ’social’ perspective of the system, thus focusing
on interactions, ontology used to exchange information, and dependencies
among agents and roles. The Agent Implementation phase expresses the so-
lution architecture in terms of classes and objects by modelling the system
from the static and dynamic perspectives. The Code phase is concerned with
automatic code production (mainly from reused patterns) and manual code
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completion. Finally, in the Deployment phase, agent deployment concerns
find a solution.

As for traditional software design patterns, a pattern for agent is a proven
solution to a recurring problem. The main difference is that pattern specific
forces [24] are identified during the development of a multi-agent system,
and the solution is described by using PASSI phases and models in terms of
agents, responsibilities, roles, tasks, communications and so forth. According
to the PASSI process, the formalization of patterns in the repository encom-
passes three layers: the first layer addresses problem description and it is
based upon text (no formal language is used). This layer describes the spe-
cific problem where each pattern might be successfully employed and it aims
at explaining how the pattern could help the designer in solving a problem
while hiding the details required for implementing the solution. An interest-
ing template for describing agent-oriented patterns is illustrated in [37], with
the aim to improve the communication and the comprehension of patterns
for agents by proposing a consistent template structure. The description of
patterns in the proposed repository is done in terms of: i) motivations for
pattern application, ii) context and forces that occur in the problem iii) sys-
tem pre-requisites, and iv) post-conditions for the system where the pattern
is instantiated.

The second layer contains the definition of the solution in terms of models
of the multi-agent system. In this layer the description addresses the agent
paradigm in order to describe how to solve a specific problem. A set of
PASSI design models is generally employed to describe static and dynamic
aspects of: (i) the involved agents or the agent organization, (ii) the roles
played by agents, (iii) the services provided or exchanged by agents, (iv)
the communications used for coordinating agent activities, and finally (v)
the ontology used to store agent knowledge or to enrich communicative acts
with specific meanings.

Different PASSI design activities and diagrams are affected by the pe-
culiarities of the instantiated pattern. Figure 4 reports the list of diagrams
affected by the instantiation of a few patterns. It is worth noting that some
diagrams are automatically compiled by the PASSI design tools thus improv-
ing design quickness and ensuring a high design consistence.

The last layer of pattern formalization involves the implementation phase
and it represents the detailed description of the solution in terms of imple-
mentation elements. This layer actually depends on the specific programming
language or agent platform selected for the development. For this reason it
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Task 
Specification

Ontology
Description SASD MABDRole

DescriptionASE

Planner ✔ ✔ ✔✘

SYSTEM 
REQUIREMENTS

AGENT SOCIETY AGENT 
IMPLEMENTATION

AStar ✔ ✔✘ ✘ ✔✘

Request ✔ ✔✔ ✘ ✔

Pattern

PASSI diagrams affected by pattern instantiation

Keys: ✘ Not affected ✔ Affected Construction of diagram
is automatic

Figure 4: The PASSI diagrams affected by pattern instantiation

is maintained quite generic, thus avoiding to bind the methodology to im-
plementation details. The implementation description is expressed in terms
of: i) the static structure of each agent specifying tasks, messages, services
and actions and ii) the dynamic behaviour of the whole system described by
flows of activities, and interactions involving two or more agents.

Each pattern provides a set of functionalities and responsibilities that can
be applied to the system in an isolated fashion, or more profitably, composed
with: (i) elements of the system where the pattern is instantiated and/or (ii)
functionalities and responsibilities coming from other patterns. This compo-
sition is a bottom-up process where design patterns represent the building
blocks to be assembled in order to incrementally develop the system. An
example of pattern composition will be discussed in section 6.

An example of design pattern description is reported in the following (de-
sign diagrams and example code are omitted for the sake of brevity but they
are available on the repository website1):

Name: Planner
Classification: organization/behaviour
Intent: This pattern is originated from robotic and artificial intelligence applications. A plan-
ner system is a complex software that is able to perform some kind of reasoning in order to
build a plan for reaching a target.

1http://www.dinfo.unipa.it/sabatucci/pattern/
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Motivation: Consider a MAS (Multi-Agent System) designed for supporting a robotic sys-
tem, such as a RoboCup soccer team. In this scenario, each robot of the team has to be
fully autonomous and independent, and a strong coordination between team members is re-
quired. Thus, several algorithms and architectures are involved, regarding communications,
environment exploration, information sharing, and mission planning. In a cooperative robotic
context, each robot has a specific mission, which contributes to the realization of the common
goal. Several planning architectures can be taken into account for this purpose. This pattern
implements a distributed planner architecture based on the decomposition of the reasoning
process on three or more levels.
Applicability: This pattern can be adopted only within an agent execution platform that pro-
vides a Yellow Pages service. The Planner participant needs to register the service to Yellow
Pages and allows the agent to receive service requests.
Agent Solution: The solution is described in terms of static structure and dynamic behaviour.
For a complete description of the formal language used in the solution description see [43].
The list of participants, with their goals and responsibilities of this pattern includes:

• Planner Agent. The agent that is responsible for the planning activity.

• Upper Level Agent. The agent used for coordinating the execution of a mission. This
agent is responsible to send a sequence of missions (targets to be reached) to the
Planner Agent. Each mission requires the elaboration of a new plan.

• Lower Level Agent. Agent that executes atomic commands. This agent is the executor
of the plan generated by the Planner Agent.

• Planner Task. Task assigned to the Planner Agent in order to elaborate a plan. It is
responsible for using sensible information to elaborate a plan for reaching a target.

The dynamic description of the Planner pattern encompasses a PlanListener task that

waits for a mission incoming from the Upper Level Agent. When a mission is received, the

Planner Task elaborates a plan for reaching the imposed goal, details of the specific algorithm

are not part of this pattern. Then the PlanExecutor task decomposes the plan in atomic com-

mands to be executed and sends them to the Lower Level Agent. If the planning algorithm fails

(e.g. a path is not found), the DeadlockCommunicator task informs the Upper Level Agent of

this event (deadlock). In turn, when the deadlock message arrives from a lower level it means

that this agent has not been able to execute the mission. In this case the agent executes the

RePlanner Task that tries to elaborate an alternative solution.

Implementation Solution: This pattern is implemented by using a class. Because of the

generality of the pattern, the Planner task is an abstract class that does not perform any

action. A concrete task must be developed in order to implement the desired behaviour.

Related Patterns from the Repository: This pattern divides the planning operation among

three different agents but it does not give any indication about the specific algorithm to be

applied in each level. The VFHPlanner and the AStarPlanner are two suitable patterns for

solving the problem at the second and third levels.
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Figure 5: Representation of the pattern code/documentation generation process

Further details about dynamic aspects of this pattern are presented in
subsection 5.1.1. The next subsection discusses the support provided to the
designer by the AgentFactory tool for pattern reusing. This is a fundamental
element of the proposed pattern reuse approach and it is responsible for
pattern selection and retrieval from the repository, its introduction in the
current system and finally code and documentation production.

4.2. Tool Support and Code Generation

The AgentFactory tool2 [17] has been developed in order to support the
use of patterns for agents during the design phases of PASSI. It provides a
graphical interface for the selection of a pattern from the repository and it
drives the whole process of pattern instantiation into the model. The tool
also provides the: (i) automatic generation of the programming code deploy-
able on the selected agent platforms (Jade [6] or FIPA-OS [39]), (ii) automatic
documentation of the system portions obtained by using patterns, and (iii)
reverse engineering of the agent source code with automatic identification of
design patterns that have been previously instantiated in the system.

The Implementation Phase of the PASSI process exhibits a specific sup-
port for the development of multi-agent systems that are compliant to the
FIPA Abstract Architecture specifications [22].

Figure 5 shows the code/documentation generation process [16], that is
composed of several succeeding transformations. A language based on XML
is used for describing generic patterns, or meta-patterns, where the solution
is sketched by using a high level of abstraction, thus avoiding the specifica-
tion of any implementation issue. When a meta-pattern is instantiated, it
is processed by a succession of transformations. The first transformation is

2http://af.pa.icar.cnr.it/
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conceived to specialize the meta-pattern for a specific agent platform (Jade
or FIPA-OS). A different XSLT transformation is selected whether the sys-
tem is to be developed by using Jade or FIPA-OS. The transformation adds
all the details required by the specific implementing platform (for instance
behavioural components at the class level are labelled tasks or behaviours
according to the platform specifications); as a result, the meta-pattern is
transformed into a pattern. The second XSLT transformation aims at gener-
ating the skeleton of the classes composing the architecture of the solution.
This is an object-oriented (Java) code, where only attributes and operation
interfaces are defined. Finally, the last transformation (that is not based on
XSLT) introduces lines of code belonging to body methods inside class op-
erations, thus producing a final code that is richer than the code generated
by classical CASE tools. Such lines of code are stored in a repository of
action patterns and are selected on the basis of the pattern that has been
instantiated into the system.

An analogous transformation process, based on XSLT, is executed for
generating the documentation for the pattern. The transformation generates
the XMI description of the model that is shown by a viewer integrated in
the tool. Documentation is provided as a set of UML diagrams representing
portions of the system that are affected by the pattern instantiation. Figure
6 shows some screenshots, in particular a code view, a class diagram view and
an activity diagram view, that are generated by the tool as a consequence of
the Planner pattern instantiation.

5. Pattern Repository

The case study reported in this paper, a robotic application developed as
a guide for the Agrigento’s Regional Archaeological Museum, encompasses
the architecture represented in Figure 1. During the development of this
system, several patterns have been applied. The repository of design patterns
for the PASSI methodology includes 21 patterns (listed in Figure 7). A
complete description of all the patterns reported in our repository would
require too much space and therefore we will only report their intent in
Table 1; a complete description can be found in the repository website3.

The list of the patterns that have been reused and composed for the
navigation system described in Section 3 includes:

3http://www.dinfo.unipa.it/sabatucci/pattern/
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Table 1: A short description of the patterns in the repository.
Pattern Intent

Log Agent A log agent is a social agent that owns the ability to store information about all
interactions with other agents, for testing or administration aims.

Persistence
Agent

A persistence agent pattern has the capability to restore information or data struc-
tures independently from the given architecture or platform, by means of memoriza-
tion on non-volatile storage. Persistence allows an agent to save, load, freeze and
thaw its state.

Memento
Agent

As for the Persistence Pattern with the additional capability of recording agent belief
base history in order to realize undo/redo functionalities.

Social Agent A social agent owns the capability to use the yellow page service, when available from
the platform, for registering/deregistering the services it offers to other agents and
for searching services provided by other agents.

Resource
Caching

When an agent owns the exclusive access to a resource, the caching mechanism can
increase performances by minimizing the data exchange from/to the resource.

A* Planner The A* Planner agent relies on a generic architecture for informed graph search by
employing a heuristic estimation. The use of an ontology allows the customization of
the architecture for a specific search context.

VFH Planner The VFH Planner agent is an agent with a reactive layer that relies on the Vector
Field Histogram method, based on a statistical representation of the environment,
thus allowing the agent dealing with uncertainty.

Explorer In a distributed open environment, a couple of base-explorer agents is able to collect
data from 1..n remote platform(s) while maintaining the centrality of the reasoning
process over this data.

Sequential Re-
source Share

A SequentialResource agent owns the exclusive access to a resource and provides
services related to this resource. The sequential mechanism implies that each service
request corresponds to a resource access.

Parallel Re-
source Share

As for the SequentialResource agent, but the parallel access mechanism implies that
resource access and service providing are asynchronous processes.

Planner This multi-part architecture derives from robotic and artificial intelligence appli-
cations. A planner system is able to scatter the reasoning process across several
interacting agents.

Query/ Re-
quest/ Inform

Social agent communications are ruled by interaction protocols in which intentions
and data are communicated by the means of a standard set of speech-acts like Re-
quest, Query, Inform (each one originating a different interaction protocol).

Secure
Query/Re-
quest/Inform

As for Query/Request/Inform protocol, but these communications ensure a protec-
tion layer that includes means for avoiding other agents or humans can intercept or
modify exchanged messages.

Contract Net In open societies agents require to contract the performance of their services. This
protocol provides means for operating negotiations among an undefined number of
agents.

Publish-
Subscribe

In a distributed resource management system, the publish-subscribe protocol defines
means for two agents to synchronize a portion of their knowledge.

Information
Agent

An information agent is capable of accessing one or multiple, heterogeneous and dis-
tributed information sources, proactively maintaining relevant information or services
on behalf of its human users, or other collaborating agents, at any time and anywhere.

Holonic Society A holon is a model for an agent society inspired to biologic and social systems, where
elements can be at the same time ‘whole’ and ‘parts’. Holonic societies are dynamic
hierarchical structures that share a common goal.

Supply Chain A Supply Chain is the system of entities (organizations, resources, and so on) involved
in the delivery of a product from the manufacturer to the consumer. This pattern
provides a solution for managing a supply chain in a multi-agent environment.
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Figure 6: Screenshots of the AgentFactory application.

• Planner pattern; as already discussed in subsection 4.1, it encapsulates
a generic intermediate level of the multi-level architecture for planning;
this pattern may be applied to the three planning agents that have been
employed in the system: the FirstLevel agent, the SecondLevel agent and
the ThirdLevel agent.

• AStarPlanner pattern; it is used together with the Planner pattern
in the second level of the architecture (SecondLevel agent) in order to
implement the A* algorithm for informed graph searching [35]. This
algorithm is used in order to search for the best trajectory among the
rooms in the operating environment.

• VFHPlanner pattern; it may be used together with the Planner pattern
in order to implement a reactive robot motion algorithm for avoiding
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Figure 7: The list of patterns in the repository

obstacles inside each room by using the VFH* algorithm [30].

• SequentialResouceSharing pattern; it is used to assign the control of a
resource to an agent. The agent is responsible to provide an indirect
access to the resource by external requests. In the CiceRobot project
this pattern is used to give the ThirdLevel agent the ability to access
some robot drivers.

• Request pattern; it is used to implement a communication among
two agents by using the FIPA Request agent interaction protocol [23].
This protocol is used to implement a service-based form of cooperation
among agents.

The rest of this section illustrates these design patterns; planning patterns
are discussed in details, whereas patterns for resource management and for
agent interactions are only briefly introduced for space limits. A complete
documentation can be found in the already cited website.

5.1. Design Patterns for Planning

Three patterns specifically address planning problems: (i) the Planner,
(ii) the AStarPlanner and (iii) the VFHPlanner. This section discusses con-
text, motivations and forces for each of these patterns, whereas in Section 6
an example of composition is reported.
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Figure 8: The behavior of the Planner pattern

5.1.1. The Planner pattern

This pattern proposes a general solution for generating a multi-agent ar-
chitecture that is suitable for distributing a planning algorithm across several
agents. The Planner pattern describes: (i) the structure of an intermediate
level of a planning system, (ii) the internal flow of actions and (iii) the inter-
actions occurring among the agents with other levels of the organization in
order to coordinate their activities and to achieve the planning goal.

The proposed solution is conceived for a single agent whose dynamic
description is reported in Figure 8, by using a PASSI Task Specification
diagram. This is an UML activity diagram where the right swimlane focuses
on the agent’s tasks (represented as activities) and the left swimlane reports
other tasks belonging to agents which interact with the focused agent. The
right swimlane is used to represent the flow of actions of the Planner Agent,
whereas the right swimlane is used to show interactions with the other levels
of the planning architecture (Upper Level Agent and Lower Level Agent agents).

The Planner pattern prescribes that the agent receives (from the Upper

Level Agent) a mission to be accomplished by means of the Listener task. The
PlannerAlgorithm is the first activity to be executed (shown in Figure 8). The
pattern does not specify how to execute this task; this has been done in order
to raise the generality of the solution and to allow its reuse in all the three
planning levels.

The PlanSender task is responsible to execute the plan. This operation
generally needs to orchestrate the capabilities of the Lower Level Agent, to ana-
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Figure 9: The ontology description of the AStarPlanner pattern

lyze the plan, and to communicate to the Lower Level Agent, step by step, each
single sub-mission to be executed.

The architecture proposed in this pattern is fault tolerant. When the
Lower Level Agent is not able to execute the assigned mission, a deadlock event
occurs. In this case the DeadlockCommunicator task communicates to the Upper

Level Agent a failure; in this situation the responsibility of the Upper Level Agent

consists in deciding how to react to this exceptional event. An example
is provided by a closed door along the path; this is discovered by the Sub

Conceptual agent by using sensorial perception; as a consequence, it produces
a deadlock signal to the Conceptual agent. This operation is achieved by using
the Replanner task that elaborates an alternative solution.

Other benefits of this pattern are: i) decomposition of a complex planning
algorithm in collaborating set of simpler algorithms; ii) possible distribution
of the planning algorithm in a network with an improvement of the architec-
ture scalability and efficiency; iii) independence of the proposed architecture
from the specific algorithm, thus promoting the interchangeability, often re-
quired when building experimental portions of robotic applications.

5.1.2. The AStarPlanner pattern

An indoor environment can be represented as an unidirectional graph
where nodes are rooms and arcs are the openings that connect rooms. As
a consequence, the navigation problem can be seen as a graph exploration
problem. In this case it could be useful to work with informed search algo-
rithms because they reduce the searching space and generally offer solutions
in a lower time. This type of algorithms needs some specific knowledge on
the application context in order to improve the efficiency [35].
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The AStarPlanner pattern is principally devoted to implement the A*
algorithm. In order to abstract the algorithm from the specific application
context (though remaining still reusable), Figure 9 reports the ontological
description of the general data structure required for the execution. Ontol-
ogy is described by using the Domain Ontology Description PASSI diagram,
a class diagram where Concepts, Predicates and Actions are represented by
using classes with specific stereotypes. The pattern implements the planning
algorithm as a service that consists in elaborating an AStarPath by applying
the A* algorithm on the AStarGraph (that is composed by instances of AStarN-

ode and AStarArc). This structure contributes to maintain the pattern solution
quite generic, so to be reused in different contexts. In the CiceRobot project
AStarNodes are assigned to rooms of the building, whereas AStarArcs correspond
to doors. Another example of application for this pattern is the search of
routing-paths in a computer network, where AStarNodes are routers and AS-

tarArcs are cables that physically connect routers.
From a structural point of view (see Fig. 8), the AStarPlanner pattern

introduces two tasks in the agent where it is applied: the SetInitialConditions

and the AStarPlanner. The first task is responsible for creating a match between
pattern abstract concepts (nodes and arcs) and concrete elements that are
specific of the domain where the agent should operate (for instance rooms
and openings). This task should be customized each time the pattern is
reused. The second task is concrete and implements the A* algorithm that
works on nodes and arcs of a graph. The empty method named heuristic must
be manually implemented in order to provide an ad-hoc metric for comparing
different solutions discovered by the algorithm.

5.1.3. The VFHPlanner Pattern

The VFH (Vector Field Histogram) algorithm [30] is often used for real-
time obstacle avoidance. It allows for the detection of unknown obstacles,
by using heterogenous data coming from different kinds of sensors. The
VFHPlanner pattern is an algorithmic pattern that encapsulates the VFH
method. The robotic architecture, presented in Section 3, contains a reactive
obstacle avoidance behaviour, enacted by the Sub Conceptual agent. This agent
represents the operating environment by using a bi-dimensional grid that is
constantly updated in according to sensor data perception. The VFH algo-
rithm works through two consecutive steps of data reduction: (i) the first
step consists in the generation of a polar histogram containing the obstacle
density corresponding to a specific direction; (ii) the second step is the selec-
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Figure 10: Static structure of the VFHPlanner pattern

tion of the sector presenting the minor probability of encountering obstacles,
while maintaining stable (as much as it is possible) the direction to the final
target.

The structural representation of the pattern is shown in Figure 10; the
agent owns a set of attributes, the starting pos, the ending pos, and the env grid,
that respectively represent the robot position, the target position and the grid
describing the environment around the robot. This grid contains information
about free cells that can be navigated or cells that are occupied by obstacles.

This pattern comprises two tasks: (i) the UpdateGrid that cyclically inter-
rogates sensors for updating the env grid attribute, and (ii) the CalculateDirection

that encapsulates the VFH algorithm for determining the best direction.

5.2. Information Patterns

The repository also comprises some patterns for managing information
that is strictly related to external resources. Patterns in this category are
named Information Patterns and they are: (i) the SequentialShareResource
pattern, (ii) the ParallelShareResource pattern and (iii) the CacheResource.
These patterns share common intents and motivations, but have different
application contexts. The agent obtained by applying one of these patterns
is capable of accessing heterogeneous and distributed resources and proac-
tively maintaining relevant information on behalf of collaborating agents.
Differences among these patterns are identifiable in the architecture used to
provide the resource to other agents. The SequentialShareResource updates
the resource status only when required, e.g. when the service is requested
by another agent. The ParallelShareResource cyclically updates the resource
status in order to maintain it always updated. The CacheResource pattern
is generally used to decrease the number of accesses to a resource (both in
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reading or writing). A typical case in which this behaviour proves useful is
the access to a database.

5.3. Interaction patterns

Interaction is one of the most important aspects of multi-agent systems.
Agents may communicate while collaborating in order to pursue the same
goal, exchanging information, delegating responsibilities and so on. Interac-
tion patterns are specifically conceived for implementing Agent Interactions
Protocols (AIPs) as defined by FIPA [23]. A great number of the patterns in
the repository use interaction patterns, in order to deal with communications.

Examples of interaction patterns are: the Request, the Query and the
ContractNet patterns, that are frequently reused across projects. The Re-
quest pattern incorporates the FIPARequest protocol that allows an agent
to request another one to perform some action. A typical scenario, useful to
illustrate this pattern, is the delegation of a task. It occurs when an agent
is not able or it does not possess the rights to perform an action by itself.
In this case the agent may request another agent to perform the action. Be-
cause of the agent’s autonomy, the participant agent can always refuse the
request according to its personal intentions. The Query pattern is typically
employed for exchanging information or believes about the state of a concept
of the domain. The question is usually expressed by using a predicate. The
ContractNet pattern provides a software solution for negotiation contexts.
It is often used for e-market and supply-chain applications.

6. Pattern Reuse and Composition

This section illustrates an example of the process for building a system
with pattern composition. The example is excerpted from the robotic system
that has been described in Section 3.1 and uses the design patterns that have
been illustrated in Section 5. The project aim was to realize a robotic sys-
tem able to provide guided tours of the Agrigento’s Regional Archaeological
Museum [32, 11]. The whole system required an effort of about 24 person
months.

6.1. Reuse in the PASSI Design Process

This subsection illustrates the outcome of reusing a single design pattern
(the Planner pattern) along the design and development of the navigation
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sub-system in the robotic application. This technique is provided (and in-
tegrated) with the PASSI design process, that is not discussed in details
because of space limits. A complete description of the PASSI methodology
can be found in [14, 15].

The identification of the patterns to be reused involves the early phases
of the methodology, where the problem is decomposed in functional areas
in order to understand and dominate it. The identification of these basic
functionalities and the sketch of a high level agent-oriented architecture (as
briefly described in Section 3) provide means for choosing patterns to be
employed. In the case study, the reuse of the Planner pattern derives from
the need to realize the three-levels architecture, where the decisional process
is decomposed in three sub-processes according to different conceptualiza-
tions of the information about the environment. The design choice has been
to assign each level of this architecture to a different agent thus creating a
social organization responsible for handling different kinds of data and the
algorithms working on them: (i) sensorial data coming from heterogeneous
sources, (ii) diagrammatic representations of the environment and (iii) sym-
bolic representation of the state of the world. The intent and the motivation
provided by the Planner pattern candidate this latter as a good solution to
this problem.

When reused, patterns for agents spread their effects in a wide part of the
project. Once a pattern is identified and introduced in a specific diagram, the
consequences of this pattern reuse are: (i) the current diagram is modified
by pattern instantiations; (ii) changes also propagates forward on other parts
of the design (an automatic support is provided by the tool in the code and
documentation generation).

In the Conceptual agent, the Planner pattern introduces new elements in the
design: (i) several tasks for dealing with specific data conceptualization, (ii)
some new ontological concepts for handling plans, missions and commands,
(iii) two communications for receiving the mission from the higher level agent
and informing the lower level agent about the results of the planning activity
and finally (iv) two other communications for managing exceptional and fault
situations. All these details are shown in Figure 11.
In order to complete the design of this agent, some elements introduced by
this pattern must be refined and integrated with existing elements in further
phases of the methodology. For instance, the planner algorithm must be
defined for dealing with a Cartesian map representing the environment, each
communication must be detailed with a protocol and all generic concepts
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Figure 11: Single Agent Structure Diagram (SASD) for the SLPlanner agent. This PASSI
diagram shows how patterns selected for this agent affect the final result. Numeric labels
placed near classes indicate the application of more than one design patterns. When more
patterns affect the same element, a composition is required.

of the ontology (like Mission) must be matched with concrete elements of
the domain (Mission is, in the proposed case study, matched with a Target, a
position in the map).

Figure 11 shows a static structure of the package describing Jade imple-
mentation classes for the Conceptual agent. Classes’ compartments, detailing
attributes and operations, were concealed in order to obtain a compact class
diagram; numbers were attached to classes in order to indicate which pattern
affects each specific element. As it can be seen, three patterns were employed
in this agent, and several classes affected by more than one pattern. Specifi-
cally, the application of the Planner pattern in the Conceptual agent caused the
introduction of a large part of the classes shown in Figure 11, and mainly, it
imposed the internal architecture of this agent. It is worth to note that this
diagram was automatically generated by our design tool (and successively
annotated with numbers for the purpose of this paper).

6.2. Pattern Composition Technique

The PASSI diagram shown in Figure 11 implies that during the building
process couple (or more) of patterns may affect the same piece of the system.
When more patterns affect the same element of the system, a composition is
occurring and a specific technique for handling this scenario can be useful.
This technique ensures that a composition produces a perfect synergy of
intents, and design conflicts are avoided. This issue is discussed in details in
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Figure 12: Multi Agent Behaviour Diagram (MABD) for the planning navigation sub-
system.

[42] while here only a brief description of a pattern composition is provided
to give a complete vision of the approach.

More in details, the Planner pattern is composed with more instances of
the Request pattern. The intent of these compositions is to let the Second
Level agent to receive messages from the First Level agent by using the FIPA
Request interaction protocol.

The unification of roles provided by the two patterns is the rationale of
the composition. The Planner pattern provides three roles: (i) the Upper Level

role, (ii) the Planner Agent role and (iii) the Lower Level role. These roles are
detailed in Section 5.1.1. On the other hand the Request pattern provides
other two roles: (i) the Initiator role, played by the agent responsible to start
a communication and (ii) the Participant role, played by the agent who desires
to participate in the communication. The Strategic agent plays both the Upper

Level role (from Planner pattern) and the Initiator role (from Request pattern),
whereas the Conceptual agent plays the Planner Agent role (from Planner pattern)
and the Participant role (from Request pattern), thus two couple of roles are
unified: (a) Upper Level+Initiator and (b) Planner Agent+Participant.

The result of composition (a) is that the Strategic agent structure is en-
riched with a Request Initiator task (instantiated as Graph Sender) that is con-
ceived to initiate a Set Mission communication by sending a Mission message
containing the definition of the goal to accomplish (this is an abstract ontol-
ogy element that must be manually refined by the designer).
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The result of composition (b) is that the Conceptual agent structure is
enriched with a Request Participant task (instantiated as Graph Listener) that is
conceived to handle incoming Set Mission communications. Therefore the task
waits for Mission messages and it is able to extract the goal to accomplish from
them. An additional task (instantiated as Decision) is responsible for evalu-
ating whether to accept or refuse the mission. The Planner task is obtained
by the unification of the Planner Algorithm (from the Planner pattern) and the
Execute Service (from the Request pattern); this task is abstract, because it
does not contain any algorithm to be executed. The Plan Sender task (namely
Grid Sender) is added by the Planner pattern in order to execute the plan that
is elaborated (actually the plan execution is delegated to the Sub Conceptual

agent).
Another instance of the Request pattern is composed with the current

structure in order to handle deadlock situations. The elements added to the
two agents are the same of those previously described even if different names
are given to avoid conflicts.

6.3. Incremental Assembling of the System

Previous subsections discussed the composition of only a couple of pat-
terns and its consequences in the system. This subsection focuses on the
construction of the navigation sub-system of the CiceRobot’s application,
where several patterns have been reused and composed. Figure 13 shows a
couple of alternative ways for documenting pattern instances reused in the
case study. The table on the left reports pattern (in columns) used for each
agent (in rows). It is possible to have a double interpretation of this ta-
ble: reading it by following rows, the table provides responsibilities assigned
to each agent, coming from patterns; reading it column by column, the ta-
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Figure 13: Two alternative documentations of pattern instances reused in the navigation
subsystem of the proposed case study.
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ble provides how pattern instances influences the system. Figure 13.b is an
abstract overview of pattern reuse and composition in three agents of the
system. The three white boxes in the background represent the agents of
the architecture. Patterns are shown as grey boxes that overlap with the
agent boxes; these intersections represent the areas of influence of the pat-
terns. Several patterns in this schema affect more than one agent at the same
time. In particular the Planner pattern, responsible for defining the whole
architecture, affects all the three agents (with three different instantiations).

Patterns have been applied to the project in an incremental way: the
first step involves the Planner pattern, that is instantiated in all the three
agents in order to realize the three-levels architecture. As a consequence these
agents are organized in a simple social structure where the Strategic agent is
the head and its mission consists in elaborating a high level strategy for ac-
complishing a user-defined mission; usually, this also involves calculating the
target position in Cartesian coordinates (the user can indicate that by using
a qualitative description that is converted in coordinates by also using the
Open-Cyc inference engine). The Conceptual agent is responsible for planning
a trajectory across an indoor environment map, and, finally, the lower level
agent, Sub Conceptual agent, is a reactive agent responsible for managing robot
motion and perceptions and at the same time performing obstacle avoiding
behaviours along the trajectory.

A modification in the model is required in order to fit these pattern in-
stances in the specific context. The internal architecture of the Strategic agent
does not require the Listener and DeadlockCommunicator tasks (because this agent
does not receive any command from an upper level agent). The architecture
of the TLPlanner agent must be adapted too, since it does not require the
PlanSender and the LowerLevelDeadlockListener tasks (this agent directly controls
robot drivers).

At this stage, the base for the architecture of the navigation subsystem
is defined but it is still incomplete: agents cannot (still) communicate and
planning algorithms are not specified. Also, the Strategic agent, positioned at
the linguistic level of the previously discussed robotic architecture, still needs
the capability of understanding human language [32]. In order to accomplish
this requirement, the CycWrapper component is now used to create a bridge
between the Strategic agent and the OpenCyc knowledge base and inference
engine employed in this project. The original off-the-shelf OpenCyc ontology
has been extended with a set of custom rules and assertions concerning our
specific domain in order to allow for common sense reasoning and qualitative
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designation of our targets. CycWrapper is not a pattern since the adopted
solution is greatly dependent on a specific technology (Cyc) and this violates
the principle of generality of design patterns.

In the second level of the architecture, the AStarPlanner pattern is com-
posed with the Planner pattern in order to implement the planning algo-
rithm used for elaborating a path between two points of the map. Concepts
included in the AStarPlanner pattern description (see Figure 9) are generic
enough to be reused in several contexts. When the pattern is instantiated
in our system, these concepts have to be manually related to the specific
concepts of this domain: (i) AStarGraph is connected to EnvironmentMap, (ii)
AStarNode is connected to Room and (iii) AStarArc is connected to Opening.

In the last level of the architecture the VFHPlanner pattern has been
composed with the Planner pattern. This composition provides the imple-
mentation of the specific planning algorithm adopted at this level. This
agent requires a reactive behaviour and therefore the VFH algorithm can
be profitably used for that since it is well known and diffused. The only
customisation work the designer has to do, consists in defining the heuristic
function, in order to specify a metric for measuring distances in a cartesian
space.

Another problem that can be tackled with the proposed patterns is the
access to robot engines and sensors. They are usually considered an un-
shared resource that can be accessed with specific constraints. In order to
manage multiple accesses, in our approach, the resource is assigned to the
Sub Conceptual agent that is responsible for coordinating their use. The Se-
quentialResourceSharing pattern is a good solution to provide access to a
resource to the other agents of the system. This pattern encompasses two
roles: the Resource Manager that handles a resource and the Client that
requires to access to the resource. Once the pattern is assigned to the Sub

Conceptual agent, this agent becomes responsible for managing all resource
access requests, eventually using queues and flags.

Finally the subsystem is completed with the specification of communi-
cations among agents. The Request pattern is composed with the Planner
pattern and with the SequentialResourceSharing pattern in order to allow
agent communications by using the Request agent interaction protocol.

Figure 12 illustrates the dynamic behaviour that has been generated as
a consequence of pattern composition and instantiation. The diagram is
an activity diagram where swimlanes correspond to agents and activities
represent agents’ behaviours. As it happens in Figure 11, numbers address
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elements (activities) that have been affected by pattern reuse. Activities in
the three agents start in parallel. The Strategic agent selects the user-defined
mission and it elaborates the coordinates to reach. These are assigned as a
mission to accomplish to the Conceptual agent who is waiting for a command
from the upper level. This agent has a pre-loaded environment map from
which it generates a graph where rooms are edges and openings are arcs.
This graph is explored by using the A* algorithm in order to select the best
path to reach the target. The resulting path is decomposed in rooms to be
crossed, and the navigation inside each room becomes a mission for the lowest
level agent (performing obstacle avoidance behaviours). The third level agent
is ready for new commands. Inside each room, the VFH planner works by
using a 2D cell array that is filled up by using sensorial data; when an opening
fitting the right movement direction is found, then the robot moves through
that. If one of the three levels fails in elaborating the mission, a deadlock
message is sent to the upper level, and a new planning activity is executed
in order to discovery an alternative solution (if it exists).

7. Discussion

Literature agrees on the important role of design patterns and reuse tech-
niques in the development of industrial applications [12, 13]. Design patterns
affect several aspects of a system, introducing tangible benefits in the pro-
cess. The main issue is the quality of produced code and documentation.
The design of the system is well structured and greatly communicative be-
cause of the common language introduced by design patterns. Companies
that introduce reuse techniques in their software development process notice
a general improvement of the productivity.

These arguments have driven the definition of the reuse technique pre-
sented in Section 6. The technique is conceived for developing the system by
reusing and composing a set of design patterns from a repository for agents.
The reuse process considers design patterns as bottom-up bricks for building
multi-agent systems. The current section discusses benefits coming from the
employment of the whole development process and assesses the generality of
the patterns in the repository and the proposed approach.

The quality of final code is easily recognized as a key aspect to estimate
the goodness of the reuse technique, but its quantitative estimation is not
trivial. It is generally measured by the minor density of errors recovered in
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the source code. The tangible consequence of the use of design patterns in a
project is the minor effort spent during the development process.

This section discusses three of the key aspects that are commonly con-
sidered to represent the quality of a reuse approach: (i) the rapidity and
the affordability of the resulting development process, the (ii) traceability
of the system and (iii) the reusability of patterns in the repository. These
aspects will be detailed in the following subsections by referring to the case
study reported in Section 3.1. The CiceRobot system has been conceived as
a multi-agent system and it was designed by using the iterative and incre-
mental phases of the PASSI methodology.

7.1. A rapid and affordable process

The use of a structured design process is traditionally considered inade-
quate to the robotic domain because modelling is a demanding task that only
a few research groups really want to afford [21]. The effort required in mod-
elling every aspect of the system is typically set against time and resource
constraints [44]. The PASSI design process is composed of twelve activities
that model the system from different abstraction levels and different points
of view. However the methodology is provided with a reuse technique based
on design patterns and a CASE tool that offers the execution of several au-
tomatic steps during the development (as discussed in Section 4). The reuse
technique, discussed in this paper lets the developer easily build the system
by using design patterns and a specific language is used to glue blocks to-
gether avoiding design conflicts. This speeds up the developer during his/her
design work by enabling the reuse of a great part of (already tested and there-
fore affordable) design pieces thus (consequently) improving the correctness
of the final result.

Two experiments have been conducted for evaluating the worthiness of
the pattern reuse approach, against a traditional development lifecycle in
which reuse is not adopted. This benchmark does not replicate an experi-
ment for comparing the correctness of the resulting code with and without
design patterns since similar works already exist and are independent from
the design process or the reuse framework. Prechelt et al. [41] conducted
an empirical study proving that, usually, the development of a system is
completed with fewer errors if patterns are included in the process.

Several authors in literature assert that the use of design patterns in the
development of a system improves the whole correctness of the result. Similar
conclusions are provided by Vokac et al. [48] that proved the correctness of
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a program developed with pattern reuse, by using regression models and an
estimation method that took into account the correlations present in the raw
data.

Table 2: Two experiments for evaluating the number of man/weeks saved by using the
pattern reuse approach against the traditional approach.

Metronotte Project
Manual 

(p/w)

Pattern Reuse 

(p/w)
saved %

Requirement Analysis 4 4 0.00

Design (PASSI) 12 8 33.33

Development (architecture and 

interaction)
2 1 50.00

Development (ontology and 

algorithm)
6 5 16.67

Deployment and Testing 8 4 50.00

TOTAL 32 22 31.25

Our experiment is indeed aimed at comparing the number of man/weeks,
as an estimation of the changes in the effort caused by the adoption of pat-
terns. Table 2 summarizes results of the experiment, by showing different
values for the time required in the various activities. It is worth noting that
the pattern reuse approach implied a 30% of time less than the traditional
development. Analyzing the single rows, it is possible to note that: (i) the
reuse of pattern eases the design phase, in which many diagrams are filled
in by the patterns; (ii) the development of the architecture is strongly af-
fected by the reuse of patterns, because most of them concern architecture
and interaction issues; (iii) a few differences exist for completing the devel-
opment of the agents, and this is due to the automatic introduction of pieces
of ontology; (iv) finally effort is considerably less for the deployment of the
system and the testing phase.

In order to estimate the amount of automatic generated code, Table 3
reports reuse details for 6 agents and the system ontology. The number of
interactions among these agents is high: 12 different types of communications
are included. The table is organized in two sections, regarding the design
and implementation phases. For the first section the columns report: (i)

Table 3: Summary of the agents involved in the CiceRobot project

n. pattern 

reused

n. diagrams 

generated
total LOCs

generated 

LOCs

manual 

LOCs
code reuse

Sensor Reader 2 3 105 87 18 82,86%

Sub-conceptual 5 8 486 258 228 53,09%

Engine Controller 2 4 314 143 171 45,54%

Conceptual 4 7 752 253 499 33,64%

Knowledge Manager 2 3 232 65 167 28,02%

Strategic 3 3 523 443 80 84,70%

Ontology 2 1 1458 587 871 40,26%

Design Implementation

Agent
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the number of instances of the employed patterns, and (ii) the number of
diagrams reused for each agent.

Analyzing this data, it is worth to note that 12 design patterns were
adopted for building the three-level architecture (the FirstLevel, SecondLevel and
ThirdLevel agents). The consequent number of automatically generated code
lines becomes even more relevant when considering that more instances of
the same pattern are used in the same agent.

The code is generated by the Agent Factory application and it is com-
prehensive of attributes, operation interfaces and body methods (see Figure
14).

The rightmost part of Table 3 details the implementation phase, reporting
(i) the total number of LOCs, (ii) the number of LOCs generated by the
tool, (iii) the number of manually produced LOCs, and (iv) the percentage
of automatically generated code with regards to the total amount of code (of
each agent).

The size of the source code for this case study is about 3,8 MLOC for the
6 different types of agents. The contribution of automatically generated code
to the development of these agents is relevant, spreading in a range from 28%
to 84%, providing in total almost half of the total number of LOCs of the
system.

The amount of generated code could vary according to the specific agent
and its functionalities. For instance, the KnowledgeManager agent (responsi-
ble to store and manage indoor maps describing the environment) was built
by using two patterns only and therefore it has a poor percentage of reuse.
On the other hand the reuse percentage for the SensorReader agent is signifi-
cantly high (82.25%). The motivation is that te structure and behaviour of
this agent are simple and focused on handling and communicating acquired
sensorial data. As a consequence, this agent has been mainly realized by
composing and reusing interaction and information patterns.

7.2. Traceability and maintenance of the system

The quality improvement of the system and of the resulting documen-
tation is an important outcome of adopting a design process and a reuse
technique for modelling a robotic system.

Indeed, it is widely understood that the use of design patterns introduces
many quality aspects into the system; among them, an increased productivity
throughout almost all the design and development life-cycle, a better docu-
mentation [2] and an easier maintenance of the system in the future[5, 40].
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public class SecondLevel extends Agent { 

... 

    public class Listener extends SimpleBehaviour { 

        private MessageTemplate template; 

        /** 

         * @PCL action_pattern=constructor@InformParticipantTask 

         */ 

        public Listener(Agent owner) { 

            super(agent_ref); 

            MessageTemplate m1 = MessageTemplate.

MatchPerformative(ACLMessage.INFORM); 

            MessageTemplate m2 = MessageTemplate.MatchProtocol( 

"inform-protocol"); 

            setMessageTemplate(MessageTemplate.and(m1, m2)); 

        } 

        /** 

         * @PCL action_pattern=setup@InformParticipantTask 

         */ 

        public void action() { 

            ACLMessage msg = myAgent.receive(template); 

            if (msg != null) { 

                handleInform(msg); 

            } 

        } 

       ...

} 

Figure 14: A portion of the automatically generated code for the SecondLevel agent

The use of patterns for the documentation of a system lets programmers
handle new changes without having to understand system working details
[29].

In the presented approach patterns are precisely documented by using
models that adopt a precise notation (aligned with that adopted in the PASSI
process). PASSI diagrams contained in pattern solutions can be integrated
with the current model, thus raising the quality of the whole documentation
with a minimal effort, thanks to the integration between Agent Factory and
the PASSI ToolKit (PTK). Every design choice of the system is motivated
by a diagram that illustrates an aspect or a functionality.

In addition pattern reuse is traced along the whole process. The pattern
selection and integration with the system is traced by information like the one
reported in Figure 13.a, from which it is possible to figure out the rationale
for pattern applications into the model. In addition, the language used for
the pattern specification and composition (see [42]) traces the synergy among
patterns that affect the same slice of system. Finally, tool support is funda-
mental to forward the traceability of pattern reuse down to the programming
code.

This precise documentation obtained by pattern reuse reduces the time to
understand the whole system and to test or modify its components in future.
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7.3. Reusability of the proposed patterns

Section 4.2 presented the transformation process for generating the pro-
gramming code of a design pattern. By now the tool does not operate any
integration control over patterns when they overlap; this activity is entirely
demanded to the designer. As a consequence, the correctness of the whole
code generated by the tool depends on the correctness of the design patterns
employed in the project. It is widely understood that the quality of a pat-
tern is assessed by the experience rather than by testing it [45], and in a
similar fashion, the quality of automatically produced code is provided by
the refinement and consolidation of design patterns in the repository across
several years of work and across various low/mid-size projects. In the past
few years the repository of patterns for agents has been tested on several
heterogeneous domains. Some of the projects involved in this analysis are
reported in Table 4. They are all academic mid-size case studies:

1. CiceRobot: the already discussed robotic application that aims at pro-
viding guided tours at the Agrigento’s museum[11].

2. Metronotte Simulator: a system that emulates a surveillance B21r robot
in a realistic indoor 3D environment.

3. Koala: a robotic navigation system for a small car robot, where vision
is provided by an external camera positioned well above the operating
field (bird-eye camera).

4. Meeting Scheduler: an agenda manager and meeting scheduler for a
company workgroup.

5. Iron Manufacturer: an application for supporting a B2B scenario involv-
ing an iron manufacturing company.

6. Bike Production: an application for supporting a B2C scenario for a
bike manufacturing company.

7. Exam Manager: an application for managing exam calendars and stu-
dent enrolment.

8. SDBE Sim: a software system that simulates business evolution of re-
gional small and mid-size companies.

Table 4 summarizes statistics of reuse for a collection of patterns from the
repository, including those presented in this paper. The name of projects is
reported in the first column, whereas other columns indicate the number of
pattern instances in each project. The last column and the last row respec-
tively report: (i) the whole number of reuse occurrences of a specific pattern
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across all the projects, and (ii) the total number of patterns reused for each
project. This table is intended to prove the generality of the proposed ap-
proach and of the pattern repository since it shows the extent of pattern
reuse and composition across several heterogeneous applications.

Table 4 shows that the most reused patterns are the interaction ones (in
particular the Request and the Query patterns are reused 74 times). This
result is not surprising because of the key role played by communications in
agent societies. They are often instantiated as isolate elements of reuse (26
instances), but most times they are composed with other ones (48 instances).
Interaction patterns are very useful in combination with other patterns in
order to provide collaborative abilities. The category of patterns for planning
is strongly reused in robotic architectures (13 instances), but their usage is
not limited to this domain: they may be employed in resource-based contexts.
As an example the meeting scheduler application uses 3 instances of planning
patterns for the meeting-scheduling task. To conclude, information patterns
have been steadily reused across all the applications, showing that their reuse
is independent from the specific domain. The management of resources is
another common issue in the development of several kinds of applications.
This category represents another good example of pattern generality thus
proving that patterns in the proposed repository catch solutions in a really
generic way that is easy to reuse in various cases.

Table 4: Summary of pattern reuse statistics related to some of the projects developed
with the presented approach in the last years
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AStarPanner 1 1 1 3

Parallel 

ShareResource
1 1 2

Planner 3 3 2 2 10

Query 3 4 2 2 6 7 5 6 35

Request 5 5 8 3 2 5 5 6 39

Sequential 

ShareResource
3 1 1 2 4 3 14

VFHPlanner 1 1 1 3

TOT 11 15 16 7 11 15 14 16
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8. Conclusions

This paper presented an approach for designing and building robotic sys-
tems by reusing and composing design patterns. Such patterns are proved
solutions to recurrent problems occurring during the development phase of
complex and distributed systems. The reuse technique is integrated with a
comprehensive framework for developing multi agent systems that includes
the PASSI methodology for designing the system, a set of tools to support
the development and an agent platform for implementing and integrating the
robotic agents.

The contributions of this paper lie in the integration between the pattern
reuse practice and the PASSI design process, the (successful) adoption of a
pattern reuse extensive practice in the development of robotic systems, the
generation of relevant portions of system code (skeletons and inner code of
methods), and finally the definition of a repository of patterns that have
been tested in the design of robotics systems but may be fruitfully applied
in many other developing scenarios.

Patterns in this repository can be instantiated as isolate elements of reuse
in a project, but they revealed a greater usefulness when composed together
in order to build a larger portion of the system to be. Finally a specific
tool for automatic code generation is provided to designers to ease the agent
development phase. This tool uses a meta-description of pattern solutions
for generating, as a consequence of various transformations, the system code
and the corresponding (although partial) documentation. A case study is
discussed across sections of this work in order to illustrate the whole process
of pattern reuse and code generation.
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