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Abstract 

A comprehensive approach to the design and 
implementation of multi-robots cooperative systems is 
described. It focuses on a design process that uses the 
Unified Modeling Language and on a detailed ontology 
description with the goal of sharing the knowledge on 
environments that robots can acquire through the use of 
their vision sub-system. We base the implementation of  
our robotics vision system on agents inserted in a 
generic multi-level architectures.  The first objective of 
this work is to provide a framework to perform a 
rigorous agent-based design process for scenarios where 
many robots are involved in different operations.  Then 
we introduce a system for describing, upgrading and 
sharing knowledge about operating environments of a 
cooperative robot fleet. As a consequence we design a 
multi-level, agent-based vision architecture that takes 
advantage of the distribution over several different 
robots. Details of the methodology,  of the ontological 
approach, of system implementation using FIPA-OS 
environment,  along with real experiments  are reported.  

1. Introduction 

In recent years, mobile robots have been involved in 
more and more complex tasks often requiring the 
collaboration among  several individuals that in general 
differ in their skills, and in the way they perceive the 
external environment. In such a context, the research 
activity in the field of robotics has been mainly focused 
on the development of complex  algorithms to 
accomplish the specific robotic tasks like path-planning, 
vision, localization, and so on.  From the architectural 
point of view, two different philosophies have been 
carried on: the reactive and the behaviour-based 
paradigms. Our approach starts from these experiences 
and elaborates an architecture based on the cooperation 
of different levels of abstractions addressing three main 
robot’s features: perception, cognitive components and 
actuators. The presence of a fleet of robots, each one 
deploying several agents, realizes a huge system whose 
management raises at least two kinds of problems: the 
complexity of the software needs a specific design 

methodology [4] while the ontology design and sharing 
needs a particular attention throughout all the phases of 
the process. 
We consider the sharing of the ontology as one of the 
key issues in cooperative robotics because different 
robots can coordinate their work towards a common 
goal only if they can share the representation of the 
concepts and actions of their operating environment. 
Starting from the previous considerations, we apply a 
novel methodology to the design of multi-agent robotic 
systems using the Unified Modeling Language. From a 
robotic point of view we refer to the behavior-based 
approach. Particularly, the proposed methodology uses 
behavior-based philosophy as a part of a wider process 
which begins with the  requirements analysis for the 
whole system, identifies agents, and then defines 
behaviors [2]. The agents defined in such a way are 
deployed on the required hardware platforms, thus 
allowing both single robot  and multi-robot scenarios.  
For the ontology design, the architecture we adopt is 
based on the fundamental assumption that robots can 
obtain environmental experience from three different 
and conceptually divided channels: (i) the metric 
channel, giving quantitative information about the 
environment (lasers, sonars, odometers); (ii) the visual 
channel, giving snapshots of the environment (cameras); 
(iii) the semantic channel, giving support for the 
association of a semantic valence (a category) to spatial 
entities. The last channel is introduced as a way to face 
the well known anchoring problem [20]; in order to deal 
with the symbolic representation of the environment, a 
suitable ontology model has been devised which relates 
the couples (symbol, entity) that are present/discovered 
in the environment itself. We start from a meta-ontology 
(Ontology Identification Phase) from which we identify 
the ontological description suitable for the specific 
problem (Ontology Description Phase). In describing the 
structure of the knowledge we use UML in one of the 
phases of the design process (Domain Ontology 
Description). The proposed architecture can be extended 
towards the definition of the objectives of the different 
agents using methodologies like desirability functions 
[16,17] or generally behavior-based architectures [18]. 



 

The identified structures are then used to model the 
communications in the Communication Ontology 
Description phase. The paper is arranged as follows: 
Section 2 deals with the overall description of the agent 
based architecture;  section 3 explains the design 
methodology; section 4 deals with the description of the 
domain ontology; section 5  reports the multi-level 
vision architecture with experimental results, and finally 
in section 6 some conclusions are drawn. 

2. Description of the Robotic Architecture 

From the cognitive point of view, in our approach we 
refer to the architecture of fig. 1a. In this structure it is 
possible to devise three main components: the 
perception, which is responsible to map the stream of 
raw data in a symbolic form, that in turn is provided to 
the cognitive component where the symbolic data 
computation and, in general, deliberative behaviors of 
the system are located. The cognitive part can also 
support perception with some hints aimed to refine the 
perceptive process, and focuses the attention on those 
external stimuli that are judged to be more useful for the 
current task completion. The third component is the 
actuation one, which communicates with the other two, 
in order to drive the robot hardware during perception 
tasks, and in attention focusing. The perception-action 
link allows also reactive behaviors. Some of the authors 
already presented this architectural structure [3,7,10]. Its 
main goal is to go beyond the classical behavior-based 
model, and to provide the robot with true “symbol 
grounding” capabilities due to the intermediate 
representation of sensory data, that is used to instantiate 
pieces of knowledge at the symbolic component. 
Through this mechanism the robot is able to act more 
effectively in a deliberative fashion. The aim of this 
work is to provide a framework for our architecture 
allowing us to define a rigorous design methodology 
relying on the agent-based software paradigm.  In 
particular, the scheme reported in figure 1a can be 
regarded as a categorization of the possible agents 
typologies both if we look at the single robot 
architecture and if we consider a multi-robot scenario. In 
the second case we address the interaction between the 
external actors, and the whole team in order to perform 
cooperative tasks. In other words figure 1 is the highest 
level of abstraction in the system design, without taking 
into consideration the implementation details. Our 
approach suggests a possible abstraction from the single 
robot architecture to a multi robot team: the robot that is 
itself a multi-agent system, can be viewed as a single 
agent in the multi robot context in which it cooperates 
with the others in order to reach the goals of the entire 
system. Each robot can be thought as containing several 
agents; some of them interact with the external 
environment, some others process the knowledge to plan 

a strategy of reaching the goal, and at the end, other 
agents issue commands to the robot’s hardware. At the 
same time it is also possible to zoom in the single robot 
representation and to see it as composed of several 
agents logically classifiable in the same three types 
(Perception, Cognitive and Actuator). Furthermore we 
can zoom in each single agent and find a perception 
capability (necessary to be aware of the external 
environment), a cognitive part (where the knowledge is 
processed) and some actuator features (to realize the 
decisions taken in order to reach the goal). It is simple to 
identify these elements in a vision agent. It accesses to 
an image using  the driver of an hardware or through 
some kind of interaction with another agent (for 
example a message exchange), it processes the image 
accordingly to its objective and at the end it 
communicates the result to one or more agents interested 
in further steps. In our experiments we refer to the FIPA 
(Foundation for Intelligent Physical Agents) architecture 
[1]. In this approach, each agent is composed by a 
colony of tasks as described in fig. 2 and can play 
different roles that can be put into relation with one of 
the three areas reported in the general architecture of fig. 
1. We suppose that there is a one-to-many relation 
between each one of these three areas and the agents of 
the system as depicted in fig. 1b. 

3. The Design Methodology 

In conceiving our design methodology we followed one 
specific guideline: the use of standards whenever 
possible. This justifies the use of UML as modeling 
language, the use of the FIPA architecture for the 
implementation of our agents and the use of XML in 
order to represent the knowledge exchanged by the 
agents in their messages. 
Our methodology, called PASSI (Process for Agent 
Societies Specification and Implementation) [5] is a 
step-by-step requirement-to-code method for developing 
multi-agent software that integrates design models and 
philosophies from both object-oriented software 
engineering and MAS using UML notation. It has 
evolved from a long period of theory construction and 
experiments in the development of embedded robotics 
applications (see [6],[7],[9]). It is composed of five 
models (System Requirements, Agent Society, Agent 
Implementation, Code Model and Deployment Model) 
which include several distinct phases (Fig. 2).  
The code production phase is also strongly supported by 
the automatic generation of a great amount of code 
thanks to a library of reusable patterns of code and 
pieces of design. The models and phases of PASSI are: 
1. System Requirements Model. A model of the system 
requirements in terms of agency and purpose. 
It is composed of four phases: (a) Domain Description 



 

(D.D.): A functional description of the system using 
conventional use-case diagrams. (b) Agent Identification 
(A.Id.): The phase of attribution of responsibility to 
agents, represented as stereotyped UML packages. (c) 
Role Identification (R.Id.): A series of sequence 
diagrams exploring the responsibilities of each agent 
through role-specific scenarios. (d) Task Specification 
(T.Sp.): Specification of the capabilities of each agent 
with activity diagrams. 
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Figure 1:  (a) The architecture of a single robot from 
the cognitive point of view. (b)   The internal structure 
of the agent. 

2. Agent Society Model. A model of the social 
interactions and dependencies among the agents 
involved in the solution. Developing this model involves 
three steps in addition to part of the previous model: (a) 
Role Identification (R.Id.): See the System 
Requirements Model. (b) Ontology Description (O.D.): 
Use of class diagrams and OCL constraints to describe 
the knowledge ascribed to individual agents and the 
pragmatics of their interactions. (c) Role Description 
(R.D.). Class diagrams are used to show the roles played 
by agents, the tasks involved, communication 
capabilities and inter-agent dependencies. (d) Protocol 
Description (P.D.). Use of sequence diagrams to specify 
the grammar of each pragmatic communication protocol 
in terms of speech-act performatives. 
3. Agent Implementation Model. A classical model of 
the solution architecture in terms of classes and 
methods; the most important difference with common 

Object-oriented approach is that we have two different 
levels of abstraction, the social (multi-agent) level and 
the single-agent level. This model is composed of the 
following steps: (a) Agent Structure Definition (A.S.D.): 
Conventional class diagrams describe the structure of 
solution agent classes. (b) Agent Behavior Description 
(A.B.D.): Activity diagrams or state-charts describe the 
behavior of individual agents. 
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Key: 
D.D. – Domain Description 
A.ID. – Agents Identification 
R.Id.– Roles Identification  
T.Sp. – Task Specification 
A.S.D.–Ag. Structure Defin. 
A.B.D.–Ag. Behavior Descr. 

 
O.D. – Ontology Description 
R.D. – Roles Description 
P.D. – Protocols Description 
C.R. – Code Reuse 
C.C. – Code Completion 
D.C. – Deployment Config. 

 
Figure 2:  The models and phases of the PASSI 

methodology. 

4. Code Model. A model of the solution at the code 
level requiring the following steps to produce: (a) 
Generation of code from the model using one of the 
functionalities of the PASSI add-in. It is possible to 
generate not only the skeletons but also largely reusable 
parts of the methods implementation based on a library 
of code and associated design descriptions. (b) Manual 
completion of the source code.  
5. Deployment Model. A model of the distribution of the 
parts of the system across hardware processing units, 
and their migration between processing units. It involves 
one step: Deployment Configuration (D.C.): deployment 
diagrams describe the allocation of agents to the 
available processing units and any constraints on 
migration and mobility.Testing: the testing activity has 
been divided into two different steps: the single-agent 
test is devoted to verifying the behavior of each agent 
regarding the original requirements for the system 
solved by the specific agent. During the society test an 
integration verification is carried on together with the 
validation of the overall results of this iteration. 
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Figure 3: The ODM Static Symbolic Layer. This ODM sub-model actually represents (part of ) the DOD model of our 
domain: the knowledge structure we identified is then used to model the content of the communications in the COD 
phase and finally to define the agent communication ontology. 
 
The Agent Test is performed on the single agent before 
of the deployment phase while the society test is carried 
on the complete system after its deployment. 
A more detailed description of the methodology is 
beyond the scope of this paper. In the following section 
we will deal with its steps that describe the ontology of 
the domain and the robots’ knowledge exchange. 

4. Ontology Representation and Sharing 

Multi-robot collaboration, in our approach, has a direct 
consequence in the knowledge design and sharing. We 
introduced the Ontology Description (OD) phase in the 
design methodology in order to model both the 
identification/representation of the domain ontology, 
and the communications that the robots use to exchange 
it. OD phase is composed by two sub-phases: the 
Domain Ontology Description (DOD) and the 
Communication Ontology Description (COD). In the 
DOD we represent the ontology as an UML class 
diagram that basically describes the overall domain 
ontology. In the COD (another UML class diagram), we 
describe the knowledge of each agent (thus addressing 
the implementation of its data structures) and its 
communications, from the ontological point of view, 
referring to the elements of the previous drawn DOD 
diagrams. The description of the domain ontology is 
obviously one of the most difficult phases of the entire 
process. We have developed a specific sub-process for 
it, divided in two subsequent phases: Ontology 
Identification Phase (OIP) and Ontology Description 

Phase (ODP). The OIP is a multi-perspective study 
driven by a functional analysis of the domain, and 
allows the identification of the different types of 
knowledge and of the related ontologies needed for the 
implementation of particular classes of tasks and 
functionalities. Result of the OIP is a general meta-
ontological model (Ontology Identification Model, 
OIM) that encompasses a set of conceptually divided 
ontological abstract sub-models. Each of them is 
“generated” by a particular view that is assumed in front 
of the operating environment in order to capture those 
aspects that are meaningful for that particular class of 
tasks [14]. OIM uses UML as a representative 
formalism, grouping ontologies into more general 
categories according to the dichotomy between quantity 
and quality, and showing how consistency between these 
groups is determined by causal models. 
In the next phase (ODP), the results of OIP are used as a 
framework to drive the actual definition of the Domain 
Ontology. Through re-interpretation and finer-grained 
specification of OIM abstract ontological sub-models, 
we now produce a global and implementable 
representational model (Ontology Description Model, 
ODM). Since conceptually different ontologies relate, in 
implementation optics, to different inner 
representational formalisms, in ODM we use knowledge 
layerisation to allow them to co-exist into an overall 
domain model. Furthermore, in order to allow symbolic 
manipulation of knowledge, and to avoid the problems 
that a fully adaptive representation model could arise 
[15], we augment quantitative information with 



 

qualitative-semantic one (obtained through the semantic 
acquisition channel) and vice-versa, and we decouple 
static and dynamic knowledge. ODM layers are defined 
at a detail level that is able to capture all the information 
that is necessary for their implementation, and are 
expressed using UML as a representation formalism. As 
an example, the Static Symbolic ODM Layer is shown 
in figure 3. Formally, this layer is composed by 
landmarks representing structural static elements of 
typical indoor office environments named upon their 
semantic category. That is, walls and objects 
(furnishings) that are statically present in a specific 
position. Landmarks we have identified for office 
environments are: (i) walls; (ii) doors; (iii) windows; 
(iv) openings; (v) obstacles; (vi) markers. Each 
landmark is tagged with an unique identifier (ID) in 
order to distinguish it from others in the same category. 
Attributes needed to formally identify a wall are: its 
position and orientation (referring to a global coordinate 
system), its thickness and its height. Inside each wall, 
one or more windows, doors or openings can be present. 
Each of them has an ID and some parameters needed to 
identify its position relatively to the containing wall, its 
width and its height. An obstacle is any generic motion 
obstacle. Each obstacle has a geometry, modeled using a 
set of deformable superquadrics, and is related to its 
semantic through a name defining its category (a table, a 
chair). Finally, a marker is a physical entity (i.e. a label) 
that is easily distinguishable by the robot and can act as 
a trigger for some kind of behavior (i.e. in museum 
guide robot, reading a sign would cause a multimedia 
presentation to start). It is formally identified by its 
position and model description (a link to the file 
containing its graphical representation). Among the 
other layers  we identified there are: the topological, 
geometrical and grid-based ones. We developed an 
XML based realization of the ODM through its 
translation in XML DTDs/Schemas, thus treating a new 
XML-based mark-up language (Environmental 
Knowledge Markup Language, EKML) that we use for 
knowledge representation. At present, we are testing the 
introduction of XML DOM-Parsers into Fipa agents to 
share and update knowledge stored in EKML data 
structures.  

5. The Multi-Level Vision Architecture 

In the following we will describe the realized vision 
architecture referring to an experiment performed using 
a real robot equipment in an unstructured environment. 
The robot was provided with obstacle avoidance 
capabilities in order to reach a static target. The 
implemented behaviour is quite simple because our 
study was mainly focused on testing architecture 

implementation  rather than developing high quality  
solutions  to  accomplish  the  robot's  tasks. We were 
particularly interested to stress multi platform 
communication features of the FIPA environment, and 
to cope with its  lack of real-time control capabilities. 
Our robot was a K-Team Koala equipped with IR 
sensors, and controlled by a PC through a radio link. 
Vision was provided by a  calibrated camera looking at 
the action field, and reporting localization information 
to the rest of the system. In order to test distribution  of 
agents across multiple platforms, the camera was 
connected to a separate PC running part of the vision 
system code. Obstacle avoidance was simply 
implemented by processing IR sensors readings in order 
to detect obstacle proximity.  Then the robot follows 
obstacle's contour until it has free path to reach the goal. 
Path planning consists of a series of “turn” and “go 
straight” movements that are computed starting from 
vision data.  In what follows, a typical  experiment as 
long as the implementation of the multilevel vision 
system will be reported in detail.  
 
 

 
Figure 4:  The proposed multilevel architecture is 
based on various agents grouped in classes which have 
different level of knowledge: low level (HW agents), 
sub-symbolic level (Procedural agents  and Services 
agents), high level (Symbolic agent). 

5.1 Distribution of  agents across multiple platforms  

The proposed multilevel architecture (see fig. 4) is 
based on various agents grouped in classes which have 
different level of knowledge: low sensorial level (HW 
agents), sub-symbolic level (Procedural agents and 
Services agents), high level (Symbolic agent). All the 
agents can be located on different platforms and the 
system provides them of the communications 
capabilities. In fig. 7 it is depicted an example of the 
agent activations during a generic planning task: 
- The Planner Agent is part of the symbolic agent level 

and it plays the fundamental role of activation and 
coordination of the several agents involved. The most 
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important knowledge of this agent is the map of the 
scene in which new data are added to the a-priori data 
(see fig. 7.d). The Planner Agent uses  two Procedural 
Agents: Tracking Agent and 3D Reconstruction Agent. 

- A Procedural Agent can receive collaboration from  
several Services Agents in order to process its 
knowledge. For example the 3D Reconstruction Agent 
(see fig 7.c) owns images acquired by visual sensors 
on which it requested to perform filtering, edge 
extraction, camera calibration and so on. 

- The level of Services Agents is a extensible collection 
of simple low-processing agents (see fig. 7.b) useful to 
perform various calculations requested by one or more  
Procedural Agent. 

- The source of visual data is the level of Hardware 
Agents: the Devices Manager Agent is the interface 
between video (or image) sources and Procedural 
Agents that include this type of data in their 
knowledge. Every video source has its specific camera 
agent to communicate to Device Manager Agent (see 
fig. 7.a).   

5.2 The Sensorial Level and the Single Camera 
Agent 

We use a fixed CCD camera, connected to a computer, 
viewing the scene (see fig. 5). The single camera agent 
can run on a different machine from the one that runs the 
rest of the system,  communicating with it over the local 
net. In this way we have the possibility of  performing 
the vision task in real time without adding high 
computational costs to the whole system.   

5.3 Service Agents contributing to sub-symbolic 
knowledge 

This section describes the process of localization of the 
Koala robot during its task, in order to give  useful 
feedbacks to the planning agent [2,3,13].  The position 
of the robot in the image is calculated by simple low-
level image processing operations performed by the 
corresponding Services Agents.  The current frame is 
subtracted to the previous (gray level images), obtaining 
the pixels related to moving objects in the viewed scene.  
If more objects are moving, the Koala shape is selected 
using color and textural features. Naturally, some 
standard filtering operations are performed to reduce 
noise.   Moreover, a corner detector is applied in the 
area of the image representing the Koala shape in order 
to obtain feature points to track.  

5.4 The Procedural Agents and the sub-symbolic 
knowledge 

The estimation of the position of the robot on the floor  
is based on this tracked points. The valuable capabilities 
of the 3d Reconstruction Agent and Tracking Agent in 
the whole system are:  

- to individuate and segment the Koala robot also in 
contrasted and irregular backgrounds;  
- to perform an estimation of the position of the robot by 
camera images;  
- to interpret the sequence of movements of the robot 
giving information about the direction followed by it.  
The implemented computer vision task can be 
decomposed in three main steps:   
- localization of the robot on the image by low-level  
image  processing of the single frame;  
- estimation of the 2D location of the robot on the floor;  
- reconstruction of the 3D position of the robot.  
The position of the robot referred to a reference system 
is estimated using the homography between  the image 
plane and the floor  [11]. A generic 3D point X 
generates the point w on image:   
 

           [ ]XtRKPXw ==λ    
if the 3D points are on a plane (i.e. Z=0), the 
transformation is simplified  to a 3x3 matrix H:   
 

         [ ] PP XtrrHXw 21==λ         
where H is the homography matrix, decomposable on 
the calibration 3x3 matrix K, and a 3x3 matrix that has 
the first two columns of the rotation matrix R and the 
translation vector t as third column. X and w are 
indicated using homogeneous coordinates. During a 
preliminary calibration process, the matrix H is 
estimated using detected points  belonging to the floor; a 
grid placed in front of the camera is used to obtain the 
calibration matrix K and to fix the rotation and 
translation referred to the reference system. The tracked 
points on image are translated in 2D coordinates using 
estimated homography. The exact 3D position is 
recovered using the known real dimensions of the koala 
robot and the data coming from the calibration 
framework [8]. The estimated 2D coordinates of the 
robot and the direction of the detected movements are  
communicated to the system with messages.  The path of 
Koala is recorded by the Planner Agent and it is the 
source of 3D data for a powerful dynamic visualization 
using  a browser equipped with the plug-in for standard 
VRML language (see fig. 6). 

5.5 The Planner Agents and the symbolic 
knowledge 

Planning relies on several agents acting at different level 
of abstraction. The collaboration level agent uses 
information produced by procedural agents to derive the 
whole team strategy in achieving the goal. The result of 
this step is a different high level plan for each robot. 
Starting from this input, a single robot makes its routing 
plan using the Topological Layer of the ontology 
described in chapter IV.  



 

   

Figure 5:  some frames of the experimental sequence: the Koala robot avoids the obstacle  and reaches  the target. 

An A* algorithm is used to browse the graph connecting 
adjacent parts of the environment (rooms, corridors, 
etc.) through their openings. Low level navigation inside 
a single room and obstacle avoidance are performed 
using an approach based on potential fields [19]. 

6. Conclusion 

A novel methodology for the design of multi-agent robot 
architectures including also vision agents  is presented 
that extends the classical behaviour-based approach. It 
shall be showed that it can be  profitably used both in 
the case of a single robot design, and in a multi-robot 
scenario.In order to strengthen the cooperation 
capabilities of a multi-robot system our methodology 
comprehends an extensive specification of ontology. 
Starting from a referring framework where qualitative 
and quantitative descriptions are related through their 
causal relationships, we deduct the proper ontology 
description model for the environment where the robots 
operate. We considered vision the main source for the 
environmental knowledge and therefore we produced a 
flexible, modular and distributable vision architecture, 
where each agent can take advantage of services 
provided by agents present in other computational 
nodes, producing a network of cooperating entities that 
reduces the need for duplication of most common 
services. The methodology presented has been 
implemented using a FIPA compliant platform, and the 
experimental results have been very encouraging. We 
are currently extending the methodology towards 
automatic code generation for  a great part of the agents' 
implementation. 
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Figure 6:  some frames of the reconstructed scene using a standard VRML model. 
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Figure 7: the proposed architecture exploited: (a) The source of visual data is the level of Hardware Agents: the 
Devices Manager Agent is the interface between video sources and Procedural Agents; (b) The level of Services 
Agents is a extensible collection of simple low-processing agents useful to perform various calculations; (c) The 3D 
Reconstruction Agent  owns images acquired by visual sensors on which it requested to perform filtering, edge 
extraction, camera calibration and so on using Process Agents; (d) The Planner Agent is part of the symbolic agent 
level and it plays the fundamental role of activation and coordination of the several agents involved.  
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